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Preface for Digital Signal Processing: A

User's Guide1

Digital signal processing (DSP) has matured in the past few decades from an obscure research discipline
to a large body of practical methods with very broad application. Both practicing engineers and students
specializing in signal processing need a clear exposition of the ideas and methods comprising the core signal
processing "toolkit" so widely used today.

This text re�ects my belief that the skilled practitioner must understand the key ideas underlying the
algorithms to select, apply, debug, extend, and innovate most e�ectively; only with real insight can the
engineer make novel use of these methods in the seemingly in�nite range of new problems and applications.
It also re�ects my belief that the needs of the typical student and the practicing engineer have converged in
recent years; as the discipline of signal processing has matured, these core topics have become less a subject
of active research and more a set of tools applied in the course of other research. The modern student
thus has less need for exhaustive coverage of the research literature and detailed derivations and proofs as
preparation for their own research on these topics, but greater need for intuition and practical guidance in
their most e�ective use. The majority of students eventually become practicing engineers themselves and
bene�t from the best preparation for their future careers.

This text both explains the principles of classical signal processing methods and describes how they
are used in engineering practice. It is thus much more than a recipe book; it describes the ideas behind
the algorithms, gives analyses when they enhance that understanding, and includes derivations that the
practitioner may need to extend when applying these methods to new situations. Analyses or derivations
that are only of research interest or that do not increase intuitive understanding are left to the references.
It is also much more than a theory book; it contains more description of common applications, discussion of
actual implementation issues, comments on what really works in the real world, and practical "know-how"
than found in the typical academic textbook. The choice of material emphasizes those methods that have
found widespread practical use; techniques that have been the subject of intense research but which are
rarely used in practice (for example, RLS adaptive �lter algorithms) often receive only limited coverage.

The text assumes a familiarity with basic signal processing concepts such as ideal sampling theory, con-
tinuous and discrete Fourier transforms, convolution and �ltering. It evolved from a set of notes for a second
signal processing course, ECE 451: Digital Signal Processing II, in Electrical and Computer Engineering at
the University of Illinois at Urbana-Champaign, aimed at second-semester seniors or �rst-semester graduate
students in signal processing. Over the years, it has been enhanced substantially to include descriptions of
common applications, sometimes hard-won knowledge about what actually works and what doesn't, useful
tricks, important extensions known to experienced engineers but rarely discussed in academic texts, and
other relevant "know-how" to aid the real-world user. This is necessarily an ongoing process, and I continue
to expand and re�ne this component as my own practical knowledge and experience grows. The topics are
the core signal processing methods that are used in the majority of signal processing applications; discrete
Fourier analysis and FFTs, digital �lter design, adaptive �ltering, multirate signal processing, and e�cient
algorithm implementation and �nite-precision issues. While many of these topics are covered at an intro-

1This content is available online at <http://cnx.org/content/m13782/1.1/>.
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2

ductory level in a �rst course, this text aspires to cover all of the methods, both basic and advanced, in
these areas which see widespread use in practice. I have also attempted to make the individual modules and
sections somewhat self-su�cient, so that those who seek speci�c information on a single topic can quickly
�nd what they need. Hopefully these aspirations will eventually be achieved; in the meantime, I welcome
your comments, corrections, and feedback so that I can continue to improve this text.

As of August 2006, the majority of modules are unedited transcriptions of handwritten notes and may
contain typographical errors and insu�cient descriptive text for documents unaccompanied by an oral lecture;
I hope to have all of the modules in at least presentable shape by the end of the year.

Publication of this text in Connexions would have been impossible without the help of many people. A
huge thanks to the various permanent and temporary sta� at Connexions is due, in particular to those who
converted the text and equations from my original handwritten notes into CNXML and MathML. My former
and current faculty colleagues at the University of Illinois who have taught the second DSP course over the
years have had a substantial in�uence on the evolution of the content, as have the students who have inspired
this work and given me feedback. I am very grateful to my teachers, mentors, colleagues, collaborators, and
fellow engineers who have taught me the art and practice of signal processing; this work is dedicated to you.



Chapter 1

Background, Review, and Reference

1.1 Discrete-Time Signals and Systems1

Mathematically, analog signals are functions having as their independent variables continuous quantities,
such as space and time. Discrete-time signals are functions de�ned on the integers; they are sequences. As
with analog signals, we seek ways of decomposing discrete-time signals into simpler components. Because
this approach leading to a better understanding of signal structure, we can exploit that structure to represent
information (create ways of representing information with signals) and to extract information (retrieve the
information thus represented). For symbolic-valued signals, the approach is di�erent: We develop a common
representation of all symbolic-valued signals so that we can embody the information they contain in a
uni�ed way. From an information representation perspective, the most important issue becomes, for both
real-valued and symbolic-valued signals, e�ciency: what is the most parsimonious and compact way to
represent information so that it can be extracted later.

1.1.1 Real- and Complex-valued Signals

A discrete-time signal is represented symbolically as s (n), where n = {. . . ,−1, 0, 1, . . . }.

Cosine

n

sn

1
…

…

Figure 1.1: The discrete-time cosine signal is plotted as a stem plot. Can you �nd the formula for this
signal?

We usually draw discrete-time signals as stem plots to emphasize the fact they are functions de�ned only
on the integers. We can delay a discrete-time signal by an integer just as with analog ones. A signal delayed
by m samples has the expression s (n−m).

1This content is available online at <http://cnx.org/content/m10342/2.15/>.
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4 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

1.1.2 Complex Exponentials

The most important signal is, of course, the complex exponential sequence.

s (n) = ej2πfn (1.1)

Note that the frequency variable f is dimensionless and that adding an integer to the frequency of the
discrete-time complex exponential has no e�ect on the signal's value.

ej2π(f+m)n = ej2πfnej2πmn

= ej2πfn
(1.2)

This derivation follows because the complex exponential evaluated at an integer multiple of 2π equals one.
Thus, we need only consider frequency to have a value in some unit-length interval.

1.1.3 Sinusoids

Discrete-time sinusoids have the obvious form s (n) = Acos (2πfn+ φ). As opposed to analog complex
exponentials and sinusoids that can have their frequencies be any real value, frequencies of their discrete-
time counterparts yield unique waveforms only when f lies in the interval

(
−
(

1
2

)
, 1

2

]
. This choice of

frequency interval is arbitrary; we can also choose the frequency to lie in the interval [0, 1). How to choose
a unit-length interval for a sinusoid's frequency will become evident later.

1.1.4 Unit Sample

The second-most important discrete-time signal is the unit sample, which is de�ned to be

δ (n) =

 1 if n = 0

0 otherwise
(1.3)

Unit sample

1

n

δn

Figure 1.2: The unit sample.

Examination of a discrete-time signal's plot, like that of the cosine signal shown in Figure 1.1 (Cosine),
reveals that all signals consist of a sequence of delayed and scaled unit samples. Because the value of
a sequence at each integer m is denoted by s (m) and the unit sample delayed to occur at m is written
δ (n−m), we can decompose any signal as a sum of unit samples delayed to the appropriate location and
scaled by the signal value.

s (n) =
∞∑

m=−∞
(s (m) δ (n−m)) (1.4)

This kind of decomposition is unique to discrete-time signals, and will prove useful subsequently.
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1.1.5 Unit Step

The unit sample in discrete-time is well-de�ned at the origin, as opposed to the situation with analog
signals.

u (n) =

 1 if n ≥ 0

0 if n < 0
(1.5)

1.1.6 Symbolic Signals

An interesting aspect of discrete-time signals is that their values do not need to be real numbers. We do
have real-valued discrete-time signals like the sinusoid, but we also have signals that denote the sequence of
characters typed on the keyboard. Such characters certainly aren't real numbers, and as a collection of pos-
sible signal values, they have little mathematical structure other than that they are members of a set. More
formally, each element of the symbolic-valued signal s (n) takes on one of the values {a1, . . . , aK} which
comprise the alphabet A. This technical terminology does not mean we restrict symbols to being mem-
bers of the English or Greek alphabet. They could represent keyboard characters, bytes (8-bit quantities),
integers that convey daily temperature. Whether controlled by software or not, discrete-time systems are
ultimately constructed from digital circuits, which consist entirely of analog circuit elements. Furthermore,
the transmission and reception of discrete-time signals, like e-mail, is accomplished with analog signals and
systems. Understanding how discrete-time and analog signals and systems intertwine is perhaps the main
goal of this course.

1.1.7 Discrete-Time Systems

Discrete-time systems can act on discrete-time signals in ways similar to those found in analog signals and
systems. Because of the role of software in discrete-time systems, many more di�erent systems can be
envisioned and "constructed" with programs than can be with analog signals. In fact, a special class of
analog signals can be converted into discrete-time signals, processed with software, and converted back into
an analog signal, all without the incursion of error. For such signals, systems can be easily produced in
software, with equivalent analog realizations di�cult, if not impossible, to design.

1.2 Systems in the Time-Domain2

A discrete-time signal s (n) is delayed by n0 samples when we write s (n− n0), with n0 > 0. Choosing n0

to be negative advances the signal along the integers. As opposed to analog delays3, discrete-time delays
can only be integer valued. In the frequency domain, delaying a signal corresponds to a linear phase shift
of the signal's discrete-time Fourier transform:

(
s (n− n0)↔ e−(j2πfn0)S

(
ej2πf

))
.

Linear discrete-time systems have the superposition property.

Superposition
S (a1x1 (n) + a2x2 (n)) = a1S (x1 (n)) + a2S (x2 (n)) (1.6)

A discrete-time system is called shift-invariant (analogous to time-invariant analog systems) if delaying
the input delays the corresponding output.

Shift-Invariant
If S (x (n)) = y (n) , Then S (x (n− n0)) = y (n− n0) (1.7)

We use the term shift-invariant to emphasize that delays can only have integer values in discrete-time, while
in analog signals, delays can be arbitrarily valued.

2This content is available online at <http://cnx.org/content/m0508/2.7/>.
3"Simple Systems": Section Delay <http://cnx.org/content/m0006/latest/#delay>



6 CHAPTER 1. BACKGROUND, REVIEW, AND REFERENCE

We want to concentrate on systems that are both linear and shift-invariant. It will be these that allow us
the full power of frequency-domain analysis and implementations. Because we have no physical constraints
in "constructing" such systems, we need only a mathematical speci�cation. In analog systems, the di�er-
ential equation speci�es the input-output relationship in the time-domain. The corresponding discrete-time
speci�cation is the di�erence equation.

The Di�erence Equation

y (n) = a1y (n− 1) + · · ·+ apy (n− p) + b0x (n) + b1x (n− 1) + · · ·+ bqx (n− q) (1.8)

Here, the output signal y (n) is related to its past values y (n− l), l = {1, . . . , p}, and to the current and
past values of the input signal x (n). The system's characteristics are determined by the choices for the
number of coe�cients p and q and the coe�cients' values {a1, . . . , ap} and {b0, b1, . . . , bq}.

aside: There is an asymmetry in the coe�cients: where is a0 ? This coe�cient would multiply the
y (n) term in the di�erence equation (1.8: The Di�erence Equation). We have essentially divided
the equation by it, which does not change the input-output relationship. We have thus created the
convention that a0 is always one.

As opposed to di�erential equations, which only provide an implicit description of a system (we must
somehow solve the di�erential equation), di�erence equations provide an explicit way of computing the
output for any input. We simply express the di�erence equation by a program that calculates each output
from the previous output values, and the current and previous inputs.

1.3 Discrete Time Convolution4

1.3.1 Introduction

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output a system produces for a given input signal. It can be shown that a linear time invariant system is
completely characterized by its impulse response. The sifting property of the discrete time impulse function
tells us that the input signal to a system can be represented as a sum of scaled and shifted unit impulses.
Thus, by linearity, it would seem reasonable to compute of the output signal as the sum of scaled and shifted
unit impulse responses. That is exactly what the operation of convolution accomplishes. Hence, convolution
can be used to determine a linear time invariant system's output from knowledge of the input and the impulse
response.

1.3.2 Convolution and Circular Convolution

1.3.2.1 Convolution

1.3.2.1.1 Operation De�nition

Discrete time convolution is an operation on two discrete time signals de�ned by the integral

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) (1.9)

for all signals f, g de�ned on Z. It is important to note that the operation of convolution is commutative,
meaning that

f ∗ g = g ∗ f (1.10)

4This content is available online at <http://cnx.org/content/m10087/2.21/>.
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for all signals f, g de�ned on Z. Thus, the convolution operation could have been just as easily stated using
the equivalent de�nition

(f ∗ g) (n) =
∞∑

k=−∞

f (n− k) g (k) (1.11)

for all signals f, g de�ned on Z. Convolution has several other important properties not listed here but
explained and derived in a later module.

1.3.2.1.2 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a system input signal x we would like to compute the system output signal H (x). First, we note that the
input can be expressed as the convolution

x (n) =
∞∑

k=−∞

x (k) δ (n− k) (1.12)

by the sifting property of the unit impulse function. By linearity

Hx (n) =
∞∑

k=−∞

x (k)Hδ (n− k) . (1.13)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
∞∑

k=−∞

x (k)h (n− k) = (x ∗ h) (n) . (1.14)

Hence, convolution has been de�ned such that the output of a linear time invariant system is given by the
convolution of the system input with the system unit impulse response.

1.3.2.1.3 Graphical Intuition

It is often helpful to be able to visualize the computation of a convolution in terms of graphical processes.
Consider the convolution of two functions f, g given by

(f ∗ g) (n) =
∞∑

k=−∞

f (k) g (n− k) =
∞∑

k=−∞

f (n− k) g (k) . (1.15)

The �rst step in graphically understanding the operation of convolution is to plot each of the functions.
Next, one of the functions must be selected, and its plot re�ected across the k = 0 axis. For each real t, that
same function must be shifted left by t. The product of the two resulting plots is then constructed. Finally,
the area under the resulting curve is computed.

Example 1.1
Recall that the impulse response for a discrete time echoing feedback system with gain a is

h (n) = anu (n) , (1.16)

and consider the response to an input signal that is another exponential

x (n) = bnu (n) . (1.17)
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We know that the output for this input is given by the convolution of the impulse response with
the input signal

y (n) = x (n) ∗ h (n) . (1.18)

We would like to compute this operation by beginning in a way that minimizes the algebraic
complexity of the expression. However, in this case, each possible coice is equally simple. Thus, we
would like to compute

y (n) =
∞∑

k=−∞

aku (k) bn−ku (n− k) . (1.19)

The step functions can be used to further simplify this sum. Therefore,

y (n) = 0 (1.20)

for n < 0 and

y (n) =
n∑
k=0

(ab)k (1.21)

for n ≥ 0. Hence, provided ab 6= 1, we have that

y (n) = {
0 n < 0

1−(ab)n+1

1−(ab) n ≥ 0
. (1.22)

1.3.2.2 Circular Convolution

Discrete time circular convolution is an operation on two �nite length or periodic discrete time signals de�ned
by the integral

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) (1.23)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. It is important to

note that the operation of circular convolution is commutative, meaning that

f ∗ g = g ∗ f (1.24)

for all signals f, g de�ned on Z [0, N − 1]. Thus, the circular convolution operation could have been just as
easily stated using the equivalent de�nition

(f ∗ g) (n) =
N−1∑
k=0

^
f (n− k)

^
g (k) (1.25)

for all signals f, g de�ned on Z [0, N − 1] where
^
f,
^
g are periodic extensions of f and g. Circular convolution

has several other important properties not listed here but explained and derived in a later module.
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Alternatively, discrete time circular convolution can be expressed as the sum of two summations given
by

(f ∗ g) (n) =
n∑
k=0

f (k) g (n− k) +
N−1∑
k=n+1

f (k) g (n− k +N) (1.26)

for all signals f, g de�ned on Z [0, N − 1].
Meaningful examples of computing discrete time circular convolutions in the time domain would involve

complicated algebraic manipulations dealing with the wrap around behavior, which would ultimately be
more confusing than helpful. Thus, none will be provided in this section. Of course, example computations
in the time domain are easy to program and demonstrate. However, disrete time circular convolutions are
more easily computed using frequency domain tools as will be shown in the discrete time Fourier series
section.

1.3.2.2.1 De�nition Motivation

The above operation de�nition has been chosen to be particularly useful in the study of linear time invariant
systems. In order to see this, consider a linear time invariant system H with unit impulse response h. Given
a �nite or periodic system input signal x we would like to compute the system output signal H (x). First,
we note that the input can be expressed as the circular convolution

x (n) =
N−1∑
k=0

^
x (k)

^
δ (n− k) (1.27)

by the sifting property of the unit impulse function. By linearity,

Hx (n) =
N−1∑
k=0

^
x (k)H

^
δ (n− k) . (1.28)

Since Hδ (n− k) is the shifted unit impulse response h (n− k), this gives the result

Hx (n) =
N−1∑
k=0

^
x (k)

^
h (n− k) = (x ∗ h) (n) . (1.29)

Hence, circular convolution has been de�ned such that the output of a linear time invariant system is given
by the convolution of the system input with the system unit impulse response.

1.3.2.2.2 Graphical Intuition

It is often helpful to be able to visualize the computation of a circular convolution in terms of graphical
processes. Consider the circular convolution of two �nite length functions f, g given by

(f ∗ g) (n) =
N−1∑
k=0

^
f (k)

^
g (n− k) =

N−1∑
k=0

^
f (n− k)

^
g (k) . (1.30)

The �rst step in graphically understanding the operation of convolution is to plot each of the periodic
extensions of the functions. Next, one of the functions must be selected, and its plot re�ected across the
k = 0 axis. For each k ∈ Z [0, N − 1], that same function must be shifted left by k. The product of the two
resulting plots is then constructed. Finally, the area under the resulting curve on Z [0, N − 1] is computed.
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1.3.3 Convolution Summary

Convolution, one of the most important concepts in electrical engineering, can be used to determine the
output signal of a linear time invariant system for a given input signal with knowledge of the system's unit
impulse response. The operation of discrete time convolution is de�ned such that it performs this function
for in�nite length discrete time signals and systems. The operation of discrete time circular convolution is
de�ned such that it performs this function for �nite length and periodic discrete time signals. In each case,
the output of the system is the convolution or circular convolution of the input signal with the unit impulse
response.

1.4 Review of Linear Algebra5

Vector spaces are the principal object of study in linear algebra. A vector space is always de�ned with
respect to a �eld of scalars.

1.4.1 Fields

A �eld is a set F equipped with two operations, addition and mulitplication, and containing two special
members 0 and 1 (0 6= 1), such that for all {a, b, c} ∈ F

1. a. a+ b ∈ F
b. a+ b = b+ a
c. (a+ b) + c = a+ (b+ c)
d. a+ 0 = a
e. there exists −a such that a+ (−a) = 0

2. a. ab ∈ F
b. ab = ba
c. (ab) c = a (bc)
d. a · 1 = a
e. there exists a−1 such that aa−1 = 1

3. a (b+ c) = ab+ ac

More concisely

1. F is an abelian group under addition
2. F is an abelian group under multiplication
3. multiplication distributes over addition

1.4.1.1 Examples

Q, R, C

1.4.2 Vector Spaces

Let F be a �eld, and V a set. We say V is a vector space over F if there exist two operations, de�ned
for all a ∈ F , u ∈ V and v ∈ V :

• vector addition: (u, v) → u + v ∈ V
• scalar multiplication: (a,v) → av ∈ V

and if there exists an element denoted 0 ∈ V , such that the following hold for all a ∈ F , b ∈ F , and u ∈ V ,
v ∈ V , and w ∈ V

5This content is available online at <http://cnx.org/content/m11948/1.2/>.
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1. a. u + (v + w) = (u + v) + w
b. u + v = v + u
c. u + 0 = u
d. there exists −u such that u + (−u) = 0

2. a. a (u + v) = au + av
b. (a+ b) u = au + bu
c. (ab) u = a (bu)
d. 1 · u = u

More concisely,

1. V is an abelian group under plus
2. Natural properties of scalar multiplication

1.4.2.1 Examples

• RN is a vector space over R
• CN is a vector space over C
• CN is a vector space over R
• RN is not a vector space over C

The elements of V are called vectors.

1.4.3 Euclidean Space

Throughout this course we will think of a signal as a vector

x =


x1

x2

...

xN

 =
(
x1 x2 . . . xN

)T

The samples {xi} could be samples from a �nite duration, continuous time signal, for example.
A signal will belong to one of two vector spaces:

1.4.3.1 Real Euclidean space

x ∈ RN (over R)

1.4.3.2 Complex Euclidean space

x ∈ CN (over C)

1.4.4 Subspaces

Let V be a vector space over F .
A subset S ⊆ V is called a subspace of V if S is a vector space over F in its own right.

Example 1.2
V = R2, F = R, S = any line though the origin.
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