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1. Introduction 

This book chapter describes several greedy heuristics for mapping large data-flow graphs 
(DFGs) onto a stripe-based coarse-grained reconfigurable fabric. These DFGs represent the 
behavior of an application kernel in a high-level synthesis flow to convert computer 
software into custom computer hardware. The first heuristic is a limited lookahead greedy 

approach that provides excellent run times and a reasonable quality of result. The second 
heuristic expands on the first heuristic by introducing a random element into the flow, 
generating multiple solution instances and selecting the best of the set. Finally, the third 
heuristic formulates the mapping problem of a limited set of rows using a mixed-integer 
linear program (MILP) and creates a sliding heuristic to map the entire application. In this 
chapter we will discuss these heuristics, their run times, and solution quality tradeoffs. 

The greedy mapping heuristic follows a top-down approach to provide a feasible mapping 

for any given application kernel. Starting with the top row, it completely places each 

individual row using a limited look-ahead of two rows. After each row is mapped, the 

mapper will not modify the mapping of any portion of that row. This mapping approach is 

deterministic as it uses a priority scheme to determine which elements to place first based 

on factors such as the number of nodes to which it connects and second based on the 

desirability of a particular location in the row. While the limited information available to the 

mapper does not often allow it to produce optimal or minimum-size mappings, its runtime 

is typically a few seconds or less. We use a fabric interconnect model (FIM) file in the 

mapping flow to define a set of restrictions on what interconnect lines are available, the 

capabilities of particular functional units (e.g. dedicated vertical routes versus 

computational capabilities) in the system, etc. 

The greedy heuristic is deterministic in the priority system which it uses to place nodes. The 

second mapping heuristic we explore is based on this greedy algorithm and introduces 

randomness into the heuristic to make decisions along the priority list. In the first 

implementation the node selection order is selected randomly. In the second version, 

weights are assigned to nodes based on the deterministic placement order. Since the 

heuristic runs so quickly, we can run the heuristic 10’s or possibly 100’s of times and select 

the best result. This method is also parameterizable with the FIM. 
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Finally, we present a sliding window algorithm where groups of rows are placed using an 

MILP. This heuristic starts with an arbitrary placement where operations are placed in the 

earliest row possible and the operations are left justified. Starting from the top, a window of 

rows is selected and the IP algorithm adjusts column locations where the optimization 

criteria is to only use allowed routes specified by the architecture. If the program cannot 

find a feasible mapping, it tries to push violated edges (i.e. edges that do not conform to 

what is allowed in the architecture) down in the window so that subsequent windows may 

be able to find a solution. If no feasible solution can be found in the current window, then a 

row of pass-gates is added to increase the flexibility, and the MILP is run again. However, 

introducing a row of pass-gates delays the critical path and is undesirable from a power and 

performance perspective. This technique is also parameterizable within the FIM. 

In this chapter, these three heuristics will be explained in detail and numerous performance 

evaluations (including feasibility) will be conducted for different architectural 

configurations. Section 2 provides a background on the reconfigurable fabric concept and 

the process of mapping as well as related work. Section 3 introduces the Fabric Interconnect 

Model, an XML representation of the fabric. In Section 4 the greedy heuristic is described in 

detail. In particular, the algorithms for row and column placement are discussed. Section 5 

extends the greedy heuristic by introducing an element of randomness into the algorithm. 

Several methods of randomizing the greedy heuristic are explored, including completely 

random decisions and weighted decisions. In Section 6 the sliding partial MILP heuristic is 

introduced. In addition, several techniques for improving the execution time of the MILP 

are discussed. These techniques are based on decomposing the problem into smaller, 

simpler linear programs. Finally, Section 7 compares the different mapping techniques and 

provides some conclusions. 

2. Background and literature review 

A general trend seen during application profiling is that 90% of application execution time 

in software is spent in approximately 10% of the code. The idea of our reconfigurable device 

is to accelerate high incidence code segments (e.g. loops) that require large portions of the 

application runtime, called kernels, while assigning the control-intensive portion of the code 

to a core processor. 
 

 
Fig. 1. Power consumption features of a Xilinx Virtex-2 3000 FPGA (Sheng et al., 2002). 
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A tremendous amount of effort has been devoted to the area of hardware acceleration of 

these kernels using Field Programmable Gate Arrays (FPGAs). This is a particularly popular 

method of accelerating computationally intensive Digital Signal Processing (DSP) 

applications. Unfortunately, while FPGAs provide a flexible reconfigurable target, they have 

poor power characteristics when compared to custom chips called Application Specific 

Integrated Circuits (ASICs). At the other end of the spectrum, ASICs are superior in terms of 

performance and power consumption, but are not flexible and are expensive to design. 

The dynamic power consumption in FPGAs has been shown to be dominated by 

interconnect power (Sheng et al., 2002). For example, as shown in Figure 1, the 
reconfigurable interconnect in the Xilinx Virtex-2 FPGA consumes more than 70% of the 
total power dissipated in the device. Power consumption is exacerbated by the necessity of 
bit-level control for the computational and switch blocks. 

Thus, a reconfigurable device that exhibits ASIC-like power characteristics and FPGA-like 

flexibility is desirable. Recently, the development and use of coarse-grained fabrics for 

computationally complex tasks has received a lot of attention as a middle ground between 

FPGAs and ASICs because they typically have simpler interconnects. Many architectures 

have been proposed and developed, including MATRIX (Mirsky & Dehon, 1996), Garp 

(Hauser & Wawrzynek, 1997), PipeRench (Levine & Schmit, 2002), and the Field 

Programmable Object Array (FPOA) (MathStar, MathStar). 

Our group has developed the SuperCISC reconfigurable hardware fabric to have low-

energy consumption properties compared to existing reconfigurable devices such as FPGAs 

(Mehta et al., 2006; Jones et al., 2008; Mehta et al., 2006, 2007, 2008). To execute an 

application on the SuperCISC fabric, the software kernels are converted into entirely 

combinational hardware functions represented by DFGs, generated automatically from C 

using a design automation flow (Jones et al., 2005, 2006; Hoare et al., 2006; Jones et al., 2006). 

Stripe-based hardware fabrics are designed to easily map DFGs from the application into 

the device. The architecture of the SuperCISC fabric (and other stripebased fabrics such as 

PipeRench) work in a similar way, retaining a data flow structure, which allows 

computational results to be computed in one multi-bit functional-unit (FU) and flow onto 

others in the system. FUs are organized into rows or computational stripes, within which each 

functional unit operates independently. The results of these operations are then fed into 

interconnection stripes which are constructed using multiplexers. Figure 2 illustrates this top-

down data flow concept. The process of mapping these DFGs onto the SuperCISC fabric is 

described in the next section. 
 

 
Fig. 2. Fabric conceptual model. 
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2.1 Mapping 
A mapping of a DFG onto a fabric consists of an assignment of operators in the DFG to FUs 
in the fabric such that the logical structure of the DFG is preserved and the architectural 
constraints of the fabric are respected. This mapping problem is central to the use of the 
fabric since a solution must be available each time the fabric is reprogrammed for a different 
DFG. Because of the layered nature of the fabric, the mapping is also allowed to use FUs as 

“pass-gates,”  which take a single input and pass the input value to one or more outputs. In 
general, not all of the available FUs and edges will be used. An example DFG and a 
corresponding mapping are shown in Figure 3. 
 

 

(a) Example data flow graph (DFG).                (b) Example mapping. 

Fig. 3. Mapping problem overview. 

The interconnect design—that is, the pattern of available edges—is the primary factor in 

determining whether a given DFG can be mapped onto the fabric. For flexibility, it would 

make sense to provide a complete interconnect with each FU connected to every FU in the 

next row. The reason for limiting the interconnect is that the cardinality of the interconnect 

has a significant impact on energy consumption. Although most of the connections are 

unused, the increased cardinality of the interconnect requires more complicated underlying 

hardware, which leads to greater energy consumption. For a more detailed description of 

this phenomenon, see (Mehta et al., 2006), which indicates that this energy use can be 

significant. Therefore, we consider limited interconnects, which have better energy 

consumption but make the mapping problem more challenging. 

We consider the mapping problem in three forms. We call these problems Minimum Rows 
Mapping, Feasible Mapping with Fixed Rows and Augmented Fixed Rows. These problems 

are briefly described in the following subsections. 
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2.1.1 Minimum rows mapping 
Given a fixed width and interconnect design, a fabric with fewer rows will use less energy 

than one with more rows. As data flows through the device from top to bottom it traverses 

FUs and routing channels, consuming energy at each stage. The amount of energy 

consumed varies depending on the operation that an FU performs. However, even just 

passing the value through the FU consumes a significant amount of energy. Thus, the 

number of rows that the data must traverse impacts the amount of energy that is consumed. 

If the final result has been computed, the data can escape to an early exit, which bypasses 

the remaining rows of the fabric and reduces the energy required to complete the 

computation. Therefore, it is desirable to use as few rows as possible. Given a fabric width, 

fabric interconnect design, and data flow graph to be mapped, the Minimum Rows Mapping 

problem is to find a mapping that uses the minimum number of rows in the fabric. The 

mapping may use pass-gates as necessary. 

We initially formulated a MILP to solve this problem, however, it has only been able to 

solve nearly trivial instances in a reasonable amount of time (Baz, 2008). We have since 

developed two heuristic approaches to solve this problem: a deterministic top-down greedy 

heuristic described in Section 4 and a heuristic that combines the top-down approach with 

randomization, described in Section 5. 

2.1.2 Feasible mapping with fixed rows 
One of the more complicated parts of creating a mapping is the introduction of pass-gates to 

fit the layered structure of the fabric. One approach that we have used is to work in two 

stages. In the first stage, pass-gates are introduced heuristically and operators assigned to 

rows so that all edges go from one row to the next. The second stage assigns the operators to 

columns so that the fabric interconnect is respected. This second stage is called Feasible 

Mapping with Fixed Rows. Note that depending on the interconnect design, there may or 

may not exist such a feasible mapping. 

We have formulated a MILP approach to solve this problem described in detail in (Baz et al., 

2008; Baz, 2008). This formulation can provide us with a lower bound with which to 

compare our heuristic solutions. 

2.1.3 Augmented fixed rows 
This problem first tries to solve the Feasible Mapping with Fixed Rows problem. If this is 

infeasible, then it may add a row of pass-gates to gain flexibility. It then tries to solve 

Feasible Mapping with Fixed Rows on the new problem. This is repeated until a solution is 

found or a limit is reached on the number of rows to add. 

We have developed a partial sliding MILP heuristic in Section 6 to solve this problem. 

2.1.4 Related work 
There are two problems in graph theory related to the mapping problems we present. First, 

Feasible Mapping with Fixed Rows may be viewed as a special case of subgraph 

isomorphism, also called subgraph containment. The DFG (modified to have fixed rows) 

may be considered as a directed graph G, and the fabric may be considered as a directed 

graph H. The problem is to identify an isomorphism of G with a subgraph of H. 

Most of the work on subgraph isomorphism uses the idea of efficient backtracking, first 

presented in (Ullmann, 1976). Examples of more recent work on the problem include 
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(Messmer & Bunke, 2000; Cordella et al., 2004; Krissinel & Henrick, 2004). In each of these 

cases, algorithms are designed to solve the problem for arbitrary graphs. In contrast, the 

graphs for our problem are highly structured, and our approaches take advantage of this 

structure. Subgraph isomorphism is NP-complete (Garey & Johnson, 1979). 

If we fix the number of rows in the fabric, then finding a feasible mapping (but not 
minimizing the number of rows) may be viewed as a special case of a problem known as 
directed minor containment (Diestel, 2005; Johnson et al., 2001). The DFG may be considered 

as a directed graph G, and the fabric may be considered as a directed graph H. Directed 
minor containment (also known as butterfly minor containment) is the problem of 
determining whether G is a directed minor of H. Unlike subgraph isomorphism, G may be a 
directed minor without being a subgraph; additional nodes (corresponding to “pass-gates”  
in our application) may be present in the subgraph of H. Directed minor containment is also 
NP-complete. We are not aware of any algorithms for solving directed minor containment 
on general graphs or graphs similar to our fabric mapping problem. 

2.2 Routing complexity 
The fundamental parameter in the design of a coarse-grain reconfigurable device for energy 

reduction is the flexibility and resulting complexity of the interconnect. For example, a 

simpler interconnect can lead to architectural opportunities for energy reduction (fewer 

wires, simpler selectors, etc.) but can also make the mapping problem more difficult. As 

discussed in Section 2.1, the quality of the mapping solution also impacts the energy 

consumed by the design. Thus, to effectively leverage the architectural energy saving 

opportunities the mapping algorithms must become increasingly sophisticated. 

As previously mentioned, the interconnection stripes are constructed using multiplexers. 

The cardinality of these multiplexers determines the routing flexibility and the maximum 

sources and destinations allowed for nodes in the DFG. This is shown in Figure 4. The 

interconnect shown in Figure 4(a) is built using 2:1 multiplexers, and is said to have a 

cardinality of two. Similarly, the interconnect in Figure 4(b) is comprised of 4:1 multiplexers, 

and is said to have a cardinality of four. By comparing these figures, it is obvious that the 

higher cardinality interconnect is more flexible because each functional unit can receive 

input from a larger number of sources. Essentially, a higher cardinality interconnect has 

fewer restrictions, which leads to a simpler mapping problem. 
 

 
              (a) Cardinality of two.                                                     (b) Cardinality of four. 

Fig. 4. Interconnects of two different multiplexer cardinalities. 

While the flexibility of higher cardinality multiplexers is desirable for ease of mapping, 
these multiplexers are slower, more complex, and dissipate more power than lower 
cardinality multiplexers. A detailed analysis of the power consumption versus cardinality is 
conducted in (Jones et al., 2008; Mehta et al., 2007, 2006). 
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Additionally, when mapping a DFG to a stripe-style structure, data dependency edges often 

traverse multiple rows. In these fabrics, FUs must often pass these values through without 

doing any computation. We call these operations in the graph, pass-gates. However, these FUs 

used as pass-gates are an area and energy-inefficient method for vertical routing. Thus, we 

explored replacing some percentage of the FUs with dedicated vertical routes to save energy 

(Mehta et al., 2008; Jones et al., 2008). However, these dedicated pass-gates can make mapping 

more difficult because it places restrictions on the placement of operators. The work in (Mehta 

et al., 2008; Jones et al., 2008) only uses the first of the three greedy heuristics presented here 

and required that the interconnect flexibility be relaxed when introducing dedicated vertical 

routes. The more sophisticated greedy algorithms were designed in part to improve the 

mapping with the more restrictive multiplexer cardinalities along with dedicated pass-gates. 

The purpose of these heuristics is to provide high quality of solution mappings onto the 

low-energy reconfigurable device. One way to measure the effectiveness is to examine the 

energy consumed from executing the device with various architectural configurations and 

different data sets, etc. We obtain these energy results from extremely time consuming 

power simulations using computer-aided design tools. However, in this paper we chose to 

focus our effort on achieving a high quality of solution from the mapping algorithms. 

Conducting power simulations for each mapping would significantly limit the number of 

mapping approaches we could consider. 

Thus, we can examine two factors to evaluate success: the increase in the total path length of 

the mapped algorithm and the number of FUs used as pass-gates. The total path length in 

the mapped design is the sum of the number of rows traversed from each input to each 

output. Thus, the path length increase is the increase in the total path length from a solution 

where each computation is completed as early as possible limited only by the dependencies 

in the graph (see Section 4.1). The number of FUs used as pass-gates is useful in judging 

success in cases where the fabric contains dedicated pass-gates. Dedicated pass-gates are 

more energy efficient than complex functional units at passing a value (more than an order 

of magnitude (Jones et al., 2008)). Thus, when using dedicated-pass gates the fewer Fus used 

as pass-gates, the better. 

To demonstrate that these factors influence the energy consumption of the device, we ran a 

two-way analysis of variance (ANOVA) on the energy with the number of FUs used as pass-

gates and path length as factors to determine the correlation. Using an alpha value of 0.05, 

both factors significantly influenced the energy (p<0.01 and p=0.031, respectively). 

3. The Fabric Interconnect Model (FIM) 

As various interconnection configurations were developed, redesigning the mapping flow 

and target fabric hardware by hand for each new configuration was impractical (Mehta et 

al., 2007). Additionally, we envision the creation of customizable fabric intellectual property 

(IP) blocks that can be used in larger system-on-a-chip (SoC) designs. To make this practical, 

it is necessary to create an automation flow to generate these custom fabric instances. 

To solve this problem, we created the FIM, a textual representation used to describe the 

interconnect and the layout and make-up of the FUs in the system. The FIM becomes an 

input file to the mapper as well as the tool that generates a particular instance of the fabric 

with the appropriate interconnect. 

The FIM file is written in the Extensible Markup Language (XML) (Bray et al., 2006). XML 

was selected as it allowed the FIM specification to easily evolve as new features and 

www.intechopen.com



 Advances in Greedy Algorithms 

 

200 

descriptions were required. For example, while the FIM was initially envisioned to describe 

the interconnect only, it has evolved to describe dedicated pass-gates and other 

heterogeneous functional unit structures. 

Figure 5(a) shows an example partial FIM file that describes a cardinality five interconnect. 

A cardinality five interconnect is a specially designed interconnect, which is actually 

constructed using mirrored 4:1 multiplexers. In Figure 4(b) a single multiplexer is depicted 

as providing all three inputs to each FU, also known as an ALU (arithmetic logic unit). In 

reality, each of the three inputs has its own individual multiplexer. By allowing the 

multiplexers to draw their inputs from different locations, 4:1 multiplexers can be used to 

create the illusion of a limited 5:1 multiplexer. This limited 5:1 multiplexer provides a 

surprisingly higher flexibility over a cardinality four interconnect with no cost in terms of 

hardware complexity. 
 

 

(a) FIM file example for 5:1 style interconnect.         (b) 5:1 style interconnect implementation. 

Fig. 5. Describing a 5:1 multiplexing interconnect using a FIM file. 

The pattern in Figure 5(a) repeats the interconnect pattern for ALU, whose zeroth operand 

can read from two units to the left, the unit directly above, and one unit to the right. The 

first operand is the mirror of the zeroth operand, reading from two units to the right, the 

unit directly above, and one unit to the left. The second operand, which has the same range 

as the first operand, serves as the selection bit if the FU is configured as a multiplexer. The 

resulting cardinality five interconnect implementation is shown in Figure 5(b). As specified 

in the FIM, the zeroth operand of ALU can access ALU0 through ALU3, while the first and 

second operands can access ALU1 through ALU4. 

The ranges in the FIM can be discontinuous by supplying additional range flags. The file can 

contain a heterogeneous interconnect by defining additional Fabric Topological Units (FTUs) 

with different interconnect ranges. The pattern can either repeat or can be arbitrarily 

customized without a repeating pattern for a fixed size fabric. 

The design flow overview using the FIM is shown in Figure 6. The SuperCISC Compiler 

(Hoare et al., 2006; Jones et al., 2006) takes C code input, which is compiled and converted 

into a Control and Data Flow Graph (CDFG). A technique known as hardware predication is 

applied to the CDFG in order to convert control dependencies (e.g. if-else structures) into 

data dependencies through the use of selectors. This post-predication CDFG is referred to as 
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a Super Data Flow Graph (SDFG). The SDFG is then mapped into a configuration for the 

fabric described by the FIM. 

 

 

Fig. 6. Interconnect evaluation tool flow. 

The FIM is also used to automatically generate a synthesizable hardware description of the 

fabric instance described by the FIM. For testing and energy estimation, the fabric instance 

can be synthesized using commercial tools such as Synopsys’ Design Compiler to generate a 

netlist tied to ASIC standard cells. This netlist and the mapping of the application are then 

fed into ModelSim where correctness can be verified. The mapping is communicated to the 

simulator to program the fabric device in the form of ModelSim do files. A value change 

dump (VCD) file output from the simulation of the design netlist can then be used to 

determine the power consumed in the design. However, due to the effort required to 

generate a single power result we will use mapping quality metrics such as path length 

increase and FUs used as pass-gates rather than energy consumption to evaluate the quality 

of our mapping heuristics as described in Section 2.2. 

The FIM is incorporated into the mapping flow as a set of restrictions on both the 

interconnect and the functional units in each row. In addition to creating custom 

interconnects, the FIM can be used to introduce heterogeneity into the fabric’s functional 

units. This capability is used to allow the introduction of dedicated pass-gates into the target 

architecture and greedy mapping approaches. 

4. Deterministic greedy heuristic 

A heuristic mapping algorithm overviewed in Algorithm 1 was developed to solve the 

problem of Minimum Rows Mapping. The instantiation of this algorithm reads both the 

DFG and the FIM to generate its mapping result. The heuristic is comprised of two stages of 

row assignment followed by column assignment, which follows a top-down mapping 

approach using a limited look-ahead of two rows. In the first line of the algorithm each node 

is assigned to a row as described in Section 4.1. In the second stage, as shown in the 

algorithm, the column locations for nodes in each row are assigned starting with the top 

row. This is described in Section 4.2. After each row is mapped, the heuristic will not modify 

the locations of any portion of that row. 

While the limited information available to the heuristic does not often allow it to produce 

optimal minimum-size mappings, its relative simplicity provides a fast runtime. By default 

the heuristic tries to map the given benchmark to a fabric with a width equal to the largest 

individual row, and a height equal to the longest path through the graph representing the 

input application. Although the width is static throughout a single mapping, the height can 

increase as needed. 
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4.1 Row assignment 
Initially, the row of each node is set to its row assignment in an as soon as possible (ASAP) 

“schedule”  of the graph. Beginning with the first row and continuing downward until the 

last, each node in the given row is checked to determine if any of its children are non-

immediate (i.e. the dependency edge in the DFG spans multiple rows) and as a result they 

cannot be placed in the next row. If any non-immediate children are present, a pass-gate is 

created with an edge from the current node. All non-immediate children nodes are 

disconnected from the current node and connected to the pass-gate. This ensures that after 

row assignment, there are no edges that span multiple rows of the fabric. 

After handling the non-immediate children, each node is checked to determine if its fanout 

exceeds the maximum as defined by the FIM. If a node’s fanout exceeds the limit, a pass-

gate is created with an edge from the current node. In order to reduce the node’s fanout, 

children nodes are disconnected from the current node and connected to the pass-gate. To 

minimize the number of additional rows that must be added to the graph we first move 

children nodes with the highest slack from the current node to the pass-gate. If the fanout 

cannot be reduced without moving a child node with a slack of zero, then the number of 

rows in the solution is increased by one causing an increase of one slack to all nodes in the 

graph. This process continues for each node in the current row, then subsequently for all 

rows in the graph as shown in Figure 7. Once row assignment is complete, the minimum 

fabric size for each benchmark is known. These minimum sizes are shown in Table 1. 

 

 

                           (a) Before row assignment.                              (b) After row assignment. 

Figure 7. Row assignment example showing pass-gate insertion. 
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Table 1. Minimum fabric sizes with no interconnect constraints. 

4.2 Column assignment 
The column assignment of the heuristic follows Algorithms 2–4 where items in square 

brackets [] are included in the optimized formulation. Many of these bracketed items are 

described in Section 4.3. During the column assignment for each row, the heuristic first 

determines viable locations based on the dependencies from the previous row. Then, the 

heuristic considers the impact of dependencies of nodes in the two following rows. The 

heuristic creates location windows that describe these dependencies as follows: 

The parent dependency window (PDW) lists all FU locations that satisfy the primary constraint 

that the current node must be placed such that it can connect to each of its inputs (parents) 

with the interconnect specified in the FIM. The construction of the PDW is based on the 

location of each parent node, valid mapping locations due to the interconnect, and the 

operations supported by each FU (e.g. computational FU versus dedicated pass-gate). 

Figure 8 shows an example of a PDW dictated by the interconnect description. In this 

example, an operation that depends on the result of the subtraction in column 6 and 

addition in column 8 can only be placed in either ALU 6 or ALU 7 due to the restrictions 

of cardinality four interconnect. 
 

 

Fig. 8. Parent dependency window. 

The child dependency window (CDW) lists all FU locations that satisfy the desired but non-

mandatory condition that a node be placed such that each of its children nodes in the 

proceeding row will have at least one valid placement. The construction of the CDW is 

based on the PDW created from the potential locations of a current node as well as the PDW 

created from potential locations of any nodes that share a direct child with the current node. 

Nodes which share a direct child are referred to as connected nodes. Again the FIM is 

consulted to determine if there will be any potential locations for the children nodes based 

on the locations of the current node and connected nodes. A child dependency window 

example is shown in Figure 9. In this example, a left shift operation and a right shift 

operation are being assigned columns. Due to parent dependency window constraints, the 
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left shift can be placed in either ALU 10 or ALU 11. Similarly, the right shift can be placed 

in either ALU 6 or ALU 7. There is a third node (not pictured) which takes its inputs from 

the two shift operations. In order for this shared child to have a valid placement, the left 

shift must be placed in ALU 10 and the right shift must be placed in ALU 7. Using this 

placement, the shared child will have a single possible placement in its PDW, ALU 8. 
 

 

Fig. 9. Child dependency window. 

The grandchild dependency window (GDW) provides an additional row of look-ahead. The 

GDWlists all FU locations that satisfy the optional condition that a node be placed such that 

children nodes two rows down (grandchildren) will have at least one valid placement. It is 

constructed using the same method as the CDW. 

As nodes are mapped to FU locations, newly taken locations are removed from the 

dependency windows of all nodes (since no other node can now take those locations), and 

the child and grandchild windows are adjusted to reflect the position of all mapped nodes. 

In addition to tracking the PDWs, CDWs, and GDWs of each node, a desirability value is 

associated with each location in the current row. The desirability value is equal to the 

number of non-mapped nodes that contain the location in their PDW, CDW, or GDW. 
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The mapper then places each node one at a time. To select the next node to place, the 

mapper first checks for any nodes with an empty PDW, then for any nodes with a PDW that 

contains only one location. Then it checks for any high-priority nodes in the current row, as 

these are nodes designated as difficult to map. Finally, it selects the node with the smallest 

CDW, most connected nodes, and lowest slack. This node is then placed within the 

overlapping windows while attempting to minimize the negative impact to other nodes. 

Column placement also uses the concept of a priority set. In the process of placing operators, 

the algorithm may find that an operator has become impossible to place. If this happens, the 

algorithm is placed into the priority set and column placement for the row is restarted. 

Operators in the priority set are placed first. Even then, it may be impossible to place some 

operators. The last resort for the algorithm is to reassign the operator to the next row and 

add pass-gates to the current row for the operator’s inputs. Unary operators cannot be 

reassigned because placing the pass-gate for the input would also be impossible. If a unary 

operator (or pass-gate) in the priority set cannot be placed, then the algorithm aborts. 

4.3 Extensions 
The initial algorithm was not always able to produce high quality mappings for some of the 

benchmarks when using more restrictive interconnects such as 5:1. Several extensions to the 

heuristic were implemented in an effort to increase its effectiveness. 

Potential Connectivity: When determining the location to place an operator we consider 

which locations provide the most potential connectivity to child operators. 
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Potential connectivity is defined as the number of locations each shared child 

operation could be placed when the current operation is placed in a particular 

location. 

Nearness Measure: This measure is used when an operator has shared children but the 

CDW is empty. The goal is to push the operators which share a child as close 

together as possible; this allows the algorithm to eventually place the child 

operators in some later row. The measure is the sum of the inverses of the distances 

from the candidate FU to the operators with common children. 

Distance to Center: Used as a tie-breaker only to prefer placing operators closer to the 

center of the fabric. 

Pass-gate centering: The initial algorithm tended to push pass-gates that have no shared 

child operators toward the edges of the fabric. This makes it harder for their 

eventual non-pass-gate descendants to be mapped, since their pass-gate parent is 

so far out of position. After placing an entire row the mapper pushes pass gates 

toward the center by moving them into unassigned FUs. This is the extension 

shown in Algorithm 1. 

4.4 Results 
Higher cardinality interconnects such as 8:1 and higher were easily mapped using the 

deterministic greedy algorithm. We show results using a 5:1-based interconnect as it 

exercised the algorithm well. The mapper was tested on seven signal and image processing 

benchmarks from image and signal processing applications. A limit of 50 rows was used to 

determine if an instance was considered un-mappable with the given algorithm. Mapping 

quality was judged on three criteria. The first is fabric size, represented in particular by the 

number of rows in the final solution. The second is total path length, or the sum of the paths 

from all inputs to all outputs as described in Section 2.2. The third metric is mapping time, 

which is the time it takes to compute a solution. 

The fabric size is perhaps the most important factor in judging the quality of a solution. The 

number of columns is more or less fixed by the size of the largest row in a given application. 

However, the number of additional rows added to the minimum fabric heights listed in 

Table 1 reflects directly on the capability of the mapping algorithm. Smaller fabric sizes are 

desirable because they require less chip area, execute more quickly, and consume less 

power. 

As described in Section 2.2, the total path length increase is a key factor in the energy 

consumption of the fabric executing the particular application. However, fabric size and 

total path length are related. A mapping with a smaller fabric size will typically have a 

considerably smaller total path length and thus, also have a lower energy consumption. 

Thus, the explicit total path length metric is typically most important when comparing 

mappings with a similar fabric size. 

The mapping time is important because it evaluates practicality of the mapping algorithm. 

Thus, the quality of solution of various mapping algorithms is traded off against the 

execution time of the algorithms when comparing these mapping algorithms. 

We compared two versions of the greedy algorithm. The initial algorithm makes decisions 

based on the PDW and the CDW and uses functional unit desirability to break ties. This 

heuristic is represented by Algorithms 1–3 without the sections denoted by square brackets 

[]. The final version of the algorithm is shown in Algorithms 1–4 including the square 
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bracket [] regions. This version of the heuristic builds upon the initial algorithm by 

including the GDW, potential connectivity, and centering. The results of the comparison are 

shown in Table 2. 
 

 

Table 2. Number of rows added and mapping times for the greedy heuristic mapper using a 

5:1 interconnect. 

Using the initial algorithm, Sobel, Laplace, and GSM can be solved fairly easily, requiring 

only a few added rows in order to find a solution. However, the solutions for ADPCM 

Encoder and Decoder require a significant number of additional rows and both IDCT-based 

benchmarks were deemed unsolvable. 

The final algorithm is able to find drastically better solutions more quickly. For example the 

number of rows added for ADPCM Encoder and Decoder went from 13 to 5 and 11 to 1, 

respectively. It is also able to find feasible solutions for IDCT Row and IDCT Column. For 

the other four benchmarks, the final algorithm performs equally well or better than the 

initial algorithm. The final algorithm is faster in every case decreasing the solution time for 

all benchmarks to within 1 second except ADPCM Encoder which was reduced from 79 to 

12 seconds. 

We tried the final deterministic algorithm on a variety of more restrictive interconnects 

including a cardinality five interconnect with every third FU (33%)replaced with a dedicated 

pass-gate. The results are shown in Table 3. The fabric size results are actually quite similar 

in terms of rows added to the 5:1 cardinality interconnect without dedicated pass-gates. 
 

 

Table 3. Greedy heuristic mapper results using a 5:1 interconnect and 33% dedicated pass-

gates. 

While the deterministic heuristic provides a fast valid mapping, it does add a considerable 

number of rows from the ASAP (optimal) configuration, which leads to considerable path 

length increases and energy overheads. In the next section we explore a technique to 

improve the quality of results through an iterative probabilistic approach. 

5. Greedy heuristic including randomization 

Another flavor of greedy algorithms are greedy randomized algorithms. Greedy 

randomized algorithms are based on the same principles guiding purely greedy algorithms, 

but make use of randomization to build different solutions on different runs (Resende & 

Ribeiro, 2008b). These algorithms are used in many common meta-heuristics such as local 
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search, simulated annealing, and genetic algorithms (Resende & Ribeiro, 2008a). In the 

context of greedy algorithms, randomization is used to break ties and explore a larger 

portion of the search space. Greedy randomized algorithms are often combined with multi-

iteration techniques in order to enable different paths to be followed from the same initial 

state (Resende & Ribeiro, 2008b). 

The final version of the deterministic greedy algorithm is useful due to its fast execution time 

and the reasonable quality of its solutions. However, because it is deterministic it may get 

stuck in local optimums which prevent it from finding high quality global solutions. By 

introducing a degree of randomization into the algorithm, the mapper is able to find 

potentially different solutions for each run. Additionally, since the algorithm runs relatively 

quickly, it is practical to run the randomized version several times and select the best solution. 

The column assignment phase of the mapping algorithm was chosen as the logical place to 

introduce randomization. This area was selected as the column assignments not only affect 

the layout of the given row, but also affect the layouts of subsequent rows. In the 

deterministic algorithm, nodes are placed in an order determined by factors including 

smallest PDW, CDW, GDW, etc. and once placed, a node cannot be removed. In contrast, 

the randomized heuristic can explore random placement orders, which leads to much more 

flexibility. 

We investigated two methods for introducing randomization into the mapping heuristic. 

The first approach makes ordering and placement decisions completely randomly. We 

describe this approach in Section 5.1. The second leverages the information calculated in the 

deterministic greedy heuristic by applying this information as weights in the randomization 

process. Thus, the decisions are encouraged to follow the deterministic decision but is 

allowed to make different decisions with some probability. We describe this approach in 

Section 5.2. 

5.1 Randomized heuristic mapping 
The biggest difference between the deterministic heuristic and the heuristics that 

incorporate randomization is that the deterministic is run only once and the random 

oriented heuristics are run several times to explore different solutions. The basic concept of 

the randomized heuristic is shown in Algorithm 5. First the deterministic algorithm is run to 

determine the initial “best”  solution. Then the randomizer mapper is run a fixed number of 

times determined by I. If an iteration discovers a better quality solution (better height or 

same height and better total path length) it is saved as the new “best”  solution. This concept 

of saving and restoring solutions is common in many multi-start meta-heuristics, including 

simulated annealing and greedy randomized adaptive search procedures (GRASP) (Resende 

& de Sousa, 2004). 
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The randomized mapping heuristic follows the same algorithmic design as the deterministic 

heuristic from Algorithm 2. The only major change is to line 15, in which the new algorithm 

selects the next node to map in a column randomly and ignores all other information. 

Although the introduction of randomization allows the mapper to find higher quality 

solutions, it also discovers many lower quality solutions, which often take a long time to 

complete. In order to mitigate this problem, one other divergence from the deterministic 

algorithm allows the mapper to terminate a given iteration once the fabric size of the current 

solution becomes larger than the current best solution. 

5.2 Weighted randomized heuristic mapping 
Using entirely random placement order did discover better solutions (given enough 

iterations) than the deterministic heuristic. Unfortunately, the majority of the solutions 

discovered were of poorer quality than the deterministic approach. Thus, we wanted to 

consider a middle ground algorithm that was provided some direction based on insights 

from the deterministic algorithm but also could make other choices with some probability. 

This resulted in a weighted randomized algorithm. 

Weights are calculated based on the deterministic algorithm concepts of priorities and 

dependency windows. Again the modification of the basic deterministic algorithm to create 

the weighted randomized algorithm is based on line 15 of Algorithm 2. The weighted  

randomized algorithm replaces this line with Algorithm 6 to select the next node to place. 

The algorithm begins by dividing the unplaced operators into sets based on their PDW size. 

Each set is then assigned a weight by dividing its PDW size by the sum of all of the unique 

PDW sizes. Because nodes with small parent dependency windows are more difficult to 

place, it is necessary to assign them a larger weight. This is accomplished by subtracting the 

previously computed weight from one. Each set is then further subdivided in a similar 

fashion based first on CDW sizes and then node slack. The result of this operator grouping 

process is a weighted directed acyclic graph (DAG) with a single vertex as its root. Starting 

at the root, random numbers are used traverse the weighted edges until a leaf vertex is 

reached, at which point an operator will be selected for column assignment. 
 

 
Fig. 10. Heuristic weight system. 
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