
20

Distributed Optimisation using the
Mobile Agent Paradigm through an
Adaptable Ontology: Multi-operator

Services Research and Composition

Hayfa Zgaya and Slim Hammadi
LAGIS UMR 8146 – Ecole Centrale De Lille

France

1. Introduction

Giving transport customers relevant, interactive and instantaneous information during their
travels, represents a real challenge according to the exponential growth of services available on
large distributed networks. Unfortunately, distributed applications through wide networks are
not easy to realize because of the limited aspect of bandwidth that remains restricted and also
because of a high incidence of network errors (bottleneck, failure, crash…). Our goal is to
properly access and share distributed data located in an Extended Transport Multimodal
Network (ETMN). In this context, mobile technology (Pharm & Karmouch, 1998; Theilmann &
Rothermel, 1999) can complement artificial intelligence because it can reduce considerably
network traffic (Carzaniga et al., 1997). Giving the mobility character to a software agent will
allow him to migrate towards any node on the network that can receive mobile entities. Nodes
to be visited by a Mobile Agent (MA) correspond to his route called Workplan. Many
researchers have long discussed the benefits of the MA paradigm and conclude that it might
be efficient in some cases (Picco & Baldi, 1997; Buse et al., 2003). In a recent work (Zgaya &
Hammadi, 2006b), we demonstrated that using the MA paradigm in a Transport Multimodal
Information System (TMIS) to collect needed data, is widely beneficial than using classical
paradigms such as the Client Server (CS) one, if we use an optimization approach. The
verification was successful thanks to a two-level optimization approach (Zgaya et al., 2005a,
2005b) that optimises, using metaheuristic, the total number of mobile entities and their
different Workplans through the ETMN. However, some network errors (bottleneck, failure,
crash…) can occur during the moving of MAs through the network nodes. In our work, we
define a MA negotiation process in order to reassign non-attributed services, to available
network nodes. Therefore we designed a flexible transport ontology that allows an easy
handling of the terms and messages for negotiating. The remainder of this chapter is organized
as follows: the problem complexity and the correspondent general formulation are presented
in the next section. The global architecture of the Multi-Agent System (MAS) is proposed in
section 3 and the optimisation approach in section 4. The proposed negotiation protocol is
specified in section 5, followed by the used flexible transport ontology in section 6. Simulations
are given in section 7 and finally the conclusion and prospects are addressed in last section. O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

398

2. Problem formulation

The main concern of a TMIS is to satisfy users, respecting the delays of the responses (due
dates) and minimizing their costs; this is a two-step optimization problem: firstly the
assignment of an effective set of MAs to all existent network nodes. This assignment builds
initial Workplans of the MAs in order to explore, in an optimal manner, the ETMN entirely.
The second step corresponds to the best assignment of a sub-set of the ETMN nodes to
identified tasks, deducing final Workplans. The selected sub-set of nodes corresponds to the
possible providers to the identified tasks. A single identified task corresponds to an
independent recognized sub-request which belongs to one or several requests formulated
simultaneously by one or different customers through different devices (laptop, PDA…).
More precisely, a single task can correspond to a transport service (sub-route, well-known
geographical zone…) or to a related service (cultural event, weather forecast…). After the
decomposition process, information providers (distant nodes), which propose services to the
correspondent identified tasks, are recognized (fig. 1). Finally, nodes must be assigned to
tasks in order to satisfy all connected users. A user is satisfied if his request was answered

Fig. 1. Nodes identification

rapidly with a reasonable cost. This problem is called the Distributed Tasks Assignment
Problem (DisTAP) and defined by:
- R requests, waiting for responses at the same instant t. The set of these requests is noted

by Rt,
- The set of independent I tasks, representing all available services on the ETMN, is noted

by T={T1,…, TI},

- Each request reqw∈Rt (1≤w≤R) is decomposed into a set of independent tasks, noted by

It,w={Tr1
,...,Trn j

} (1≤nj≤I and It,w ⊆T),

- The set of independent I’ tasks (I’≤I), composing globally Rt, is noted by I’t (I’t⊆T and

I t,w = I ' t

w=1

R

∪),

- Each request reqw has a due date dw initially known, an ending date Dw and a total cost Cw,
- The realization of each task Ti∈T requires a resource, or node, selected from a set of J

registered nodes in the ETMN, noted by S={S1,…, SJ},
- The set of J’ nodes (J’≤J), selected from S to perform I’t, is noted by S’ (S’⊆S),
- There is a predefined set of processing time; for a given node Sj and a given task Ti, the

processing time of Ti using the resources of Sj, is defined and noted by Pi,j,

T1 T2 T3 T4Req1

S2,S3

S4

S1,S3,S4,S5

T2 T4 T1 Req2

S2,S3

S1,S3,S4,S5

S1,S2,S3,S4

T1 T2 T3 T4 T5 Req3

S1,S2,S3,S4

S2,S3

S4

S1,S3,S4,S5

S2,S6

S1,S2,S3,S4

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

399

- There is a predefined set of information cost; for a given node Sj and a given task Ti, the
cost of the information to collect from Sj, corresponding to the service referenced by Ti,
is defined and noted by Coi,j,

- The size of the collected data to ensure a service is defined; for a given node Sj and a
given task Ti, the data size is defined and noted by Qi,j,

- We have partial flexibility; the realisation of each task Ti requires a node selected from a
set of nodes, which propose the same service performing the task Ti, with different cost,
processing time and data size.

The three characteristics described above, namely (Pi,j;Coi,j;Qi,j), represent successively the
first, second and last term of each element of what we call a service table (table 1).

 S1 S2 S3 … SJ

T1 (0;0;0) (0.2;5;3) (0.4;3;3) (0.2;5;3)

T2 (0.2;4;5) (0.1;5;2) (0.4;5;1) (0.3;8;3)

T3 (0.1;0;3) (0;0;0) (0.2;0;3) (0.4;2;2)

T4 (0.3;2;1) (0.3;1;1) (0;0;0) (0,0,0)

…

TI (0.2;3;1) (0.1;1;3) (0.4;5;2) (0.4;5;3)

Table 1. Example of a service table

We notice that if a provider does not offer a response to a task (partial flexibility); the

correspondent term in the table above is (0,0,0). Otherwise we have Pi,j≠0, Coi,j≠0 and Qi,j≠0.

It is also possible to have Pi,j≠0, Qi,j≠0 and Coi,j=0 for a free information in the case of a
promotional operation. In order to situate the complexity of our problem, an analogy was
performed (table 2) between the problem described above (DisTAP) and the well-known
Flexible Job Shop Problem (FJSP).

FJSP DisTAP

N jobs R requests

M machines J servers

nj non preemptable ordered operations /jobj nj non preemptable ordered tasks /requestj

The problem: to organize the execution of N
jobs on M machines

The problem: to organize the execution of R
requests on S servers

The execution of each operation i of a job j
(Oi,j) requires one resource or machine

selected from a set of available machines

The execution of each task i (Ti) of a request j
(reqi) requires one resource or server

selected from a set of available servers
(similarities of requests)

The assignment of the operation Oi,j to the
machine Mk entails the occupation of this

machine during a processing time called di,j,k

The assignment of the task Ti to the server Sk
entails the occupation of this server during a

processing time called Pi,k

At a given time, a machine can only execute
one operation: it becomes available to other

operations one the operation that is currently
assigned to is completed (resource

constraints).

At a given time, a server can only execute
one task: it becomes available to other tasks
one the task that is currently assigned to is

completed (resource constraints).

Table 2. Analogy between FJSP and our problem

www.intechopen.com

 Multiagent Systems

400

In DisTAP, we manage the similarities of requests in order to avoid the same data research.
Besides, we have to assign the servers to tasks as well as to assign MAs to remote nodes
(servers), taking into account the network state. Therefore our problem presents more
difficulty than the FJSP which has been shown to be NP-hard. In addition, the distributed
character of our system and the requirement to cooperate different autonomous static and
mobile entities, confirm the choice of a multi-agent architecture for our system.

3. The multi-agent system

To resolve the problem described previously, we propose a system based on the
coordination of five kinds of software agents (fig. 2):
- Interface Agent (IA): this agent interacts with the user of the system allowing him to choose

an appropriate form of response to his demand, so this agent manages the request and then
displays the correspondent result. Therefore, when a user accesses to the TMIS, an agent IA
deals with the formulation of his request and then sends it to an available identifier agent.
This one relates to the same platform to which several users can be simultaneously
connected, thus he can receive several requests formulated at the same time,

- Identifier agent (IdA): this agent manages the decomposition of the requests that were
formulated through a same short period of time ε* (ε-simultaneous requests). The
decomposition process generates a set of sub-requests corresponding, for example, to sub-
routes or to well-known geographical zones. Sub-requests are elementary independent
tasks to be performed by the available set of distributed nodes (information providers)
through the ETMN. Initially, each node must login to the system registering all proposed
services knowing that a service corresponds to the response to a defined task with fixed
cost, processing time and data size. Therefore, an agent IdA decomposes the set of
existing simultaneous requests into a set of independent tasks, recognizing possible
similarities in order to avoid a redundant search. The decomposition process occurs
during the identification of the information providers. Finally, the agent IdA transmits
cyclically all generated data to available scheduler agents. These ones must optimize the
selection of providers, taking into account some system constraints,

- Scheduler Agent (SA): several nodes may propose the same service with different cost,
processing time and data size. The agent SA has to assign nodes to tasks, minimizing total
cost and total processing time to respect due dates (data constraint). Selected set of nodes
corresponds to the sequence of nodes which build the Workplans (routes) of the collector
agents. An agent SA has firstly to optimize the number of collector agents before
assigning nodes to tasks.

- Intelligent Collector agent (ICA): an agent ICA is a mobile software agent who can
move intelligently from a node to another through a network in order to collect needed
data and finally returns to his home node, noted by H. This special kind of agent is
composed of data, code and a state and has an intelligent behaviour. Collected data
should not exceed a capacity threshold in order to avoid the overloading, so the agent SA
has to take into account this aspect when assigning nodes to tasks. When they come back
to the system, the agents ICA must transmit collected data to the available fusion agents,

- Fusion Agent (FA): the agents FA have to fusion correctly collected data in order to
compose responses to the simultaneous requests. The fusion procedure needs information
on behalf of IdA and SA agents and progresses according to the collected data availability.
Each new answer component must be complementary to the already merged ones.

* Fixed by the programmer

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

401

Fig. 2. System architecture

The needed data, required to satisfy the demands of the customers, are distributed through
the ETMN and their collect corresponds to the jobs of ICA agents. Consequently, the SA
agents have to optimize the assignments of the nodes to the identified tasks, minimizing
total cost and response time. To this problem, we propose a two-level optimization solution
(Zgaya et al., 2005a, 2005b) corresponding to the complex behaviour of the SA agents.

4. Scheduler Agent behaviour

The SA agent has two different basic behaviours: firstly the generation of an effective
number of ICA agents in order to explore the ETMN entirely. This behaviour starts each
time the network state varies considerably, in order to prepare the initial Workplans of ICA
agents. Thus, we assume the existence of a network module that provides information to the

system about the latest variations. The second behaviour is an ε-cyclic one, supervising the
reception of the required services and their possible information providers, identified by the
agents IdA. This second behaviour optimizes the assignments of nodes to the tasks in order
to deduce the final Workplans of ICA agents from initial ones. The SA agents have to
interact in order to share information and negotiate the different part of assignment for a
global optimisation. For this problem, we just underline that we propose a solution using
the formation of coalitions approach but this is not the topic of this chapter. For example, in
the case of possible overlapping of the simultaneous requests, concerning SA agents have to
gather, forming coalitions, in order to share the assignments about the different identified
similarities. Hence, we focus here on the individual behaviour of a SA agent apart from his
interaction with the other agents. We describe the two individual behaviours mentioned
above in what follows.

4.1 Generation of the initial workplans
The Cost-Effective Mobile Agent Planning (CE-MAP) Algorithms, suggested by (Baek et al.,
2001), are the most appropriate to our problematic. In fact, a proposed dynamic algorithm,

IdAa

IdAbIdA..

IA1

User 2

IA2

IA3

User 3
User …

SAi

SAii
SA..

ε-cycle

FAI

FAII
FA..

Formulation of

Responses

Decomposition of Request

and identification of providers

User 1

Stationary agent

Mobile agent

Results diffusion

Data transmission

ICA agents

Throwing

ICA agents

Back to the

system

www.intechopen.com

 Multiagent Systems

402

called BYKY2, optimizes the number of MAs minimizing the total execution time, taking
into account the network state. In a previous work (Zgaya, 2005a), we adopted the same
approach but we considered the transported data and then the state variation of mobile
entities. The MA Workplan problem is described in what follows, assuming some hypothesis:
- Collecting data on a visited node requires a processing time. We suppose that the size of the

data to collect from a network node is equal to the average of the total data size on this node,
- Initially, we assume that an ICA agent is not totally empty because it contains an initial

quantity of data Q0,
- We suppose that minimal latency between each pair of nodes in the network is

available tanks to an existent network monitoring module,
- Information can have a multimedia aspect, so we assume that the transmission of a

quantity of data from a node to another depends on current latency.

4.1.1 Description
The MA Workplan problem can be described as follows: ICA agents are created and initially
launched from an originally node (Home node). The other network nodes represent available
information providers where an ICA agent can move to collect data corresponding to the
claimed services. These ones are expressed in term of independent tasks. A same service can
be proposed by different nodes with different cost, processing time and with different formats.
We call a response time to a service on a node, the processing time of the correspondent task to
this service on this node. So the response time on the Home node is null. Latencies are known
and may affect navigation time of ICA agents. Our goal is to minimize the number of ICA
agents and their navigation time in order to explore all the ETMN, taking into account
network state. Initially, we introduce some definitions using variables described in table 3.

Variable Description
m Number of ICA agents

ICA1,…,ICAm Identifiers of ICA agents
H Home node

Wki,p
Nodes sequence representing the Workplan of an ICAi agent: (S i1

, ..., S i p
)

with 1≤p≤J
T(Wki,p) Routing time for Wki,p

Qtek,u
The size of the transported data by the agent ICAk until the node Su

included
Tr(Qtek,u,Su,Sv) Transmission time for Qtek,u from node Su to node Sv

CTj Processing time on node Sj for the data quantity Qtj
Qtj Data quantity on node Sj

d(Si,Sj) Data transfer rate between nodes Si and Sj

Table 3. Notations

Definition 1: CTj (Processing time on node Sj) corresponds to needed computing time on the
node Sj to extract the data quantity Qtj.
Definition 2: Qtj (Data quantity on node Sj) it is the average data size to extract from Sj.
Ti represents a task corresponding to a service proposed by Sj. Therefore:

, ,

1

,
1

I

i j i j
i

j I

i j
i

a Q

Qt

a

=

=

= ∑
∑ (1)

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

403

, ,

1

,
1

I

i j i j
i

j I

i j
i

a P

CT

a

=

=

= ∑
∑ (2)

Where ai,j is a Boolean value as follows: ai,j=1 if the node Sj proposes a service for the task Ti
and ai,j=0 otherwise (according to the given service table). Moreover, we remind that Pi,j
corresponds to the processing time of a given task Ti on the node Sj (section 2).
Definition 3: Qtek,u (Data quantity transported until Su by ICAk) corresponds to the size of
the collected data by the agent ICAk during his route, until the node Su included.
Qtek,u is calculated by:

 , 0
1

r

u

k u k
r

Qte Q Qt
=

= + ∑ (3)

We remind that Q0 corresponds o the initial quantity of data within an ICA agent
(parag.4.1).
Definition 4: Tr(Qtek,u,Su,Sv) (Transmission time) needed time for the agent ICAk to migrate
from Su to Sv transporting the data quantity Qtek,u.
Tr(Qtek,u,Su,Sv) is computed like this:

,

,
(, ,)

(,)

k u

k u u v

u v

Qte
Tr Qte S S

d S S
= (4)

Definition 5: T(Wkk,p) (Routing time for Wkk,p) needed time for the agent ICAk to visit the

sequence of network nodes
1

(,...,)
pk k

S S with 1≤p≤J.

T(Wkk,p) is computed like this:

,

() (, 1) (,) (,)
k p go travel return

T Wk T k p T k p T k p= = + + (5)

 Wkk,p Tgo Treturn Ttravel

p=1 (Sk1
) CTk1

1<p≤J (S k1
, ..., S kp

)
Tr(Q0 ,H ,Sk1

) Tr(Qtek, p ,Skp
,H)

Xk,p

Table 4. Routing Time

With:

1

1

, ,
1 1

(, ,)
i i i

p p

k p k k i k k
i i

X CT Tr Qte S S +

−

= =
= +∑ ∑ (6)

4.1.2 Proposed workplan schemes
To propose a cost-effective Workplan MA scheme, we assume that a monitoring module
exists in the system providing information about the network status (latency, bandwidth,
traffic, bottleneck, failure…). Therefore, we can get data transfer rate values among all pairs
of nodes through the ETMN. The goal is to find an effective set of ICA agents minimizing
their navigation time, in order to explore all the ETMN nodes, taking into account network

www.intechopen.com

 Multiagent Systems

404

state. It is clear that sending an ICA agent to each node gives us the best total computing
time because, in this case, agents are launched simultaneously into each network node.
Therefore, we keep this best total computation time to build nodes partitions, minimizing
the number of ICA agents. Consequently, we just care about the data size and the processing
time in the service table (section 2), ignoring the data cost. As described previously, d(Si,Sj)
namely data transfer rate among two network nodes Si and Sj, is available. We give here a
brief description of the algorithm detailed in (Zgaya et al., 2005a):

The initial Workplan algorithm description

- Step 1: Sort the nodes in decreasing order according to their

correspondent routing time T(Wki=Si) ∀1≤i≤J. Set the threshold δ which is
the routing time of the first node in the sorted list:

 1
max (())

i J i i
T Wk Sδ ≤ ≤= = (7)

- Step 2: Partition the given network into several parts by gathering nodes

so that the routing time of each part does not exceed the threshold δ.

This proposed dynamic algorithm tries to find the next node to visit from the current
position where the agent resides. In other words, this algorithm looks for the next node for
a part calculating, each time, the new routing time. A node is selected if the new routing

time does not exceed the threshold δ. Otherwise, a Workplan is ready to be assigned to an
ICA agent and the algorithm ends if each available node belongs to a Workplan. The
algorithm distributes all available nodes to a set of m ICA agents in order to explore the
network entirely. Each built route corresponds to the initial Workplan of the correspondent
ICA agent. Then, final Workplans will be deduced from initial ones thanks to our
evolutionary approach described in next section. This will be done by selecting a subset S’
from S (the total number of available nodes in the ETMN) in order to optimise the
management of the data flow through the network. Thus, some nodes will not be selected
from S what can decrease the total number m of ICA agents. This will be happen when all
the nodes composing the initial Workplan of an agent ICA are not selected. Let m’ be the
new number of ICA agents. We have also J’=|S’| the new number of nodes so m’≤m, J’≤J

and S’⊆S. Thanks to the generated final Workplans, required data will be collected in an
effective manner, in order to reach as soon as possible and with reasonable costs, the best
schedule of the simultaneous requests.

4.2 Composition of services using an evolutionary approach
The Evolutionary Algorithms (EA), inspired from genetic algorithms, added a new aspect to
the field of artificial intelligence. These algorithms use various computational models of
evolutionary processes to solve problems on a computer. EA are stochastic search methods
that mimic the metaphor of natural biological evolution; they operate on a population of
potential solutions applying the survival principle of the fittest results, in order to produce
successively better approximations to a solution. At each generation, a new set of
approximations is created by the process of selecting individuals according to their level of
fitness in the population, then breeding them together using genetic operators such as
crossover and mutation. Compared to traditional optimization methods such as gradient
descent, EA are robust and global search technique. For this reason, the scheduling community

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

405

has been quick to realize the potential of EA. In this section, we use an evolutionary approach
to resolve our assignment problem. Therefore, we use some aspects that must be clarified:
- A specific genetic representation (or encoding) appropriate to the problem, to

determine feasible solutions of the scheduling optimization problem,
- Original genetic operators that alter the composition of children during the

reproduction. As it was mentioned previously, a task (sub-request) must be managed
by only one provider selected from the set of nodes that propose the correspondent
service. Therefore, we choose to correct generated solutions in order to respect this
constraint. Consequently, each crossover or mutation operation must be followed by a
correction process,

- Parents are selected randomly from current population to crossover/mutation with

some probability pc/pm (0 < pc , pm < 1). We believe that this technique gives more

chance to weak individuals to survey,
- A non-elitist replacement technique is adopted to generate the new population from the

previous one,
- The evaluation functions estimate a possible solution according to two criteria: the cost

and the delay.

4.2.1 The representation of an evolutionary solution
The research and the composition of distributed transport services are generated thanks to an
evolutionary algorithm, managed by the active SA agents in the system. We notice that the
selection of an appropriate representational scheme of a solution is fundamental to the success
of EA applications. Therefore, in a previous work (Zgaya et al., 2005b), we designed an
efficient coding (possible solution) for the chromosome respecting our problem constraints.
Thus, we propose a flexible representation of the chromosome called Flexible Tasks

Assignment Representation (FeTAR). The chromosome is represented by a matrix CH(I’×J’)
where rows represent independent tasks (the services), composing globally simultaneous
requests and columns represent identified nodes (the providers). Each element of the matrix

specifies the assignment of a node Scj
 (1≤j≤J’) to the task Tci

 (1≤i≤I’) as follows:

Value of CH[i,j] Condition

1 Scj
 is assigned to Tci

* Scj
 may be assigned to Tci

X Scj
 cannot be assigned to Tci

We notice that each task must be performed by a single node, selected from the available set
of nodes that propose the service corresponding to a response to the concerned task. Indeed,
the assignment and the scheduling of all distributed nodes to the required services,
represent the optimisation of the services composition that provide transport customers
effective responses to their requests.

4.2.2 The genetic operators
(a) The crossover algorithm
Crossover involves combining elements from two parent chromosomes into one or more child
chromosomes. The role of the crossover is to generate a better solution by exchanging information
contained in the current good one. The following algorithm specifies the crossover operator:

www.intechopen.com

 Multiagent Systems

406

CrossFeTAR Algorithm

The creation of C1 (resp. C2) representing the child 1 (resp. child 2) is given by:

- Step 1: Choose randomly two parents and one node; suppose that P1, P2 and Scj
 (1≤j≤J’) are

randomly selected,

- Step 2: Tasks assignment of Scj
in C1 (resp. C2) must correspond to the same assignment of

Scj
in P1 (resp. P2),

- Step3:
 k :=1 ;

 while (k ≤ J’) and (k ≠ j) {

 Tasks assignment of Sck
 in C1 (resp. C2) corresponds to the same assignment of

 Sck
in P2 (resp. P1);

 k := k + 1 ;
 }
- Step 4: if (C1 (resp. C2) is not a feasible solution)
 Correct randomly C1 (resp. C2);

We notice that sometimes, a generated solution resulting from a crossover process is not

feasible. If it is the case, we propose a correction process that changes, in a random way, a

non-feasible solution to a feasible one knowing that a feasible solution is a FeTAR instance

that assigns each task composing it, only once. The algorithm CorrectFeTAR illustrates this

correction process as follows:

CorrectFeTAR Algorithm

The correction of the FeTAR instance CH is given by:
for (i:=1; i ≤I’; i:=i+1){
 initialize to zero the vectors IndexAssigned[] and IndexNotAssigned[] of dimensions J’;
 k1:=0; k2:=0;
 for (j:=1; j ≤J’; j:=j+1){

 if(CH c i ,c j[]=1) {

 k1:=k1+1;
 IndexAssigned[k1]:=j;

 }else if(CH c i ,c j[]=*) {

 k2:=k2+1;
 IndexNotAssigned[k2]:=j;
 }
 }
 if(k1=0) {
 Draw randomly an index p with 1≤p≤k2 ; s:=IndexNotAssigned[p];
 CH c i ,cs[]:=1;

 }else if(k1>1) {
 Draw randomly an index p with 1≤p≤k1 ; s:=IndexAssigned[p];
 for (x:=1; x ≤J’; x:=x+1){

 if(CH c i ,cx[]=1 et x≠s)

 CH c i ,cx[]:=*;

 }
}

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

407

For example, we suppose that a Crossover process generated, from two FeTAR instances

parents P1 and P2, two new FeTAR instances childs C1 and C2 like so:

Both C1 and C2 are not feasible solutions because C1 does not assign the task T1 and C2

assigns the task T1 more than one time (T1 is assigned twice by S3 and S24). After correction,

C1 will be randomly C1x, C1y or C1z and C2 will be randomly C2x or C2y like so:

(b) The mutation algorithm
Mutation represents another important genetic operator. Although mutation is important, it

is secondary to crossover. It introduces some extra variability into the population and

typically works with a single chromosome to create a new modified one. The mutation

algorithm is presented as follows:

www.intechopen.com

 Multiagent Systems

408

MuteFeTAR Algorithm

- Step 1: Choose randomly one chromosome CH, one task Tci
(1≤i≤I’) and one node

Scj
(1≤j≤J’);,

- Step 2:
 if(CH[i,j]= *){
 Find j1 with 1≤j1≤J’ and CH[i,j1]=1 ;
 CH[i,j1] := * ;
 CH[i,j] := 1 ;
} else

 if(CH[i,j] = 1 and ∃ j1 / 1 ≤ j1 ≤ J’ and CH[i,j1]=*){
 CH[i,j1] := 1 ;
 CH[i,j] := * ;
}

For example, if the chromosome C1x undergoes a mutation process, muted C1x may be C’1x
like so:

C’1x S12 S6 S3 S24

T1 X 1 * *

T5 * * 1 *

T3 * X * 1

T9 * * 1 X

T2 1 * * *

With the mutation point (T2,S3).

4.2.3 Evaluation functions
At each iteration, individuals (chromosomes) in the current population are evaluated

according to the same measure of fitness. There are a number of characteristics of the

evaluation function that enhance or hinder the evaluation of a program performance. In

our case, the fitness function intends to maximize the number of satisfied transport

travellers, minimizing response delay and total cost. In other words, a chromosome is

firstly evaluated according to the number of responses respecting due dates, then

according to the average of total costs. Thus, a chromosome has to express ending

responses date and the information cost (Zgaya et al., 2005b). The first evaluation

function, called Fitness_1, computes the ending dates of all the requests according to the

generated FeTAR solution, in order to deduce the number of satisfied users in term of

response time. Then the second evaluation function, called Fitness_2, computes the total

cost of each request. As we previously mentioned, a request reqw (1≤w≤R) is decomposed

into It,w tasks and the algorithm Fitness_1 computes the total processing time Dw for each

reqw. This time does not include only the effective processing time on the nodes because

we have to take into account the routing time of ICA agents. For that, we assume that, the

ending date Dw (EndReq[w]) corresponding to the total execution time of a request reqw,

includes also some value noted by γ which is the average navigation time of ICA agents

(Zgaya et al.,2008). Besides, the total cost Cw (EndReq[w]) is computed for each request

reqw by the algorithm Fitness_2.

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

409

Fitness_1 Algorithm

- Step 1: Initialisation (1≤k≤m)
- Initialize to Ø each set of tasks Uk which should be performed by each ICAk
- Initialize to γ the total time EndU[k] to perform each set of tasks Uk.

- Step 2: Compute the set of tasks Uk performed by each ICAk and the total time
to perform them as follows:

for (i:=1; i ≤ I’; i:=i+1) {

 Find k and j while ICAk performs Tci
on Scj

;

 Uk = Uk ∪ {Tci
} ;

 EndU[k] := EndU[k] + Pci ,cj
 ;

}
- Step 3: Compute ending time for each request i: EndReq[w] with 1≤w≤R, by

looking for each task composing this request. An ending time of a request is
the maximum necessary time for all the agents ICA responsible for all the
tasks composing this request, in order to carry out their Workplan. Ending
time for each request is computed as follows:

 for (w:=1; w≤R; w:=w+1){
 Initialize to false TreatedICA[k] for each ICAk (1≤k≤m);

EndReq[w] = 0;
for (j :=1; j ≤I’; j:=j+1){

 if (Tcj
∈ reqw) {

 k:=1;

 while ((k ≤ m) and (Tcj
∉ Uk)) k:=k+1;

 if (not TreatedICA[k]) {
 EndReq[w]:=max(EndReq[w], EndU[k]);
 TreatedICA[k] = true;
 }
 }
}

 }

Fitness_2 Algorithm

The total cost for a request is the total cost of all independent tasks composing
this request. It is calculated as follows:
 Step 1: Initialisation (1≤w≤R)
Initialize to 0 CostRe[w] for each reqw
 Step 2:
 for (w:=1; w≤R; w:=w+1){

for each Tci
∈ It,w {

 Find j/ Scj
assigns Tci

in the FeTAR instance CH;

 CostRe[w]= CostRe[w] + Coci ,cj
;

}
 }

www.intechopen.com

 Multiagent Systems

410

The evaluation of a chromosome is illustrated by a vector, which express, for each request w
(reqw), its required total time for the execution (Dw) and also its total cost (Cw). From the
generated vector, we deduce the average total cost Cav and the maximum ending date Dmax
of all the requests managed by the chromosome.

4.2.4 Best solution
To determinate the best solutions, we adopted an elitist approach (Zgaya & Hammadi, 2008)
using an external storage to memorise the most adapted individuals during the search. The
evolutionary adopted approach is shown in fig. 3. During the evaluation process to
crossover and mutation, best solutions are saved in external archives. Knowing

that dmax = max(dw)1≤w≤ R , we discern two archive sets:

- Main solutions archive (M) representing best solutions which respect all due dates. In

other words, a chromosome CH∈M if and only if ∀w (1≤w≤R), Dw≤dmax. This archive
set is decomposed into two sub-archives :

• dominant solutions archive (d)

• ε-dominant solutions archive (ε-d)

Fig. 3. Evolutionary approach

Secondary solutions archive (M’) representing best solutions which exceed at least one due
date. In other words, a chromosome CH∈M’ if and only if ∃w (1≤w≤R) and dmax<Dw.
We discerned two archive sets according to delay criterion satisfaction because we assume
that if a response exceeds its due date, the user is not satisfied. That’s why we consider that
the first criterion has more priority that the second one. Consequently archive sets are firstly
sorted according to delay criterion, then according to cost criterion. We notice by f1 the
response delay function evaluated by Fitness_1 algorithm and by f2 the cost function
evaluated by Fitness_2 algorithm. Considering two different solutions CH and CH’, if

CH∈M and CH’∈M’ then CH dominates CH’. Otherwise, CH dominates CH’ if and only if
f1(CH)=f1(CH’) and f2(CH)<f2(CH’) . Each archive set has a maximum number size equals
to the population size. If the number of individuals in an archive exceeds this fixed size, a
crowding process must occur to decide which solutions must kept in the archive. The non-
selected solutions are deleted; and the others contribute to the next selection procedure;
archive members can then transmit their characteristics to offspring populations. M and M’
archive sets represent generated solutions having minimum f1 and f2 values, so if a
chromosome CH of the offspring dominates any archive member CH’, the archive member

Initial population

Evaluate

Select

Crossover and mutation

Best solution

dominant
solutions (d)

ε-dominant
solutions (ε-d)

Main solutions (M) Secondary
solutions

(M’)

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

411

is deleted and the offspring is accepted. Fig. 4 represents the Pareto-optimal fronts with

ε1=ε2=ε=0.75 (Zitzler & Thiele, 1998). We use a population size of N=100 with a crossover
probability pc=0.8 and mutation probability pm=0.2.

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15

f1

f2

dmax=

M

M'ε-d

d

Fig. 4. Optimal fronts

4.2.5 Final workplans generation
According to the generated FeTAR instance CH, the equations (1) and (2) become:

'

, ,
1

()
j i j i j

I

c c c c c
i

Qt a Q
=

= ×∑ (1’)

'

, ,
1

()
j i j i j

I

c c c c c
i

CT a P
=

= ×∑ (2’)

With aci ,cj
a Boolean value as follows: if CH[ci,cj]=1 (1≤i≤I’ and 1≤j≤J’) then aci ,cj

=1 else

aci ,cj
=0. Routing time of the final Workplans are deduced using equations (1’), (2’), (3), (4),

(5) and (6) according to table 4 (parag. 4.1.1).
Until this stage, the MA paradigm integrates a perfect structure without any incidence. But
this is an improbable scenario because, in reality, errors may often occur (crash, bottleneck,
failure…), especially in huge systems distributed through large networks. If it is the case,
ICA agents have to interact with SA agents in order to negotiate the reassignments of
potential cancelled services, keeping the whole robustness of the system. Consequently, we
developed a negotiation protocol, described in next section.

5. The negotiation process

Some perturbations can occur through the network when ICA agents are following their
correspondent final Workplans, according to the generated FeTAR instance. In this case, the
ICA agents have to avoid unavailable nodes in their remained final Workplans. In addition,
they have to change their itineraries in order to take into account the cancelled tasks that still
need assignments because of the perturbation. Therefore, a new assignment process has to
occur to find suitable new available providers. To do this, we have to benefit of active ICA
agents who are still travelling through the network and to launch new ones otherwise. So
ICA agents have to interact with SA agents in order to find suitable solution to the current

www.intechopen.com

 Multiagent Systems

412

situation. Thus, we propose a negotiation process inspired from the well-known contract net
protocol (Smith, 1980) between ICA agents representing the participants of the negotiation
and SA agents who are the initiators. In our proposed solution, we allow a partial agreement
of the proposed contract (a FeTAR instance) from each ICA agent, to be confirmed partially
or totally by the initiator of the negotiation (SA agent). A renegotiation process is necessary
while there are still tasks that need reassignment. The purpose of this solution is to allow the
ICA agents to cooperate and coordinate their actions in order to find globally near-optimal
robust schedules according to their priorities, preferences and constraints, which depend on
their current positions in their correspondent Workplans. Through the negotiation process
tours, SA agents must assure reasonable total cost and time. In what follow, we describe in
detail the proposed protocol. Firstly, we present a brief description of the initiators and
participants of the negociation process.

5.1 Initiators and participants
An initiator of a negotiation is a SA agent who never knows the exact position of each
travelling ICA agent. However, he knows all initial Workplans schemes and the final
assignments of the servers (final effective Workplans). SA agent does not need to wait for all
answers to take a decision, since he can accept a subset of responses to take pressing sub-
decisions; urgent actions must be taken according to the current positions of ICA agents.
Consequently, SA agent can take decisions every short period of time. In that case, he must
update the set of services that need to be reassigned by providers through the confirmation
step. After that, SA agent has to propose a new contract according to the updated services
set and to the different capabilities of the participants of the negotiation. We suppose that
errors on the network are identified before that an ICA agent leaves one functioning node
toward a crashed one. A participant of a negotiation is an autonomous ICA agent who never
knows anything about the other participants of the same negotiation process. Obviously, he
knows his own initial Workplan scheme and his final assignments of servers (final effective
Workplan). In addition, each ICA agent has his own priorities, preferences and constraints
that are dynamic, depending on the network state and on his current position in the already
defined final Workplan. Constraints of an ICA agent express tasks that he can’t perform or
servers he can’t visit because they might cause problems (overloading, time consuming,
high latency…). Priorities express servers where the ICA agent prefers visit because they are
already programmed in his remained final Workplan. Finally, preferences express servers
that are already programmed in the remained initial Workplan and not in the final one.
Each time an ICA agent receives a new contract, he analyzes it to make a decision (refusal or
total/partial acceptance).

5.2 The protocol
A protocol defines the language used by agents to exchange information. The proposed
negotiation protocol (fig. 5) is characterized by successive messages exchanges between
initiators corresponding to the agents who initiate a negotiation (SA agents) and participants
of the negotiation (ICA agents). We designed our protocol so that a negotiation process can
occur between several initiators and participants; it can be, for example, the case of
simultaneous requests overlapping. Presently, we describe a negotiation protocol between a
unique initiator and several participants. Negotiation always begins with the creation of a
contract by the initiator agent, proposing it to active participants. The first contract

www.intechopen.com

Distributed Optimisation using the Mobile Agent Paradigm through an Adaptable Ontology:
Multi-operator Services Research and Composition

413

corresponds to final Workplans that were already optimized thanks to our two-level
optimization approach (Zgaya et al. 2005a, 2005b). A renegotiation means a round of
modification request for a contract that "a part" has not been accepted the round before. In
what follows, we show the adopted form for a communication before detailing the different
exchanged messages between initiators and participants.

Fig. 5. The protocol

5.2.1 The agent message
We adopt the following structure for an agent message exchange:

<sender, receivers, service, perform, content, content-lang, ontology, f>

With:
- sender: the sender of the message,
- receiver: the list of receivers, they represent the recipients of the message,
- service: the “yellow-pages” service proposed by the receiver of the message,
- perform: the performative, which expresses the communicative intention,
- content: the information included in the message,
- content-lang: the content language, which represents the used syntax to express the

content,
- the ontology: the vocabulary of the symbols used in the content and their meaning,

used ontologies will be expressed in next section,
- f = <f1, f2, f3, f4, f5> represents some fields used to control several concurrent

conversations and also to specify timeouts for receiving a reply. For the present, we
don’t assign this field but we just explain it for a best comprehension of message
exchanges:

• f1: reply-to A: the recipient of the message reply is the agent A,

SAs ICAs

Propose (contract)

Accept

Partial (parameters)

Total

Refuse

Confirm Total

A part (parameters)

Modification request

Propose Modification

Cancel

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

