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Preface: Digital Signal

Processing and Digital

Filter Design1

Digital signal processing (DSP) has existed as long as quantitative calcu-
lations have been systematically applied to data in Science, Social Science,
and Technology. The set of activities started out as a collection of ideas
and techniques in very di�erent applications. Around 1965, when the fast
Fourier transform (FFT) was rediscovered, DSP was extracted from its
applications and became a single academic and professional discipline to
be developed as far as possible.

One of the earliest books on DSP was by Gold and Rader [125], written
in 1968, although there had been earlier books on sampled data control
and time series analysis, and chapters in books on computer applications.
In the late 60's and early 70's there was an explosion of activity in both
the theory and application of DSP. As the area was beginning to mature,
two very important books on DSP were published in 1975, one by Oppen-
heim and Schafer [225] and the other by Rabiner and Gold [284]. These
three books dominated the early courses in universities and self study in
industry.

The early applications of DSP were in the defense, oil, and medical
industries. They were the ones who needed and could a�ord the expensive
but higher quality processing that digital techniques o�ered over analog
signal processing. However, as the theory developed more e�cient algo-
rithms, as computers became more powerful and cheaper, and �nally, as
DSP chips became commodity items (e.g. the Texas Instruments TMS-
320 series) DSP moved into a variety of commercial applications and the
current digitization of communications began. The applications are now

1This content is available online at <http://cnx.org/content/m16880/1.2/>.
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everywhere. They are tele-communications, seismic signal processing,
radar and sonar signal processing, speech and music signal processing, im-
age and picture processing, entertainment signal processing, �nancial data
signal processing, medical signal processing, nondestructive testing, fac-
tory �oor monitoring, simulation, visualization, virtual reality, robotics,
and control. DSP chips are found in virtually all cell phones, digital cam-
eras, high-end stereo systems, MP3 players, DVD players, cars, toys, the
�Segway", and many other digital systems.

In a modern curriculum, DSP has moved from a specialized graduate
course down to a general undergraduate course, and, in some cases, to the
introductory freshman or sophomore EE course [198]. An exciting project
is experimenting with teaching DSP in high schools and in colleges to non-
technical majors [237].

Our reason for writing this book and adding to the already long list
of DSP books is to cover the new results in digital �lter design that have
become available in the last 10 to 20 years and to make these results avail-
able on line in Connexions as well as print. Digital �lters are important
parts of a large number of systems and processes. In many cases, the use
of modern optimal design methods allows the use of a less expensive DSP
chip for a particular application or obtaining higher performance with
existing hardware. The book should be useful in an introductory course
if the students have had a course on discrete-time systems. It can be used
in a second DSP course on �lter design or used for self-study or reference
in industry.

We �rst cover the optimal design of Finite Impulse Response (FIR)
�lters using a least squared error, a maximally �at, and a Chebyshev cri-
terion. A feature of the book is covering �nite impulse response (FIR)
�lter design before in�nite impulse response (IIR) �lter design. This re-
�ects modern practice and new �lter design algorithms. The FIR �lter
design chapter contains new methods on constrained optimization, mixed
optimization criteria, and modi�cations to the basic Parks-McClellan al-
gorithm that are very useful. Design programs are given in MatLab and
FORTRAN.

A brief chapter on structures and implementation presents block pro-
cessing for both FIR and IIR �lters, distributed arithmetic structures
for multiplierless implementation, and multirate systems for �lter banks
and wavelets. This is presented as a generalization to sampling and to
periodically time-varying systems. The bifrequency map gives a clearer
explanation of aliasing and how to control it.

The basic notes that were developed into this book have evolved over
35 years of teaching and conducting research in DSP at Rice, Erlangen,
and MIT. They contain the results of research on �lters and algorithms
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done at those universities and other universities and industries around
the world. The book tries to give not only the di�erent methods and
approaches, but also reasons and intuition for choosing one method over
another. It should be interesting to both the university student and the
industrial practitioner.

We want to acknowledge with gratitude the long time support of
Texas Instruments, Inc., the National Science Foundation, National In-
struments, Inc. and the MathWorks, Inc. as well as the support of the
Max�eld and Oshman families. We also want to thank our long-time
colleagues Tom Parks, Hans Schuessler, Jim McClellan, Al Oppenheim,
Sanjit Mitra, Ivan Selesnick, Doug Jones, Don Johnson, Leland Jackson,
Rich Baraniuk, and our graduate students over 30 years from whom we
have learned much and with whom we have argued often, particularly,
Selesnick, Gopinath, Soewito, and Vargas. We also owe much to the
IEEE Signal Processing Society and to Rice University for environments
to learn, teach, create, and collaborate. Much of the results in DSP was
supported directly or indirectly by the NSF, most recently NSF grant
EEC-0538934 in the Partnerships for Innovation program working with
National Instruments, Inc.

We particularly thank Texas Instruments and Prentice Hall for return-
ing the copyrights to me so that part of the material in DFT/FFT and
Convolution Algorithms[58], Design of Digital Filters[245], and
�E�cient Fourier Transform and Convolution Algorithms" in Advanced
Topics in Signal Processing[44] could be included here under the Cre-
ative Commons Attribution copyright. I also appreciate IEEE policy that
allows parts of my papers to be included here.

A rather long list of references is included to point to more background,
to more advanced theory, and to applications. A book of Matlab DSP
exercises that could be used with this book has been published through
Prentice Hall [56], [199]. Some Matlab programs are included to aid in
understanding the design algorithms and to actually design �lters. Lab-
View from National Instruments is a very useful tool to both learn with
and use in application. All of the material in these notes is being put into
�Connexions" [22] which is a modern web-based open-content information
system www.cnx.org. Further information is available on our web site at
www.dsp.rice.edu with links to other related work. We thank Richard
Baraniuk, Don Johnson, Ray Wagner, Daniel Williamson, and Marcia
Horton for their help.

This version of the book is a draft and will continue to evolve under
Connexions. A companion FFT book is being written and is also avail-
able in Connexions and print form. All of these two books are in the
repository of Connexions and, therefore, available to anyone free to use,
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reuse, modify, etc. as long as attribution is given.
C. Sidney Burrus
Houston, Texas
June 2008
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Chapter 1

Signals and Signal

Processing Systems

1.1 Continuous-Time Signals1

Signals occur in a wide range of physical phenomenon. They might be
human speech, blood pressure variations with time, seismic waves, radar
and sonar signals, pictures or images, stress and strain signals in a building
structure, stock market prices, a city's population, or temperature across a
plate. These signals are often modeled or represented by a real or complex
valued mathematical function of one or more variables. For example,
speech is modeled by a function representing air pressure varying with
time. The function is acting as a mathematical analogy to the speech
signal and, therefore, is called an analog signal. For these signals, the
independent variable is time and it changes continuously so that the term
continuous-time signal is also used. In our discussion, we talk of the
mathematical function as the signal even though it is really a model or
representation of the physical signal.

The description of signals in terms of their sinusoidal frequency con-
tent has proven to be one of the most powerful tools of continuous and
discrete-time signal description, analysis, and processing. For that rea-
son, we will start the discussion of signals with a development of Fourier
transform methods. We will �rst review the continuous-time methods of
the Fourier series (FS), the Fourier transform or integral (FT), and the
Laplace transform (LT). Next the discrete-time methods will be developed
in more detail with the discrete Fourier transform (DFT) applied to �nite

1This content is available online at <http://cnx.org/content/m16920/1.2/>.
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CHAPTER 1. SIGNALS AND SIGNAL

PROCESSING SYSTEMS

length signals followed by the discrete-time Fourier transform (DTFT) for
in�nitely long signals and ending with the Z-transform which allows the
powerful tools of complex variable theory to be applied.

More recently, a new tool has been developed for the analysis of sig-
nals. Wavelets and wavelet transforms [150], [63], [92], [380], [347] are
another more �exible expansion system that also can describe continuous
and discrete-time, �nite or in�nite duration signals. We will very brie�y
introduce the ideas behind wavelet-based signal analysis.

1.1.1 The Fourier Series

The problem of expanding a �nite length signal in a trigonometric series
was posed and studied in the late 1700's by renowned mathematicians
such as Bernoulli, d'Alembert, Euler, Lagrange, and Gauss. Indeed, what
we now call the Fourier series and the formulas for the coe�cients were
used by Euler in 1780. However, it was the presentation in 1807 and
the paper in 1822 by Fourier stating that an arbitrary function could
be represented by a series of sines and cosines that brought the problem
to everyone's attention and started serious theoretical investigations and
practical applications that continue to this day [147], [69], [165], [164],
[116], [223]. The theoretical work has been at the center of analysis and
the practical applications have been of major signi�cance in virtually ev-
ery �eld of quantitative science and technology. For these reasons and
others, the Fourier series is worth our serious attention in a study of
signal processing.

1.1.1.1 De�nition of the Fourier Series

We assume that the signal x (t) to be analyzed is well described by a real
or complex valued function of a real variable t de�ned over a �nite interval
{0 ≤ t ≤ T}. The trigonometric series expansion of x (t) is given by

x (t) =
a (0)

2
+
∞∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
. (1.1)

where xk (t) = cos (2πkt/T ) and yk (t) = sin (2πkt/T ) are the basis func-
tions for the expansion. The energy or power in an electrical, mechanical,
etc. system is a function of the square of voltage, current, velocity, pres-
sure, etc. For this reason, the natural setting for a representation of
signals is the Hilbert space of L2 [0, T ]. This modern formulation of the
problem is developed in [104], [165]. The sinusoidal basis functions in the
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trigonometric expansion form a complete orthogonal set in L2 [0, T ]. The
orthogonality is easily seen from inner products

(
cos
(

2π
T
kt
)
, cos

(
2π
T
`t
))

=∫ T
0

(
cos
(

2π
T
kt
)
cos
(

2π
T
`t
))

dt = δ (k − `)
(1.2)

and(
cos

(
2π
T
kt

)
, sin

(
2π
T
`t

))
=
∫ T

0

(
cos

(
2π
T
kt

)
sin

(
2π
T
`t

))
dt = 0

(1.3)
where δ (t) is the Kronecker delta function with δ (0) = 1 and δ (k 6= 0) =
0. Because of this, the kth coe�cients in the series can be found by taking
the inner product of x (t) with the kth basis functions. This gives for the
coe�cients

a (k) =
2
T

∫ T

0

x (t) cos
(

2π
T
kt

)
dt (1.4)

and

b (k) =
2
T

∫ T

0

x (t) sin
(

2π
T
kt

)
dt (1.5)

where T is the time interval of interest or the period of a periodic signal.
Because of the orthogonality of the basis functions, a �nite Fourier series
formed by truncating the in�nite series is an optimal least squared error
approximation to x (t). If the �nite series is de�ned by

^
x (t) =

a (0)
2

+
N∑
k=1

a (k) cos
(

2π
T
kt

)
+ b (k) sin

(
2π
T
kt

)
, (1.6)

the squared error is

ε =
1
T

∫ T

0

|x (t)− ^
x (t) |

2

dt (1.7)

which is minimized over all a (k) and b (k) by (1.4) and (1.5). This is an
extraordinarily important property.

It follows that if x (t) ∈ L2 [0, T ], then the series converges to x (t) in
the sense that ε → 0 as N → ∞[104], [165]. The question of point-wise
convergence is more di�cult. A su�cient condition that is adequate for
most application states: If f (x) is bounded, is piece-wise continuous, and

Available for free at Connexions
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CHAPTER 1. SIGNALS AND SIGNAL

PROCESSING SYSTEMS

has no more than a �nite number of maxima over an interval, the Fourier
series converges point-wise to f (x) at all points of continuity and to the
arithmetic mean at points of discontinuities. If f (x) is continuous, the
series converges uniformly at all points [165], [147], [69].

A useful condition [104], [165] states that if x (t) and its derivatives
through the qth derivative are de�ned and have bounded variation, the
Fourier coe�cients a (k) and b (k) asymptotically drop o� at least as fast
as 1

kq+1 as k →∞. This ties global rates of convergence of the coe�cients
to local smoothness conditions of the function.

The form of the Fourier series using both sines and cosines makes
determination of the peak value or of the location of a particular frequency
term di�cult. A di�erent form that explicitly gives the peak value of the
sinusoid of that frequency and the location or phase shift of that sinusoid
is given by

x (t) =
d (0)

2
+
∞∑
k=1

d (k) cos
(

2π
T
kt+ θ (k)

)
(1.8)

and, using Euler's relation and the usual electrical engineering notation
of j =

√
−1,

ejx = cos (x) + jsin (x) , (1.9)

the complex exponential form is obtained as

x (t) =
∞∑

k=−∞

c (k) ej
2π
T kt (1.10)

where

c (k) = a (k) + j b (k) . (1.11)

The coe�cient equation is

c (k) =
1
T

∫ T

0

x (t) e−j
2π
T ktdt (1.12)

The coe�cients in these three forms are related by

|d|2 = |c|2 = a2 + b2 (1.13)

and

θ = arg{c} = tan−1

(
b

a

)
(1.14)
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It is easier to evaluate a signal in terms of c (k) or d (k) and θ (k) than
in terms of a (k) and b (k). The �rst two are polar representation of a
complex value and the last is rectangular. The exponential form is easier
to work with mathematically.

Although the function to be expanded is de�ned only over a speci�c
�nite region, the series converges to a function that is de�ned over the real
line and is periodic. It is equal to the original function over the region
of de�nition and is a periodic extension outside of the region. Indeed,
one could arti�cially extend the given function at the outset and then the
expansion would converge everywhere.

1.1.1.2 A Geometric View

It can be very helpful to develop a geometric view of the Fourier series
where x (t) is considered to be a vector and the basis functions are the
coordinate or basis vectors. The coe�cients become the projections of
x (t) on the coordinates. The ideas of a measure of distance, size, and
orthogonality are important and the de�nition of error is easy to picture.
This is done in [104], [165], [390] using Hilbert space methods.

1.1.1.3 Properties of the Fourier Series

The properties of the Fourier series are important in applying it to signal
analysis and to interpreting it. The main properties are given here using
the notation that the Fourier series of a real valued function x (t) over
{0 ≤ t ≤ T} is given by F{x (t)} = c (k) and x̃ (t) denotes the periodic
extensions of x (t).

1. Linear: F{x+ y} = F{x}+ F{y}
Idea of superposition. Also scalability: F{ax} = aF{x}

2. Extensions of x (t): x̃ (t) = x̃ (t+ T )
x̃ (t) is periodic.

3. Even and Odd Parts: x (t) = u (t) + jv (t) and C (k) = A (k) +
jB (k) = |C (k) | ejθ(k)

u v A B |C| θ

even 0 even 0 even 0

odd 0 0 odd even 0

0 even 0 even even π/2

0 odd odd 0 even π/2

Available for free at Connexions
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Table 1.1

4. Convolution: If continuous cyclic convolution is de�ned by

y (t) = h (t) ◦ x (t) =
∫ T

0

h̃ (t− τ) x̃ (τ) dτ (1.15)

then F{h (t) ◦ x (t)} = F{h (t)}F{x (t)}
5. Multiplication: If discrete convolution is de�ned by

e (n) = d (n) ∗ c (n) =
∞∑

m=−∞
d (m) c (n−m) (1.16)

then F{h (t) x (t)} = F{h (t)} ∗ F{x (t)}
This property is the inverse of property 4 (list, p. 9) and vice versa.

6. Parseval: 1
T

∫ T
0
|x (t) |2dt =

∑∞
k=−∞ |C (k) |2

This property says the energy calculated in the time domain is the
same as that calculated in the frequency (or Fourier) domain.

7. Shift: F{x̃ (t− t0)} = C (k) e−j2πt0k/T

A shift in the time domain results in a linear phase shift in the
frequency domain.

8. Modulate: F{x (t) ej2πKt/T } = C (k −K)
Modulation in the time domain results in a shift in the frequency
domain. This property is the inverse of property 7.

9. Orthogonality of basis functions:∫ T

0

e−j2πmt/T ej2πnt/T dt = T δ (n−m) = {
T if n = m

0 if n 6= m.

(1.17)
Orthogonality allows the calculation of coe�cients using inner prod-
ucts in (1.4) and (1.5). It also allows Parseval's Theorem in prop-
erty 6 (list, p. 10). A relaxed version of orthogonality is called
�tight frames" and is important in over-speci�ed systems, especially
in wavelets.

1.1.1.4 Examples

• An example of the Fourier series is the expansion of a square wave
signal with period 2π. The expansion is

x (t) =
4
π

[
sin (t) +

1
3
sin (3t) +

1
5
sin (5t) · · ·

]
. (1.18)
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Because x (t) is odd, there are no cosine terms (all a (k) = 0) and,
because of its symmetries, there are no even harmonics (even k terms
are zero). The function is well de�ned and bounded; its derivative
is not, therefore, the coe�cients drop o� as 1

k .
• A second example is a triangle wave of period 2π. This is a contin-

uous function where the square wave was not. The expansion of the
triangle wave is

x (t) =
4
π

[
sin (t)− 1

32
sin (3t) +

1
52
sin (5t) + · · ·

]
. (1.19)

Here the coe�cients drop o� as 1
k2 since the function and its �rst

derivative exist and are bounded.

Note the derivative of a triangle wave is a square wave. Examine the
series coe�cients to see this. There are many books and web sites on the
Fourier series that give insight through examples and demos.

1.1.1.5 Theorems on the Fourier Series

Four of the most important theorems in the theory of Fourier analysis
are the inversion theorem, the convolution theorem, the di�erentiation
theorem, and Parseval's theorem [71].

• The inversion theorem is the truth of the transform pair given in
(1.1), (1.4), and (1.5)..

• The convolution theorem is property 4 (list, p. 9).
• The di�erentiation theorem says that the transform of the derivative

of a function is jω times the transform of the function.
• Parseval's theorem is given in property 6 (list, p. 10).

All of these are based on the orthogonality of the basis function of the
Fourier series and integral and all require knowledge of the convergence
of the sums and integrals. The practical and theoretical use of Fourier
analysis is greatly expanded if use is made of distributions or generalized
functions (e.g. Dirac delta functions, δ (t)) [239], [32]. Because energy is
an important measure of a function in signal processing applications, the
Hilbert space of L2 functions is a proper setting for the basic theory and
a geometric view can be especially useful [104], [71].

The following theorems and results concern the existence and conver-
gence of the Fourier series and the discrete-time Fourier transform [226].
Details, discussions and proofs can be found in the cited references.
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