
Many-Sorted Languages
A. Bernhard Zeidler

思考
Contents

1 What do we have here? 2

2 Defining Many-Sorted Languages 5

3 Examples of Many-Sorted Languages 12

4 Formal Deduction 18

5 First Results 29

6 Defining Many-Sorted Models 36

7 The Theory of Proofs 47

8 Henkin Theory 59

9 Open Publication License 71

This material may be referenced, reproduced and distributed in whole or
in part, in any medium physical or electronic, provided that (1) the terms
of the Open Publication License are adhered to, that (2) this license or an
incorporation of it by reference is displayed in the reproduction and that (3)
the original author and a reference to the site of this document is clearly
stated. I.e. any reproduction or distribution has to meet all the conditions
set forth in the Open Publication License, v1.0 or later, given in section 9
(the latest version is presently available at www.opencontent.org/openpub).
Distribution or derivation of the work for commercial purposes is prohibited,
unless prior permission is obtained from the copyright holder.

1

1 What do we have here?

Overview
In this text we introduce many-sorted languages as a more natural way to
formalize mathematics than the common one-sorted logic. While this is not
really necessary from a rigid point of view (all mathematics can be covered
with set-theory, which can be done in the one-sorted language of sets) there
are many good reasons to use many-sorted languages instead:

� Almost all mathematics speaks of several sorts of objects: Points and
lines in plane geometry, vectors and scalars in linear algebra and even
sets and classes in formal set theory. It stands to reason to formalize
this as it is.

� Many-sorted languages are no more complicated than one-sorted lan-
guages, and it only takes little longer to formulate this machinery.

� While it is possible to boil down many-sorted languages with finitely
many sorts into a one-sorted language and use predicates (i.e. a 1-
ary relation symbol saying I am of sort ”i”) it is harder to prove that
this construction preserves all the theorems (like Gödel’s Completeness
Theorem) than to start from scratch.

So what we try to do here is to present an introduction into many-sorted
languages and models and to formulate and prove the most important the-
orems of formal logic, like the correctness, completeness and compactness
theorems. We will also present examples of common many-sorted languages
along the way, including the language of modules over commutative rings,
of ring-extensions and that of sets and classes. If you are not familiar with
naive mathematical logic yet, read remark 33 first.

My approach to formal languages follows the extremely elegant and efficient
path my esteemed teacher Prof. Ulrich Felgner of the university of Tübingen
laid out for one-sorted languages. Part of my thesis required a generalization
to many-sorted languages. As he never wrote a textbook on this himself, I
try to preserve part of his marvelous insights herein.

Introduction
David Hilbert gave a set of axioms for Euclidean Geometry, i.e. the geometry
of points, lines and planes in 3-dimensional space. His first axiom reads as:
”For any two points there exists a straight line passing through them”. In
more formal terms this would read as

∀P point ∀Q point ∃ g line : (P ∈ g and Q ∈ g)

So let us take a closer look at this: We have 3 sorts of objects: points, lines
and planes. Lines and planes consist of points, hence there is a relation,
e.g. P ∈ g that designates whether a point P is contained in the line g.
Note that this relation is between points and lines. There is another such
relation between points and planes. They are usually denoted by the same
symbol ∈ but from a formal point of view these are two distinct relations.

2

This becomes even more important, if we regard the intersection ∩ of lines.
It could be formalized as a function that turns two lines into a point (with
∅ being a special point that we could pick up as a constant). Likewise the
intersection of planes yields a line (with another ∅ being a special line). We
even have an intersection of a line and a plane, which should be a point.
That is we need to distinguish between three separate functions:

∩L : { lines } × { lines } → { points }
∩P : { planes } × { planes } → { lines }
∩T : { lines } × { planes } → { points }

What we find here is that functions start from (one or more) objects of pre-
defined sort(s) and yield another object of another, fixed sort. Like relations
you cannot enter just any object of any sort into a function.

As always the quantifiers ∀ and ∃ translate into for all and there is
but we note, that they always apply to one sort of objects only, e.g. for all
points P there is this and that. Hence every sort has its own quantifiers, too.

All these considerations are in no way artificial - this is what mathemati-
cians do all the time: Thinking about different types of objects and their
interaction. But before we venture on to giving a formal definition of the
structure of many-sorted languages let us present another example from a
different field: Linear Algebra. In the theory of vector-spaces (or modules
over a ring) we have a base field F and a vector-space V . The base field fea-
tures the operations of addition and multiplication. The vector-space only
has an addition, but there also is a scalar multiplication between scalars and
vectors. Altogether we have 4 binary functions:

+f : F × F → V
·f : F × F → F
+v : V × V → V
·s : F × V → V

Note that we also have constants, the neutral elements 0f and 1f in F and
0v in V . One of the properties required for a vector-space is, that for any
two scalars a, b ∈ F and for any vector x ∈ V we have (a+b)x = (ax)+(bx).

Note that in this equation the first addition is +f and the second is
+v. But this only is the usual operator-overloading commonplace in math-
ematics. What we want to stress here, is the use of quantifiers: What has
been covered in a ∈ F or x ∈ V will turn into different quantifiers in a
many-sorted language. So this formula would read, as:

∀f a ∀f b ∀v x : (a+f b) ·s x = (a ·s x) +v (b ·s x)

It might be a little cumbersome to track precisely which + belongs to which
sort, if you are familiar with these expressions there is no loss in omitting the
indices. But this is not the case, when it comes to quantifiers! It is safe to
rewrite ∀f a as ∀ a ∈ F but it is important to note, that it only applies to all
objects of the sort F . So in the end you will read the following formula (next
page) in a textbook about linear algebra, but remember - this is natively a
formula of in two-sorted language!

3

∀ a ∈ F ∀ b ∈ F ∀x ∈ V : (a+ b)x = (ax) + (bx)

From these two examples it should be apparent, that the natural way to for-
malize mathematics is a structure that allows us to speak of different sorts
of objects. every sort has its own quantifiers and constants. Relations and
functions can link objects of different sorts but are sort-dependent, as well:
You cannot insert a scalar into a slot where a vector is supposed to be.

Back to Where it all Began
If you, dear reader, are still in doubt what all that fuzz is about, why we
need to further formalize mathematics anyway, let us relay Russel’s Paradox
that crashed Cantor’s notion of sets: Let us take a look at the set of all set,
that do not contain itself, formally Ω := {X | X 6∈ X }. As of Cantor’s
notion this is a totally legit construction: It is a set of objects X that satisfy
a reasonable condition X 6∈ X.

So the question is: Is Ω ∈ Ω? If ”yes” then we would have Ω 6∈ Ω, by the
definition of Ω, a contradiction. If ”no” this is Ω 6∈ Ω and hence we should
have had Ω ∈ Ω, another contradiction. Either way the coin lands, we arrive
at a contradiction - so what is wrong?

Alas, the answer is not a short one: Cantor’s notion is just too far
reaching to be free of such contradictions. What we need to do is what has
been called reduction of size. That is we have to start with very simple
sets, ∅ for example, and then slowly work ourselves up to more complex
sets. Given two (or more) sets the constructions allowed are intersections,
unions and power sets. These then turn up other nice sets. We can even
build up Cartesian products of sets this way. So whatever we can build up
using these constructions is safe. So mathematicians build up the naturals,
integers, rationals, reals, complex numbers and so on from scratch - only
using ∅ and these constructions. All this is done in the formal language
of sets. This is a one-sorted language, all the constants and variables are
considered sets.

However it is tempting to talk about the set of all sets - this essentially
is what Ω has been in the first place. Or at least the set of all groups. But
it can be shown that any (non-empty) set can be equipped with a group
structure, so this does not help either.

But category theory talks about such concepts all the time - they even
have functors, that map an object from one category to another (e.g. we
start with a commutative ring R and end up with the topological space
Spec(R)). So how do they avoid these paradoxa? Simple: By avoiding the
word set at the wrong times.

It is perfectly fine to speak about the class of all sets. The problem was,
that Cantor allowed a language that could speak of itself. If Ω is a class
(not of the sort set) then the relation Ω ∈ Ω is forbidden. So in modern set
and category theory there are two sorts: sets and classes. Some classes are
small enough to be sets themselves, but not necessarily so.

There are two ways to tackle this from a formal point of view: First of all
we can take the variables to be classes and introduce a predicate for classes
saying I also am a set or we could use a two-sorted language, with one sort
being sets, the other being classes. Both approaches have their charms.

4

2 Defining Many-Sorted Languages

Let us start by giving a definition of formal languages with several sorts. Ad-
mittedly the definition is somewhat lengthy but nevertheless understandable
at first glance. The simplicity of the definition is due to a peculiarity that
it has in common with for example Cantor’s ”definition” of sets: The defi-
nition is (more or less) informal and appeals to the readers common sense,
not some advanced mathematical knowledge.

Of course there is some danger to this - as we have pointed out Can-
tor’s definition allowed to construct Russel’s Paradox. In our case, however,
things are free of hazards, as we only give rules that can be formalized easily
on the basis of naive set theory. Yet we wish to omit a precise formalization,
as this wouldn’t make anything clearer, but only obfuscate the simplicity of
the formalism.

The first object we require are the words over a given alphabet. Formal
languages will then be defined by fixing a certain alphabet and giving a
collection of rules that determine whether any given word belongs to the
language or not. Intuitively speaking let A be any collection of symbols
satisfying the following two properties:

� any two different symbols of A look different and

� no symbol of A is part of another symbol of A

Then such a collection is said to be an alphabet. If we write some (i.e. finitely
many) symbols of A in a row then this sequel of symbols is said to be a word
over A. The collection of all words over A is denoted by A∗. More formally

a1a2 . . . ak ∈ A∗ :⇐⇒ a1 ∈ A, . . . , ak ∈ A

Nota that the above two properties guarantee that any word can be read
unambiguously. If for example we had two symbols a = · and b = ·· then
the word · · · could be read as ab, ba or even aaa. Yet this may not occur
due to the second property. The idea of words over a given alphabet should
be clear enough now, but here’s a rigid definition based on naive set theory:

Definition 1:
Let A be any non-empty set, that we use as a collection of symbols. Then
the set A∗ of words over A is be defined to be

A∗ :=
⋃
k∈N
Ak

That is a word a = a1a2 . . . ak is just an n-tuple a = (a1, a2, . . . , ak) ∈ Ak for
some non-negative integer k ∈ N. The case k = 0 includes the empty word
which is denoted by ε. The number k with a ∈ Ak is called the length `(a)
of the word, denoted by

`(a1 . . . ak) := k

The concatenation ab of words a = a1a2 . . . am and b = b1b2 . . . bn ∈ A∗
is just the word ab = a1a2 . . . amb1b2 . . . bn ∈ A∗. Doing this A∗ becomes a
monoid under the concatenation, ` : A∗ → N is a homomorphism of such.

5

If b ∈ A∗ is part of d ∈ A∗ we write b | d, formally that is

b | d :⇐⇒ ∃ a, c ∈ A∗ : abc = d

And if we wish to refer to the i-th symbol of the word a (where i ∈ 1 . . . `(a)
is any number from 1 to the length of a) we write a[i], formally

a[i] := ai ∈ A for a = a1 . . . ak ∈ A∗

Example 2:
The Latin alphabet consists of 2 · 26 symbols, namely the common letters

A := { a, b, c, . . . , z, A,B,C, . . . , Z }

Thus word ∈ A∗ is a word over the Latin alphabet and the first sentence of
the fourth gospel of John

In the beginning, before the creation of the world, he was, who is the word.

is a sequel of 15 words separated by interpunctional signs. Note however
that these signs (space, comma and full stop) do not even belong to the
alphabet. If the Latin alphabet was appended by these three symbols, then
the whole sentence would be a single word over this appended alphabet.

Definition 3:
A many-sorted language L is based on four ingredients: a collection C of
constant symbols, a collection F of function symbols and a collection R of
relation symbols. Hereby we require that all these symbols can be distin-
guished from one and another. Further any symbol has a certain signature
of sorts as described below. The collection of all sorts available is thereby
denoted by I. Then we can define what we mean by a (many-sorted, first
order) formal language L := LI(C,F ,R, sort) in several steps:

� the symbols
The alphabet A of the language L consists of the following symbols

– a left bracket (and a right bracket)

– two logical symbols: the negation ¬ and implication →
– for every sort i ∈ I a symbol of equality =i, a universal quan-

tifier ∀i and an existential quantifier ∃i
– for each sort i ∈ I and every natural number j ∈ N we fix a

variable symbol xi,j and this is assigned sort(xi,j) := i ∈ I.

– every constant symbol c ∈ C given, where c is supposed to
already have been assigned a certain sort(c) ∈ I.

– every function symbol f ∈ F given, where f is supposed to
already have been assigned a signature of the form sort(f) ∈ Ik+1

for some 1 ≤ k ∈ N.

– every relation symbol R ∈ R given, where R is supposed to
already have been assigned a signature of the form sort(R) ∈ Ik

for some 1 ≤ k ∈ N.

6

We will now define what we mean by a term or formula of the language
L. I.e. we decree that some words over the above alphabet will be called
terms, others will be called formulae. However we will not give an explicit
definition, but instead give rules how such words may be obtained. Then a
term (or formula respectively) is simply a word which was created using the
rules given. Further any term will be assigned a sort in I simultaneously to
its construction.

� the terms
We call a word t ∈ A∗ a term of the language L iff it can be generated
by applying the following rules finitely many times:

(T1) any variable symbol x of L already is a term of L, and this term
is assigned the sort sort(x).

(T2) any constant symbol c of L already is a term of L, and this term
is assigned the sort sort(c).

(T3) for any function symbol f of L with sort(f) = (i1, . . . , ik, ik+1)
and for any (previously generated) terms t1, . . . , tk ∈ term(L) of
L, having the sorts sort(t1) = i1, . . . , sort(tk) = ik we decree that
the word ft1 . . . tk ∈ A∗ is a term of L of sort(ft1 . . . tk) := ik+1.

� atomic formulae
We call a word ϕ ∈ A∗ an atomic formula of the language L iff it is
of one of the following two types

(A1) for any two terms s, t of the same sort i := sort(s) = sort(t), the
word s =i t ∈ A∗ is an atomic formula of L.

(A2) for any relation symbol R of the sort sort(R) = (i1, . . . , ik) and
any terms t1, . . . , tk ∈ term(L) of the sorts sort(t1) = i1 up to
sort(tk) = ik the word Rt1 . . . tk ∈ A∗ is an atomic formula of L.

� formulae
We call a word ϕ ∈ A∗ a formula of the language L iff it can be
generated by applying the following rules finitely many times

(F1) any atomic formula ϕ of L already is a formula of L.

(F2) for any two previously generated formulae ϕ and ψ of L, the
words (¬ϕ) ∈ A∗ and (ϕ→ ψ) ∈ A∗ are formulae of L, too.

(F3) for any variable symbol x of L of the sort i := sort(x) and any
previously generated formula ϕ of L, the words (∃i xϕ) ∈ A∗ and
(∀i xϕ) ∈ A∗ are formulae of L, too.

Let us denote the set var(L) := {xi,j | i ∈ I, j ∈ N } of variable symbols and
the set quant(L) := { ∃i | i ∈ I } ∪ { ∀i | i ∈ I } of quantifier symbols of L.
The set of all terms of L will be denoted by term(L), the set of atomic
formulae of L by atom(L) and - not surprisingly - the set of all formulae of
L by form(L). By rule (F1) we have atom(L) ⊆ form(L). Now the set L
itself is finally defined by

L := term(L) ∪ form(L) ⊆ A∗

7

This definition only provides the minimum basis of the mathematical for-
malism, of course. It is presented in this way to ensure unique readability,
but is not yet perfectly suited to be truly used in mathematics. Thus in
formal logic the formulae regarded have a tendency to become very long
and intricate. In order to remain on top we need some to put them into a
form easier to read and hence introduce the following notational conventions:

Notation 4:
Let L = LI(C,F ,R, sort) be a many-sorted language, then we introduce the
following notational conventions concerning terms and formulae

(i) If I consists of one element only I = {i}, we say that L is a one-sorted
language. In this case we don’t need the sort function and can omit
all the indexes i on variable symbols xi,j , equality relations =i and the
quantifiers ∀i and ∃i .

(ii) By a theorem of Post any junctor can be expressed using a combination
of ¬ and →. Therefore we can use any junctor as an expression of L,
defining its usage by a logically equivalent formula composed of ¬ and
→. In this text we will frequently employ the abbreviations

ϕ ∨ ψ :⇐⇒ (¬ϕ)→ ψ
ϕ ∧ ψ :⇐⇒ ¬(ϕ→ (¬ψ))
ϕ↔ ψ :⇐⇒ (ϕ→ ψ) ∧ (ψ → ϕ)

Nota we distinguish between single-stroke arrows, as in ϕ → ψ that
are part of the formal language and double-stroke arrows, as in (x is
a cat) =⇒ (x is a mammal), which belong to the meta-language. As
in the example of the implication here, we will build our formalism of
deduction in such a way, that → will behave just like =⇒ .

(iii) We follow the usual conventions concerning the bracketing of terms
and formulae, i.e. in order to save some brackets, we decree that ¬ is
of higher priority than ∧ and ∨, which in turn are considered of higher
priority than → and ↔. As an example the formula

¬ϕ ∨ ψ → χ ∧ ω

is a shorter notation for the (more obfuscated but correct) formula

(((¬ϕ) ∨ ψ) → (χ ∧ ω))

(iv) We apply brackets to functions, i.e. we write f(t1, . . . , tk) instead of
ft1 . . . tk. The same is true for relations - we write R(t1, . . . , tk) instead
of Rt1 . . . tk. An exception to this are binary relations which are usu-
ally written in the form sRt instead of Rst. (Nota that the comma
here doesn’t even belong to the symbols of the formal language).

Regard the (nonsensical) formula ϕ := ∀ y (x = y ∨ ∃x (x = z)) then ϕ
contains the variable symbols x, y and z. Yet there is a difference: The
variable symbol y is quantified over and hence cannot be ”seen from the
outside”.

8

Hence y is called a bounded variable of ϕ, whereas x and z are said to be
free variables of ϕ. We will emphasize this by writing ϕ(x, z) when needed.

But this is not the sole difference, in the sub-formula ∃x (x = z) the
variable symbol x is bounded and hence only the first occurance of x in ϕ
is free, the second is bounded. Hence if we want to substitute the variable x
by a term t this is only allowed in the first instance. Hence the substitution
of x by t in ϕ turns out to be ϕ[x : t] = ∀ y (t = y∨∃x (x = z)). Let us take
a general look at these notions in the following:

Definition 5:
Let again L = LI(C,F ,R, sort) be a many sorted language, then we in-
troduce the following notions for terms and formulae of L. As these were
defined recursively it stands to reason that we may revert this recursion
and decompose terms and formulae into their atomic parts. The following
definitions now make use of this concept

(i) sub-formulae
For any formula ϕ ∈ form(L) define the set sub(ϕ) ⊆ form(L) of all
sub-formulae of ϕ by inverse recursion

sub(ϕ) := {ϕ} if ϕ is atomic

sub(¬ϕ) := {(¬ϕ)} ∪ sub(ϕ)

sub(ϕ→ ψ) := {(ϕ→ ψ)} ∪ sub(ϕ) ∪ sub(ψ)

sub(∃i xϕ) := {(∃i xϕ)} ∪ sub(ϕ)

sub(∀i xϕ) := {(∀i xϕ)} ∪ sub(ϕ)

For any two formulae ϕ, ψ ∈ form(L) we say that ϕ is a sub-formula
of ψ, which we will abbreviate by ϕ ≤ ψ, iff ϕ ∈ sub(ψ).

(ii) free variables
Let a ∈ L be a term or formula of L, then we next define the set of
free variables of a by inverse recursion

free(x) := {x}
free(c) := ∅

free(ft1 . . . tk) := free(t1) ∪ · · · ∪ free(tk)

free(Rt1 . . . tk) := free(t1) ∪ · · · ∪ free(tk)

free(s =i t) := free(s) ∪ free(t)

free(¬ϕ) := free(ϕ)

free(ϕ→ ψ) := free(ϕ) ∪ free(ψ)

free(∃i xϕ) := free(ϕ) \ {x}
free(∀i xϕ) := free(ϕ) \ {x}

where we used the same notations as in definition 3 and the sorts of
all terms are supposed to be adequate. To express that ϕ is a formula
having the free variables free(ϕ) = {x1, . . . , xk } we will occasionally
write ϕ(x1, . . . , xk). Analogously we will write ϕ(x1, . . . , xk, . . .) in the
case that x1, . . . , xk are some (but not necessarily all) free variables of
ϕ, that is to say, when {x1, . . . , xk } ⊆ free(ϕ).

9

(iii) sentences
A formula ϕ of L is called to be a sentence, iff it does not contain
any free variables and we denote the set of all such by

sen(L) := {ϕ ∈ form(L) | free(ϕ) = ∅ }

(iv) free occurance
If (for k ∈ 1 . . . `(ϕ)) ϕ[k] ∈ var(L) is a variable symbol x := ϕ[k] then
we say that this is a bound occurance of x in ϕ, iff at this place x
is quantified over. That is ϕ = αϕ′β where (1) ϕ′ ≤ ϕ is a subformula
of the form ϕ′ = Qxϕ′′ for some quantifier Q ∈ quant(L) and (2) the
location ϕ[k] is part of ϕ′′. If ϕ[k] ∈ var(L) is a variable x = ϕ[k], that
is not quantified over, we say this is a free occurance of x in ϕ.

(v) freely substitutable
Let x ∈ var(L) be a variable symbol, t ∈ term(L) be a term and
ϕ ∈ form(L) be a formula of L. Then we say, that x is freely substi-
tutable by t, iff sort(x) = sort(t) and at any free occurance of x in ϕ
the variable x is not part of some sub-formula of the form Qy ϕ′′ ≤ ϕ
where Q ∈ quant(L) is quantifier and y ∈ free(t) also is a free variable
of t. More formally that is:

free(t) ∩

 y ∈ var(L)
ϕ′ ≤ ϕ sub-formula
such that ϕ′ = Qy ϕ′′

and x ∈ free(ϕ′)

 = ∅

(vi) substitution
Let x ∈ var(L) be a variable symbol and t ∈ term(L) be a term of
the same sort, sort(x) = sort(t), and a ∈ L be a term or formula. We
will now define the notion of substituting x by t in a using inverse
recursion. Thus we start with `(a) = 1, in this case we let

a[x : t] :=

{
a for a 6= x
t for a = x

If now 2 ≤ `(a) then we continue (here Q ∈ quant(L) is any quantifier
and y ∈ var(L) is any variable symbol of L) by letting

a[x : t] :=

ft1[x : t] . . . tk[x : t] for a = ft1 . . . tk
Rt1[x : t] . . . tk[x : t] for a = Rt1 . . . tk
(t1[x : t] =i t2[x : t]) for a = (t1 =i t2)

(¬ϕ[x : t]) for a = (¬ϕ)
(ϕ1[x : t]→ ϕ2[x : t]) for a = (ϕ1 → ϕ2)

Qy ϕ[x : t] for a = Qy ϕ and x 6= y
Qy ϕ for a = Qy ϕ and x = y

10

Example 6:
So what is this freely substitutable business all about? Why care? As a first
example let us take a look at the formula ϕ = ∃ y (y = x). It has the free
variable x only. So what happens if we replace x with a third variable z?

ϕ[x : z] = ∃ y
(
y = z

)
Nothing actually, the logical content of ϕ[x : z] is precisely the same, both
formulae express a truism, as we could take y = x or y = z respectively.
Now we replace x by the term t = y + z, in this case we get

ϕ[x : (x+ y)] = ∃ y
(
y = y + z

)
In presence of the group axioms this would be ∃ y(0 = z) So the truth of
the statement suddenly depends on the content of z. For z = 0 it would be
true, but false in any other case. So what happened? We replaced x in a
position where the formula quantifies over the variable y, that also occurs
in the term t by which we substituted. This is precisely the situation that
we exclude by demanding that x shall be freely substitutable by t.

As a second example consider ϕ = ∀u ((u = v + x) ∧ ∀ v (v = u + x)). Let
us first mark any free appearance of the variables u, v and x in the formula
ϕ by placing a dot on top of the respective symbol

ϕ = ∀u
(
(u = v̇ + ẋ) ∧ ∀ v (v = u+ ẋ)

)
� In ϕ the free variable x is not freely substitutable by the term t := u,

as ϕ′ := (u = v + x) ∧ ∀ v (v = u + x) is a sub-formula, with free
variable x 6= u such that ϕ = ∀uϕ′ and u is a variable of t.

� In ϕ the free variable x is not freely substitutable by the term t := v+x,
as ϕ′ := (v = u + x) is a sub-formula with free variable x 6= v such
that ∀ v ϕ′ ≤ ϕ and v is a variable of t.

� In ϕ the free variable x is freely substitutable by the term t := x+ x
as the quantifiers in ϕ do not meet the variable x of the term t.

� In ϕ the free variable v is freely substitutable by the term t := x as
in the one free appearance of v in ϕ the quantifier ∀u does not bind
a variable of t. In fact, by definition, the substitution leaves the right
part of the formula unchanged

ϕ[v : x] = ∀u
(
(u = x+ x) ∧ ∀ v (v = u+ x)

)

11

3 Examples of Many-Sorted Languages

Example 7:
Let us begin with a neat little example: plane geometry. Here we have
two sorts of objects - points and lines - which we represent by two sorts
I = { p, ` }. If the point P lies on the line L we would like to write P ∈ L.
For lines we have the operation of the intersection ∩ and the relation ‖ of
being parallel. Altogether that is

C = ∅
F = {∩ }
R = {∈, ‖ }

The sorts are clear: First of all ‖ is a relation between lines, therefore
sort(‖) = (`, `). Now P ∈ L shall indicate that P lies on L, hence ∈ has
to have the sort(∈) = (p, `). And as ∩ turns two lines into a point we have
sort(∩) = (`, `, p). Let us now formulate that any two lines, that are not
parallel, intersect in a point:

∀̀ K ∀̀ L
(
¬(K ‖ L)→ ∃p P

(
K ∩ L =p P

))
Nota we already used the standard notation K ∩ P := ∩(K,L) here to
increase the readability of the formula. And we will continue to do so in the
following examples with all binary operations like +, −, · and :.

If we want to add a far point, as in projective geometry, we can do so as
a constant symbol, say C = {∞} of the sort(∞) = p. Using this we could
formulate, that any two distinct, parallel lines intersect in that point:

∀̀ K ∀̀ L
((

(K ‖ L) ∧ ¬(K =` L)
)
→ (K ∩ L =p ∞)

)

Example 8:
Let us continue with a one-sorted example: The language Lr of rings. To
be one-sorted means I = { r } contains a single element only. So what do we
need for rings? The constants 0 and 1, the addition + and multiplication ·
are a minimum. So we start with

C = { 0r, 1r }
F = {+r, ·r }
R = ∅

As we only have one sort r the constants are of this sort of course sort(0r) = r
and sort(1r) = r. And as + and · are binary operations we find their sort
to be sort(+r) = (r, r, r) and sort(·r) = (r, r, r).

12

If we want to prove a formula in this language, for any ring, we need to start
with the properties of rings. These are sentences in this language. First of
all a ring is a commutative group under + with neutral element 0, that is

(G1) ∀r a ∀r b ∀r c a+r (b+r c) =r (a+r b) +r c

(G2) ∀r a ∀r b a+r b =r b+r a

(G3) ∀r a a+r 0r =r a

(G4) ∀r a ∃r b a+r b =r 0r

The next set of formulae expresses that a ring is a commutative monoid
under · with neutral element 1 and that + and · are interlocked by the law
of distributivity. If (G1) to (G4) and (R1) to (R4) are satisfied, we have a
commutative ring (with unity)

(R1) ∀r a ∀r b ∀r c a ·r (b ·r c) =r (a ·r b) ·r c
(R2) ∀r a ∀r b a ·r b =r b ·r a
(R3) ∀r a a ·r 1r =r a

(R4) ∀r a ∀r b ∀r c a ·r (b+r c) =r (a ·r b) +r (a ·r c)

As the addition + has an inverse, the subtraction − it can be helpful to also
introduce this to our language, that is we even take F = {+,−, · } where
sort(−) = (r, r, r), as well. We will call this expanded language the language
of rings and denote it by

Lr := L{r}
(
{ 0r, 1r } , {+r,−r, ·r } , ∅, sort

)
Picking up this function symbol we need to fix the meaning of − as the
inverse of +. So in this case we need another property, namely

(AI) ∀r a ∀r b ∀r c (c−r b =r a) ↔ (c =r a+r b)

We will later use the theory of integral domains. This is the set Tid of
sentences (G1) to (G4), (R1), . . . , (R4), (AI) and (ID) where

(ID) ∀r a ∀r b ∀r c (a ·r b =r 0) → (a =r 0 ∨ b =r 0)

The only property that is missing for a field is: Any a 6= 0 has a multiplica-
tive inverse, that is ∀r a(¬(a =r 0r)→ ∃r b a ·r b =r 1r). This gives rise to a
division function :r of sort(:r) = (r, r, r) that we include for the language of
fields (where we rename the sort from r to f)

Lf := L{f}
(
{ 0f , 1f } , {+f ,−f , ·f , :f } , ∅, sort

)
We fix the meaning of : as the inverse of · so for a field we require the
properties (G1) to (G4), (R1) to (R4), (AI) and (MI) where

(MI) ∀f a ∀f b ∀f c
(
¬(a =f 0f)→

(
(c :f b =f a)↔ (c =f a ·f b)

))

13

We will soon consider algebraically closed fields. In order to express that
the variables of Lf belong to an algebraically closed field we need a whole
scheme of axioms: For each 1 ≤ n ∈ N pick up the statement

(ACn) ∀f a0 . . . ∀f an ∃f z (an ·f zn) +f · · ·+f (a1 ·f z) +f a0 =f 0f

where we already used the abbreviation zn := z ·f z ·f · · · ·f z (n-times). Then
the theory of algebraically closed fields Tac consists of the statements (G1)
to (G4), (R1) to (R4), (AI), (MI) and (ACn) for any 1 ≤ n ∈ N.

Example 9:
Our next example addresses a basic notion of linear algebra: Modules over
(commutative) rings. Likewise we could append the properties for the base
ring to be a field to have the notion of a vector-space. Clearly this language
requires two sorts I = { r,m }, one for the base ring r, the other for the
module m. The ring has the constants 0r and 1r, the module 0m only.
There are no relations but the addition +r and multiplication ·r of scalars,
the addition +m of vectors and a scalar multiplication ·s. Altogether this is

C = { 0r, 1r, 0m }
F = {+r, ·r,+m, ·s }
R = ∅

The assignment of sorts is obvious, resp. well-known here, but it has to be
given beforehand: sort(0r) = r, sort(1r) = r, sort(0m) = m, continued by
sort(+r) = (r, r, r), sort(·r) = (r, r, r), sort(+m) = (m,m,m) and finally
sort(·s) = (r,m,m). So much for the definition of the language, let’s see
what we can do with it: We can literally repeat (G1) to (G4) and (R1) to
(R4) to express that the variables of sort r belong to a commutative ring.
Next the variables of sort m belong to a (left) module over this ring. That
is they form a commutative group under +m with neutral element 0m. It is
easy to repeat these properties in terms of formluae

(M1) ∀m x ∀m y ∀m z x+m (y +m z) =m (x+m y) +m z

(M2) ∀m x ∀m y x+m y =m y +m x

(M3) ∀m x x+m 0m =m x

(M4) ∀m x ∃m y x+m y =m 0m

It takes another 4 formula to express that ·s truly is a scalar multiplication
between the variables of sort r and sort m. In fact these are compatibility
conditions between all the 4 operations involved

(S1) ∀r a ∀m x ∀m y a ·s (x+m y) =m (a ·s x) +m (a ·s y)

(S2) ∀r a ∀r b ∀m x (a+r b) ·s x =m (a ·s x) +m (b ·s x)

(S3) ∀r a ∀r b ∀m x (a ·r b) ·s x =m a ·s (b ·s x)

(S4) ∀m x 1r ·s x =m x

14

Note that all these formulae are sentences - all the free variables have
been quantified over. This is commonplace for sets of axioms - what use
would it have to employ variables just as variables? Also we see that
substituting is a completely natural thing to do, e.g. regard the formula
ϕ(x) = ∃m z : x+m z =m 0m, then we might want to replace the variable x
by the term t = (x +m y). Doing this we end up with ψ(x, y) := ϕ[x : t] =
∃m z : (x+m y) + z =m 0m that now has two free variables, x and y.

Example 10:
In the next example let us introduce the language of ring extensions S : R
- this is a language containing two sorts I = { r, s }, one for the subring R,
the other for the larger ring S. It obviously has the constants and functions
(but no relations again)

C = { 0r, 1r, 0s, 1s }
R = ∅
F = {+r, ·r,+s, ·s, ι }

The assignment of sorts is the same as in example 9, with the exception of
ι, which is a 1-ary function of the sort sort(ι) = (r, s). We will explain the
role of ι below.

So much for the language, to express that both R and S are commutative
rings, we would have to repeat the respective 2 times 8 formulae (G1) to
(R4) of example 8. However then we’ve just got two (commutative) rings
(with identity) and we haven’t said a word about the fact that R is contained
in S. To do this we included the function symbol ι: The following formulae
express that ι truly embeds R into S

(E1) ∀r a ∀r b ι(a+r b) =s ι(a) +s ι(b)

(E2) ∀r a ∀r b ι(a ·r b) =s ι(a) ·s ι(b)
(E3) ∀r a ∀r b a =r b ↔ ι(a) =s ι(b)

(E4) ι(1r) =s 1s

This example demonstrates how we can evade the disjointness of the sorts
that this formalism would otherwise yield.

Example 11:
As a final example let us present the language of modern set theory. It
obviously contains two sorts of variables again I = { s, c } which we interpret
as sets and classes respectively. It contains a constant, two relations and a
function that takes sets to classes:

C = { ∅ }
R = {∈s,∈c }
F = { ι }

15

Hereby we assign sort(∅) = s, sort(∈s) = (s, s), sort(∈c) = (s, c) and as
before sort(ι) = (s, c). Note that by this construction it is already forbidden
to speak of a class that is element of another class - sets and classes can only
contain sets. The axiom of extensionality is a formula that expresses, that
any two classes B and C are equal if and only if they share the same sets x
as elements:

∀cB ∀cC :
(
B =c C ↔ ∀s x (x ∈c B ↔ x ∈c C)

)
A small class is a class S that also is a set. In terms of the embedding ι this
can very simply be expressed in the following formula

∃sX : S =c ι(X)

Nota that many-sorted languages can even mimic the workings of second-
order languages in which it is allowed to quantify over relation and function
symbols (not only over variable symbols) by introducing a sort for the rela-
tion symbols and another for the function symbols. But with the introduc-
tion of the language L(∈) of sets, second-order languages have become next
to pointless already, so we will not pursue this path any further.

It is tempting to write out an universal language, that can cover all of
algebra, maybe all of mathematics. Well, the language of sets and classes is
such a universal language in some sense, but this is highly non-specific. So
wouldn’t it be nice to have a language for all of algebra, for example? The
answer however is: no!

Mathematics already has a universal language - the metalanguage of
naive logic and set theory, refined by their axioms in formalized form. What
formal logic provides is another tool how to denote and prove theorems in any
other field of mathematics. Instead of prescribing how proofs are supposed to
be, we should rather look at formal logic as an asset that opens up alternative
ways of proving theorems. It should not be seen as an alternative, but rather
as an enhancement.

And to do so we do not need the one universal language, but rather
several, lean languages specifically tailored for the problem at hand. With-
out going into details we want to give an example of what formal logic can
accomplish: quantifier elimination.

The first example of quantifier elimination is the determinant. Consider
a square matrix A over a field F . It is well known, that A is invertible
if and only if its determinant is non-zero. That is we have the equivalent
statements

(a) ∃B : (AB = 11 n) ∧ (BA = 11 n)

(b) ¬(det(A) = 0)

The advantage is clear: In (a) we would have to check an infinite number of
possible inverse matrices B, whereas in (b) we can simply perform a finite
computation. So if we can eliminate the quantifiers from a formula there is a
finite way to determine its truth. To show off, let us provide some advanced
results, without proof [that are already formulated using the notions we are
about to introduce in the following sections]:

16

Definition 12:

(i) Let L = LI(C,F ,R, sort) be any many-sorted, formal language and
let η ∈ form(L) be a formula therein. The we say that η is quantifier-
free, if it can be generated, as a formula, by rules (F1) and (F2) alone.

(ii) A theory T (that is a set of sentences T ⊆ sen(L)) is said to admit
quantifier-elimination, iff for any formula ϕ ∈ form(L) there is
another formula η ∈ form(L) such that

(1) η is quantifier-free, and

(2) T ` (ϕ↔ η)

(iii) If (X, %) ∈ real(L) is a realization of L, then we say that (X, %) ad-
mits quantifier-elimination, iff its theory th(X, %) admits quantifier
elimination, where we define

th(X, %) := {ϕ ∈ sen(L) | (X, %) |= ϕ }

Theorem 13:

(i) Consider the language Lf of fields introduced in 8, then the theory
Tac of algebraically closed fields admits quantifier elimination.

(ii) Consider the language Lr of rings introduced in 8 and let R be an
integral domain (i.e. a realization of Lr that satisfies R |= Tid). Then
the following statements are equivalent

(a) R admits quantifier-elimination

(b) R is finite, or an algebraically closed field

Nota a theory T admits quantifier elimination iff it is substructure-complete
[Felgner 3.1]. Then it can be shown (introducing the amalgation property)
[Felgner 3.2] that Tac is substructure-complete [Felgner 3.4]. An algorithm
for quantifier-elimination in algebraically closed fields is presented in [KrKr].
The proof of (ii) is a beautiful synthesis of algebraic arguments supplemented
by the benefits of quantifier-elimination [Felgner 8.11].

17

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

