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1. Introduction

Instead of using a single sensor, an array processing system (Allen & Ghavami, 2005 and
Trees, 2002) with innovative signal processing can enhance the resolution of signal
parameters. An array sensor system has multiple sensors distributed in space. This array
configuration provides spatial samplings of the received waveform. A sensor array has
better performance than the single sensor in signal reception and parameter estimation. It
also has the ability to identify multiple targets.

Array processing systems are used in a wide range of applications such as radar, sonar,
seismology, mobile communications, and medical diagnostics (Forsythe, 1997, Leeet et al,,
2005, Xu et al., 2001, Hwang & Grados, 2008, Aliyazicioglu & Hwang, 2008). For example, in
defense applications, it is important to identify the direction of a possible threat. One
example of a commercial application is to identify the direction of an emergency cell phone
call in order to dispatch a rescue team to the proper location. Accurate estimation of a signal
direction of arrival (DOA) has received a tremendous interest in communication and radar
systems of commercial and military applications in the past decades.

This chapter describes the estimation of signal parameters such as signal frequency or DOA
using an array processing systems and advanced signal processing algorithms. This chapter
concentrates on the discussion of the Polynomial Root Intersection for Multi-Dimensional
Estimation (PRIME) algorithm (Hatke & Keith, 1994). Processing the received data by
PRIME algorithm requires array processor. The PRIME algorithm can be considered the
extension of the Multiple Signals Classification (MUSIC) (Schmidt, 1986) and Root MUSIC
algorithms (Ren & William, 1997), which are based on the Eigen-analysis method.

To estimate the frequency of the sinusoid or the DOA of a narrowband signal using the
conventional method suffers resolution limitation. For example, frequency resolution Af
using N point Fast Fourier Transform (FFT) is Af = 1/NT, where T is the sampling period.
Improved frequency resolution using FFT would require a large number of data samples. In
many real time applications, using a large sample data is not always feasible. If there are
multiple sinusoids with a frequency spacing less than Af, FFT won't be able to resolve them.
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The angle resolution of a conventional antenna is limited by the antenna mainlobe
beamwidth. The mainlobe beamwidth is proportional to the signal wavelength and
inversely proportional to the physical size of the antenna. Improving angle resolution by
using large aperture antenna or operating at higher frequency is not always a viable
solution. Certain systems such as aircraft antennas or missile seekers have physical size
limitations; they cannot accommodate large aperture antennas. Higher frequency usually
has a larger amount of atmospheric absorption; it may limit the detection range.

Rather than improve the DOA of frequency resolution by hardware improvement, an array
processor together with an advanced signal processing algorithm provides an innovative
solution that improves the resolution of parameter estimation. This chapter provides a brief
review of the PRIME algorithm and its application in estimating a signal DOA.

Since the PRIME algorithm is closely related to MUSIC and root MUSIC, section 2 provides
a brief review of the MUSIC algorithm. Computer simulations are used to demonstrate the
enhanced resolution of MUSIC in temporal and spatial processing applications. The effects
of estimation accuracy as a function of signal to noise ratio (SNR), and correlation matrix
estimation based on different temporal averaging, are also discussed. Section 3 discusses the
root MUSIC algorithm. Basic equations for frequency and angle estimations are derived.
Some simulation examples demonstrate how to estimate signal parameters without having
to use a scan vector. Finally, the extension of the root MUSIC to PRIME equivalent to
estimate multiple parameters is discussed in section 4. Estimation of a signal DOA
(elevation and azimuth angles) is used as a demonstration example. Estimation of two
independent parameters requires two independent equations. These are derived from a
subset and full array approaches and their simulation examples are discussed in section 4.

2. The MUSIC Algorithm

Multiple Signals Classification (MUSIC) is one of the most commonly applied eigen-analysis
methods. It works quite well both in frequency estimation or signal direction of arrival
(DOA) estimation.

Consider the received data sequence u(n) consisting of L independent sinusoids in the white
noise environment. The received data u(n) is expressed in Equation 2.1

L .
um) = Y A e/ 4 wn),n=12,..,N 1)
k=1

where Ay, fi, 6k are the amplitude, frequency and phase of k independent sinusoids and
w(n) is the white noise sequence.

Define the received data vector u as u = [u(l), u(2), . . , u(N)]7, then the data vector
correlation matrix R is R = E[uufl], where the superscript H represents the matrix complex
conjugate transpose (Hermitian). Using the relationship of Equation (2.1) and independent
noise assumption, matrix R can be expressed as Equation (2.2).
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_ H 2
R=SPS" +o.1 (2.2)
o2 Qi L it
-
where P = diag[ AIZ,AZZ, .y ALZ], S= ) ' ) ) and o\zv is the noise
ej21'LNf1 ej21th2 ej21thL
variance and I is the identity matrix.
Let A1, Ay, . . ., A, are the eigenvalues of the correlation matrix Rand i 2 22 2 ... 2 Ax,

their associate eigenvectors are qi, qa, . . , qn respectively.

If there are L independent signals, then eigenvectors qi, q2, . ., qu span over the signal and
noise subspace and eigenvectors qr+1, qr+2 - . , qn sSpan over the noise only subspace. Signal
and noise subspace and noise only subspace are mutually orthogonal.

For frequency estimation, the MUSIC spectrum is computed according to Equation (2.3).

1 2.3)
Syusic () = 2.
MUS]L(f) SH(f)VNV;‘S(f)
where Vn = [qu+1, qu+2 - -, qn], and s(f) = [1, el . gd2mDr ]T is a scan vector that scans
over all possible frequencies. If the scan frequency happens to be equal to one of the signal
frequencies, then the scan vector is orthogonal to column space of Vn. Thus the dominate
peaks of Syusic(f) correspond to the L number of signals and frequencies.

The following example demonstrates the enhanced frequency resolution of the MUSIC
algorithm.

Suppose there are 32 received data samples u(n), u(l), n =0, 1, . . ., 31, where data sample

u(n) consists of two equal amplitude sinusoids with normalized frequencies 0.115 and 0.135,
and white noise. The signal to noise ratio = 10 dB.

u(n) = ™" 4 O 4 ww(n) (2.4)

where f; = 115, f, = 135, 0 is random phase and w(n) is the white noise sequence.

The theoretical correlation matrix R is:
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The estimated correlation matrix @ is computed from the following Equation.
@ = AFA (2.6)

where A is the data matrix and matrix AH is expressed as the following equation.

uM) uM+1) --- u(N)
AH=|uM-1) uM) - u(N-1) (2.7)
u(l) u2) - uN-M+1)

where M is the rank of matrix A.

Figure 2.1 shows the spectrum plots of two sinusoids in white noise background. The signal
to noise ratio (SNR) in this simulation is 10 dB. The blue curve is the spectrum by 256 point
FFT method. Since there are only 32 data samples available, we padded an additional 224
zeros. This curve shows that the FFT method cannot resolve two closely frequency spaced
signals. The green and red curves are the spectrum estimated by the MUSIC algorithm. The
correlation matrix of the green curve is based on the theoretical equation defined by
Equation (2.5); the correlation matrix of the red curve is a derivation based on the simulated
data defined by Equation (2.6). Both curves show two clear peaks. The peaks of the green
curve are at normalized frequencies of 0.1152 and 0.1348, respectively. They are very close to
the true frequencies. The peaks of the red curve are at normalized frequencies of 0.1133 and
0.1387 respectively. They are a little bit off the true signal frequencies compared with the
theoretical result. Also, their peaks are about 10 dB below the corresponding green curve.
This Figure clearly shows that the MUSIC spectrum is very effective in resolving closely
frequency spaced signals. A 5X5 matrix correlation matrix was used in this simulation
study.

Figure 2.1 shows the performance degradation of the MUSIC algorithm based on finite
received data samples. Increasing the sample number improves the estimation of correlation
matrix and consequently an improved signal frequency estimation can be achieved. Figure
2.2 compares the performance of frequency estimation by the MUSIC algorithm with 32, 64
and 128 data samples. The red, green and blue curves in Figure 2.2 are MUSIC spectrum
plots based on 32, 64 and 128 data samples. The peak frequencies are listed in Table 2.1.
Table 2.1 and Figure 2.2 show that as the number of data sample increases, the estimated
frequencies get closer to the true signal frequencies and the peaks of the MUSIC spectrum
also increase.
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Fig. 2.1 Frequency Estimation by FFT and MUSIC Methods
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N=32 0.1113 0.1387
N =64 0.1152 0.1367
N=128 0.1152 0.1348
Table 2.1 Peak Frequencies of the MUSIC Spectrum
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Fig. 2.2 Frequency Estimation by the MUSIC Method with 32, 64 and 128 Data Samples
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Frequency estimation using the MUSIC algorithm can be considered as processing the
received waveform in time domain (temporal) processing. This algorithm can also apply to
spatial processing such as applications of sensor array systems.

Suppose there is a narrowband signal that impinges upon the uniformly spaced linear array
antenna (ULA) with incident angle 6. The inter-element spacing of ULA d is d = A/2, where
A is the signal wavelength. The ULA configuration is shown in Figure 2.3.

Bore
sieht

Incoming
Signal

1 °2 3 4‘\ Sensor Elements M
Fig. 2.3 Uniformly Spaced Linear Array Antenna

The narrowband waveform can be modeled as:

(2.8)
where f. is the center frequency.

If the signal impinges on the ULA with incident angle 6, the additional propagation path of
the adjacent sensor is dcosf. This additional path causes a propagation delay t = dcos6/c
where c is the speed of light. If we choose the signal received by the first sensor si(t) as the
reference, the signal picked up by the kth sensor si(t) is

jonf, (t-(k-1)7)

sk(t) = m[t - (k-1)t] € (2.9)

From the narrowband signal assumption, m(t - (k-1) 1) ® m(t), and defining the electrical
angle B as B = -2ndcosB/ X, signal si(t) can be expressed as

sk(t) = s1(t)eik-DP (2.10)

If there are L independent signals impinging on the ULA with incident angle 6y, . ., 6., in
the presence of independent white noise with variance cfv, then the theoretical spatial

correlation matrix R of the ULA is
R=sps" 461 (211)

where matrices P and S are defined by:
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P = diag[Py, ..., P1] (2.12)
S = ej.B] ej.ﬁz o ej.ﬁL (2.13)
ej(N.—l)ﬁ‘ ej(N.*])Bz . ej(N;l)B[_

and O i is the noise variance, Py, k=1, 2, .., L. are the power of kth signal.

The estimated spatial covariance matrix ® using temporal average method with M
snapshots is given as:

@ = AHA (2.14)
where A is the data matrix, matrix AH is given by the following equation.
AH = [U], u, .., uN] (2.15)

and ux = [ui(k), ua(k), . ., um(k)]T is the received data vector of sensor array or the snapshot
at sample time k, N is the number of snapshot.

The estimated correlation matrix @ asymptotically approaches the theoretical matrix R as
the number of snapshots increases. Therefore in order to have an accurate estimation of the
correlation matrix the observation time must be sufficiently long. However, some real time
radar signal processing applications cannot afford a long observation time. Correlation
matrix estimation techniques like the spatial smoothing method (Haykin, 2002) are better
suited for use in time sensitive systems.

Equations (2.2), (2.11) show that both temporal and spatial processing have an identical
mathematical form. The following example shows the application of spectral processing to
estimate the signal DOA using the MUSIC algorithm. The scan vector s used in this
application is s(8) = [1, e*, .., e/™P]T, where parameter B is related to the DOA angle by B
= -2ntdcosf/ .

Suppose there are two narrowband signals impinging upon the 16 element ULA from
angles of 40° and 50°. The estimated signal DOA can be found from the peak of the MUSIC
spectrum. The SNR in this simulation is 10 dB and the estimated correlation matrix is based
on simulated data averaged over 32 snapshots. Figure 2.4 shows the simulation result of the
estimated DOA using a ULA consisting of 6, 8 and 10 elements.
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Fig. 2.4 DOA Estimation using ULA with 6, 8, 10 Elements

From Figure 2.4, with 6 element ULA (red curve), the MUSIC spectrum barely shows two
peaks. As the number of elements increases to 8 (green curve) and 10 (blue curve), the
MUSIC spectrum clearly shows two distinct peaks. The peak values of the green curve are at
39.6° and 50.1°, the peak values of the blue curve are at 39.8° and 50.3° respectively. The
estimated DOA angles are fairly close to the true DOA angles.

Equation (2.14) shows the estimated correlation matrix based on temporal averaging over N
snapshots. Increasing the number of snapshots N improves the estimation of the covariance
matrix. Improving the estimation of the correlation matrix provides a more accurate DOA
estimation. Figure 2.5 shows the DOA estimation using an 8 element ULA with an estimated
covariance matrix based on temporal averaging over 16 (red curve), 32 (green curve) and 64
(blue curve) snapshots.

The peak values of the MUSIC spectrum in Figure 2.5 are listed in Table 2.2.

01 02
N=16 38.8° 50.8°
N =232 39.6° 50.5°
N =64 40.1° 49.9°

Table 2.2 Peak Values of the MUSIC Spectrum
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Fig. 2.5 DOA Estimation using an 8 Element ULA with Temporal Averaging over 16, 32, 64
Snapshots

Figure 2.5 and Table 2.2 show that the accuracy of the DOA estimation can be improved by
increasing the number of snapshots in the correlation matrix estimation. Increasing the
number of snapshots from 16 to 32 to 64 not only provides clearer peaks, but their peak
values also increase.

3. Root Music Algorithm

To estimate frequency or signal DOA angles with the MUSIC algorithm requires using a
scan vector to scan over all possible frequencies or over all possible direction angles. To
obtain fine resolution, we need many frequency or angle sample points. Consequently, it
requires high processing resources. Root MUSIC algorithm is a modification to MUSIC
without using a scan vector. The estimated frequencies or DOA angles can be obtained by
finding the L roots closest to unit circle of the following Equation.

I(2)= 2"V, v}iz=0 3.1)
where the steering vector z is
z=[1,z1% 22, ..,zN,|T (3-2)

and z = €2 for frequency estimation and z = e/ for angle estimation.
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The frequency and angle are determined by the following Equations.

fk=iarg(zk) » k=12..,L (3.3)
2m
0k = cos™ Larg(zk) , k=1,2..,L (3.4)
2nd

The roots of J(z) contain the directional information of the incoming signals. Ideally, the
roots of J(z) corresponding to the signals’ frequency or DOA would be on the unit circle,
however due to the presence of noise the roots may not necessarily be exactly on the unit
circle. In this case, the L roots closest to the unit circle represent the L incoming signals
frequencies or DOA. These selected roots, by themselves, do not directly represent the
frequency or incoming angle. For each root, the frequency or incoming angle can be found
by computing Equations (3.3) and (3.4).

Consider a 16 elements ULA with an inter-element spacing that equals one half wavelength.
If this were a conventional fixed antenna, its mainlobe beamwidth would be around 7°. This
antenna array will not be able to resolve multiple signals if their angle separation is less than
7 degrees. Using the root MUSIC algorithm, this ambiguity can be easily resolved.

Let xi(1), xi(2), ... , xi(N) represent the received data samples from ith element, wherei=1, 2, .
., M. The incoming data matrix A can be given

(1 %2 .. x®N)
Af=|x,(1) x,2) . x,(N) (3.5)

xu() X, (2) . X, (N)

The estimated correlation matrix @ is computer by

@ = AHA (3.6)
From the estimated correlation matrix @, the eigenvalues can be computed. The columns of
matrix Vy are the eigenvectors associated with the M-L smallest eigenvalues of matrix ®.
Once this matrix is available, the signals DOA can be derived from L roots of the polynomial
J(z) closest to the unit circle.
If there are two signals impinging upon a 16 element ULA from angles of 40° and 46°, the

roots computed from Equation (3.1) are shown in Figure 3.1. In this simulation, the number
of snapshots N is 32 and the signal to noise ratio is 20 dB.
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Fig. 3.1 Roots Polynomial J(z)

Figure 3.1 shows that when the angle separation between two signals is smaller than the
mainlobe beamwidth, two distinct pairs of roots closest to the unit circle can easily be
identified. It is shown in the zoom area that one of the roots is very close to the theoretical
root of the signal DOA. Further reduce the angle separation to 3°, and 1.5°, and the results
are very similar to Figure 3.1. Thus, the spatial resolution is improved by root MUSIC
algorithm.

Equation (3.4) converts the roots of polynomial J(z) to the signal DOA. Assume there are
two signals impinging on a 16 element ULA with 20 dB SNR and taking 32 snapshots,
histograms of the estimated signal DOA with different angle separations are shown in
Figure 3.2.
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The estimated means and variances based on 1000 trials are summarized in Table 3.1.

Angle Separation

60

30

1.5°

True Angles

40°

46°

40°

43° 40°

41.5°

Estimated Mean

39.9972° 46.0041°

39.9998° 42.9995°

39.9999° 41.4987°

Variance

0.0009 0.0012

0.0023  0.0025

0.0047 0.0042

Table 3.1 Estimated Mean and Variance of DOAs for SNR = 20 dB

Figure 3.2 and Table 3.1 show that the estimation variance increases as the angle separation

becomes smaller.

Increasing the estimated correlation matrix from 32 snapshots to 96 snapshots reduces the
estimated variance. Figure 3.3 compares the histogram of the estimated signals” DOA for 20
dB SNR, and the signals” DOA are 40° and 41.5° for 32 and 96 snapshots. The estimated

mean values and variances based on 1000 trials are listed in Table 3.2.

Number of Snapshots 32 96

True Angles 40°  415° 40°  415°
Estimated Mean 39.9999° 41.4987° 39.9992° 41.5008°
Variance 0.0047 0.0042 0.0015  0.0016

Table 3.2 The Estimated Mean and Variance of DOAs for SNR = 20 dB
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Fig. 3.3 Histogram of the Estimated Signals’ DOA with SNR = 20 dB and Signals’ DOA are
40° and 41.5° (a) 32 Snapshots, (b) 96 Snapshots.
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The above simulation results assume that the system operates in a high SNR environment.
The SNR is 20 dB. If the SNR is only 5 dB, the simulation result yields a larger estimation
variance. Figure 3.4 shows the histogram of the estimated signals’” DOA for 5 dB SNR, and
the signals” DOA are 40° and 46°. This result is based on 1000 independent simulations
where the number of snapshots in each simulation is 32 and 96, respectively.

@
o

Count
w
Count

WO = N W s o N ® ©

. . .
40 41 42 43 44 45 46 47
Angle (degrees) Angle (degrees)

(@) (b)
Fig. 3.4 Histogram of the Estimated Signals” DOA with SNR =5 dB, (a) 32 Snapshots (b) 96
Snapshots, Signals” DOA are 40° and 46°
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The estimated mean values and variances based on 1000 trials for 5 dB SNR and the two
different numbers of snapshots are listed in Table 3.3.

Number of Snapshots 32 96

True Angles 40° 46° 40° 46°
Estimated Mean 39.9708° 46.0279° 39.9893° 46.0094°
Variance 0.0358 0.0430 0.0112  0.0140

Table 3.3 The Estimated Mean and Variance of DOAs for SNR =5 dB
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This simulation result shows that increases in the number of snapshots provide a better
correlation matrix estimation; consequently, the estimation variance decreases.

4. PRIME Algorithm

Root MUSIC can only estimate one DOA angle. A signal impinging on the array anywhere
on the cone with its axis aligned with the array elements yields the identical result. This
angle ambiguity is shown in Figure 4.1. This angle ambiguity can be resolved by using a two
dimensional array. The PRIME algorithm is a method that allows polynomial rooting
techniques to be applied to multidimensional estimation.

Incoming
Signal
Estimation
Ambiguity

Fig. 4.1 Angle Ambiguity of ULA

Consider a general array of M sensors as shown in Figure 4.2. The coordinate of the ith
sensorisr; = [x;, y;, zi]T,i=1,2, ..., M.

y
sensor
Fig. 4.2 An Array of M Sensors
Suppose a plane target signal waveform comes from the direction of K = [sinfcoso,

sinBsing, cosB]T, where 0 is the elevation angle and ¢ is the azimuth angle. The difference of
the propagation path of this wave between the origin and the ith sensor Ad; is

Ad; = ;T k= sinf (XiCOS(P + yisin(p) + zicosO (4-1)
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The corresponding propagation time delay t; is
7= Ad; /C (42)
where c is the speed of light.

To avoid the effect of grating lobes, the distance between the two neighbor sensors has to be
no more than one half of the wavelength. If the reference sensor is located at the origin, and
a waveform received by the reference sensor due to signal coming from direction of k is x(t),
then the received waveform at ith sensor is xi(t) = x(t-;).

As shown in Figure 4.2, the array elements are placed on x-y plane, the elevation angle 6
and azimuth angle ¢ uniquely define the signal DOA. For a narrowband signal, if the jth
signal DOA is (8j, ¢;), the relative phase shift of kth element due to the jth signal is defined by
the following Equation:

2m . .
By = Y sinf;(x, cos@; +y,sing;) (4.3)

In Equation (4.3), each signal has two unknown parameters, elevation angle 6; and azimuth
angle g;, that need to be determined. Thus, to obtain the DOA angles, two independent
polynomials must be constructed and solved. There are several different techniques to
derive two independent polynomials.

The first approach constructs the two independent Equations from two distinct subsets. Two
distinct null spaces matrices Vin and Von can be derived from two different subsets. The
two independent Equations are:

Ji(z, w) = ati(z,w)Vin V| a(z,w) 4.4)
Ja(z, w) = bH(z,w)Von v b(z,w) 4.5)
2n . 2 L
j—xsinOcosp Jj—ysinOsing
where variables z = € , W= ¢€ . Vectors a and b depend on the subset

configurations. To guarantee the two Equations are independent, the two subsets cannot
relate to each other by a linear shifting relation. There are many different ways to choose the
distinct subsets. The accuracy of DOA estimation depends on the configuration of the
subarrays.

The second approach constructs two independent equations by using the full array. The
columns of matrices Vin and Vay are chosen from eigenvectors associates with M-L smallest
eigenvalues of the correlation matrix. To guarantee two equations are independent, column
vectors of matrices Vin and Van cannot identical. Since the full array is used, the two
polynomials are:
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Ji(z, w) = ali(z,w)Vin V] a(z,w) (4.6)
Jao(z, w) = afl(z,w)Von V a(z,w) 4.7)
where vector a is the array manifold vector.

If the signal DOA is (6, ¢ ) and the estimated DOA is (é, ¢ ), the estimated angle error a. is
given by the following equation.

Oe = cos-l(sinesiné cos () cos  + sinBsin § sin @ sin( + cosvcos 0 ) (4.8)
The estimated correlation matrix based on Equation (2.14) is different from theoretical
equation (2.11). In theoretical equation, the signal and noise are assumed independent.
However, the estimation based on finite number of data samples does not satisfy
independent condition.
According to Equation (2.11) elements of correlation matrix contain no cross coupling terms
between signal and noise. However, estimation the elements of correlation matrix based on
finite received data samples contain cross couple terms. This cross couple terms degrade the

estimation performance.

Suppose there is only one signal, the input waveform to the ith array element at sample time
n uj(n) is

u,(n)= AelPHnB) | .(n) 4.9)

where wi(n) is the white noise with variance G, and p; is the relative signal phase of the ith

element.

The element 1;; of the correlation matrix is

N N
+ i(onf,n 4, -jenfnip) | x
I, =Zui(n)uj(n)=z][AeJ(“ o) +Wi(n)][Ae T+ wl(n)
n=1 n=

N N
- 2 BBy jufn+p;) . * —j@nfn+p;) P
=NA%™" ™+ A/ P wim)+ Y Ae” " W, (n) + Noo 5, (4.10)

n=l n=1



Direction of Arrival Estimation using the PRIME Algorithm 311

The term NAZe'"™ is the component of rj due to the signal, No?, 9, is the component of rj;

N N
. iQnf. % —j(2nf, . . .
due to the noise. z Aell "”“+B‘)Wj(n)+ E Ae " mﬁj)wi(n) is the cross coupling term
n-1 n-1

between the signal and noise is which has zero mean and variance is 2NA? 5>

If there are two signals impinging on the array, the input waveform to the ith array element
ui(n) at sample time n is

ui(n) A e i(2nfintpy) + A i(2nfynt0+B;, ) + Wi(n) (411)

where Bi1 and iz are the corresponding electrical angles due to signal 1 and signal 2, fi, f are
the frequencies of two signals, random phase 8 represent the relative delay of two signals.

The element 1;; of the correlation matrix is

Mz

u;(n)uj(n)

1

=1
1l

[
M=

[Alej(hflnﬂin) + Azej(an2n+e+B,z) 4 wi(n):||:Ale'j(2“f1U+ﬁn) + Aze-j(2"fz“+e+5ﬂ) + W:(l’l):|

=
i

N N
B0 e (BB +0 g
=NA 2 J(B Bi) + Nﬁ 2 J(ﬁ Bin) + NGWS‘J J,—ﬁ 5 (Bn B ) z e]ZnAtn + A : A zeJ(B\H B+ )z eJZnAfn

n=1 n=1

A]e j(2mfintp;) (n) T z A j(2nfntp;, +0) (n) i Z A 2nfzn+ﬁjl) i(n)

n=1

+

M=

=
Il

j(2nfn 0+, )

-
+ > Ae

M=

w,(n) (4.12)

=1
i

Terms NAlzej(ﬁ“’Bi‘), NAgeJ(B‘Z'ﬁﬁ), NG\ZNSU are the contribution of r; due to two signals and

_ N - N .
noise. A Azel(ﬁu'pwe)zeﬂmfn . A, AzeJ(B'Z 'Bi‘+e)ze'12“Af“ are the cross coupling term of two
-1 n=1

signals. If the frequency offset between two signals Af = f; - f; is Af = k/N and k is an

N .
integer, those terms will be zero. The last four terms Z AleJ(znf‘“+ﬁ")wj(n),

n=1
ZA j(2nf,n+p,, +0) W (1’1) ZA 2nf2n+l3J1 (Il) and ZA (2nfnt0+B;, ) i(l’l) are the coupling

between two signals and noise, their mean values are zero. If there are more than two

signals, then there will be even more coupling terms which will further degrade the
performance.
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