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2 CHAPTER 1. PREFACE

Chapter 1

Preface

1.1 Preface to Matrix Analysis'

Matrix Analysis

Figure 1.1

LThis content is available online at <http://cnx.org/content/m10144,/2.8/>.



Bellman has called matrix theory ’the arithmetic of higher mathematics.” Under the influence of Bellman
and Kalman, engineers and scientists have found in matrix theory a language for representing and analyzing
multivariable systems. Our goal in these notes is to demonstrate the role of matrices in the modeling of
physical systems and the power of matrix theory in the analysis and synthesis of such systems.

Beginning with modeling of structures in static equilibrium we focus on the linear nature of the relation-
ship between relevant state variables and express these relationships as simple matrix-vector products. For
example, the voltage drops across the resistors in a network are linear combinations of the potentials at each
end of each resistor. Similarly, the current through each resistor is assumed to be a linear function of the
voltage drop across it. And, finally, at equilibrium, a linear combination (in minus out) of the currents must
vanish at every node in the network. In short, the vector of currents is a linear transformation of the vector
of voltage drops which is itself a linear transformation of the vector of potentials. A linear transformation
of n numbers into m numbers is accomplished by multiplying the vector of n numbers by an m-by- n ma-
trix. Once we have learned to spot the ubiquitous matrix-vector product we move on to the analysis of the
resulting linear systems of equations. We accomplish this by stretching your knowledge of three-dimensional
space. That is, we ask what does it mean that the m-by- n matrix X transforms R” (real n-dimensional
space) into R™? We shall visualize this transformation by splitting both R™ and R™ each into two smaller
spaces between which the given X behaves in very manageable ways. An understanding of this splitting of
the ambient spaces into the so called four fundamental subspaces of X permits one to answer virtually
every question that may arise in the study of structures in static equilibrium.

In the second half of the notes we argue that matrix methods are equally effective in the modeling and
analysis of dynamical systems. Although our modeling methodology adapts easily to dynamical problems
we shall see, with respect to analysis, that rather than splitting the ambient spaces we shall be better
served by splitting X itself. The process is analogous to decomposing a complicated signal into a sum of
simple harmonics oscillating at the natural frequencies of the structure under investigation. For we shall see
that (most) matrices may be written as weighted sums of matrices of very special type. The weights are
eigenvalues, or natural frequencies, of the matrix while the component matrices are projections composed
from simple products of eigenvectors. Our approach to the eigendecomposition of matrices requires a brief
exposure to the beautiful field of Complex Variables. This foray has the added benefit of permitting us a
more careful study of the Laplace Transform, another fundamental tool in the study of dynamical systems.

—Steve Cox
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Chapter 2

Matrix Methods for Electrical Systems

2.1 Nerve Fibers and the Strang Quartet’

2.1.1 Nerve Fibers and the Strang Quartet

We wish to confirm, by example, the prefatory claim that matrix algebra is a useful means of organizing
(stating and solving) multivariable problems. In our first such example we investigate the response of a nerve
fiber to a constant current stimulus. Ideally, a nerve fiber is simply a cylinder of radius a and length [ that
conducts electricity both along its length and across its lateral membrane. Though we shall, in subsequent
chapters, delve more deeply into the biophysics, here, in our first outing, we shall stick to its purely resistive
properties. The latter are expressed via two quantities:

1. p;, the resistivity in Qcm of the cytoplasm that fills the cell, and
2. pm, the resistivity in Qcm? of the cell’s lateral membrane.

LThis content is available online at <http://cnx.org/content/m10145,/2.7/>.



6 CHAPTER 2. MATRIX METHODS FOR ELECTRICAL SYSTEMS

A 3 compartment model of a nerve cell

Figure 2.1

Although current surely varies from point to point along the fiber it is hoped that these variations are
regular enough to be captured by a multicompartment model. By that we mean that we choose a number
N and divide the fiber into IV segments each of length % Denoting a segment’s

Definition 2.1: axial resistance

L
R, = P
Ta
and
Definition 2.2: membrane resistance
R, = Pm
27mﬁ'

we arrive at the lumped circuit model of Figure 2.1 (A 3 compartment model of a nerve cell). For a fiber
in culture we may assume a constant extracellular potential, e.g., zero. We accomplish this by connecting
and grounding the extracellular nodes, see Figure 2.2 (A rudimentary circuit model).



A rudimentary circuit model

R R, R

i

—

Figure 2.2

Figure 2.2 (A rudimentary circuit model) also incorporates the exogenous disturbance, a current
stimulus between ground and the left end of the fiber. Our immediate goal is to compute the resulting
currents through each resistor and the potential at each of the nodes. Our long-range goal is to provide
a modeling methodology that can be used across the engineering and science disciplines. As an aid to
computing the desired quantities we give them names. With respect to Figure 2.3 (The fully dressed circuit
model), we label the vector of potentials

T = ( r1 Ty T3 X4 )
and the vector of currents
Yy= ( Y1 Y2 Y3 Ya Ys Yo )

We have also (arbitrarily) assigned directions to the currents as a graphical aid in the consistent application
of the basic circuit laws.
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The fully dressed circuit model

—

Figure 2.3

We incorporate the circuit laws in a modeling methodology that takes the form of a Strang Quartet[1]:

(S1) Express the voltage drops via e = — (Az).

(S2) Express Ohm’s Law via y = Ge.

(S3) Express Kirchhoff’s Current Law via ATy = —f.
(S4) Combine the above into ATGAz = f.

The A in (S1) is the node-edge adjacency matrix — it encodes the network’s connectivity. The G
in (S2) is the diagonal matrix of edge conductances — it encodes the physics of the network. The f in (S3)
is the vector of current sources — it encodes the network’s stimuli. The culminating ATGA in (S4) is the
symmetric matrix whose inverse, when applied to f, reveals the vector of potentials, z. In order to make
these ideas our own we must work many, many examples.

2.1.2 Example
2.1.2.1 Strang Quartet, Step 1

With respect to the circuit of Figure 2.3 (The fully dressed circuit model), in accordance with step (S1) (list,
1st bullet, p. 8), we express the six potential differences (always tail minus head)

€1 =T1 — T2
€9 = T2
€3 = T9 — X3

€4 = T3



€5 = T3 — X4

€g = T4
Such long, tedious lists cry out for matrix representation, to wit e = — (Az) where
-1 1 0 0
0O -1 0 0
0o -1 1 0
A =
0 0 -1 0
0 0o -1 1
0 0 0 -1

2.1.2.2 Strang Quartet, Step 2

Step (S2) (list, 2nd bullet, p. 8), Ohm’s Law, states:
Law 2.1: Ohm’s Law
The current along an edge is equal to the potential drop across the edge divided by the resistance

of the edge.
In our case,
€e; e
Yy; = EJ.J ]: 173a5 and Y = Rija .7:2,476

or, in matrix notation, y = Ge where

= O

P
S

o o o o o F-
o o o o

o o o8~ o o
o o ?‘H o o o
oI o o o o
g‘w o o o o o

2.1.2.3 Strang Quartet, Step 3

Step (S3) (list, 3rd bullet, p. 8), Kirchhoff’s Current Law?, states:

Law 2.2: Kirchhoff’s Current Law
The sum of the currents into each node must be zero.

In our case
iQ — Y1 = O

y1—y2—y3=0

Y3 —ys—ys =0

2"Kirchhoff’s Laws": Section Kirchhoff’s Current Law <http://cnx.org/content/m0015/latest/#current>
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Ys —ys =0
or, in matrix terms
By=—f
where
-1 0 0 0 0 0 10
1 -1 -1 0 0 0
B = and f=
0 0 1 -1 -1 0

2.1.2.4 Strang Quartet, Step 4
Looking back at A:

-1 1 0 0

0 -1 0 0

0 -1 1 0
A =

0 0 -1 0

0o 0 -1 1

0 0 0 -1

we recognize in B the transpose of A. Calling it such, we recall our main steps

o (S1)e=— ().
e (S2) y =(Ge, and
o (S3) ATy =—f.

On substitution of the first two into the third we arrive, in accordance with (S4) (list, 4th bullet, p. 8), at
ATGAz = f. (2.1)

This is a system of four equations for the 4 unknown potentials, z; through z4. As you know, the system
(2.1) may have either 1, 0, or infinitely many solutions, depending on f and ATGA. We shall devote (FIX
ME CNXN TO CHAPTER 3 AND 4) to an unraveling of the previous sentence. For now, we cross our
fingers and ‘solve’ by invoking the Matlab program, fibl.m 2 .

3http://www.caam.rice.edu/~caam335/cox/lectures/fibl.m
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Results of a 64 compartment simulation
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Results of a 64 compartment simulation

Axial eurrent along 64 compartment fiber
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Membrane current along 64 compartment fiber

Figure 2.5

This program is a bit more ambitious than the above

11

in that it allows us to specify the number of

compartments and that rather than just spewing the = and y values it plots them as a function of distance
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