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1. Introduction

Decision tree (DT) is one way to represent rules underlying data. It is the most popular tool
for exploring complex data structures. Besides that it has become one of the most flexible,
intuitive and powerful data analytic tools for determining distinct prognostic subgroups
with similar outcome within each subgroup but different outcomes between the subgroups
(i.e., prognostic grouping of patients). It is hierarchical, sequential classification structures
that recursively partition the set of observations. Prognostic groups are important in
assessing disease heterogeneity and for design and stratification of future clinical trials.
Because patterns of medical treatment are changing so rapidly, it is important that the
results of the present analysis be applicable to contemporary patients.

Due to their mathematical simplicity, linear regression for continuous data, logistic
regression for binary data, proportional hazard regression for censored survival data,
marginal and frailty regression for multivariate survival data, and proportional
subdistribution hazard regression for competing risks data are among the most commonly
used statistical methods. These parametric and semiparametric regression methods,
however, may not lead to faithful data descriptions when the underlying assumptions are
not satisfied. Sometimes, model interpretation can be problematic in the presence of high-
order interactions among predictors.

DT has evolved to relax or remove the restrictive assumptions. In many cases, DT is used to
explore data structures and to derive parsimonious models. DT is selected to analyze the
data rather than the traditional regression analysis for several reasons. Discovery of
interactions is difficult using traditional regression, because the interactions must be
specified a priori. In contrast, DT automatically detects important interactions. Furthermore,
unlike traditional regression analysis, DT is useful in uncovering variables that may be
largely operative within a specific patient subgroup but may have minimal effect or none in
other patient subgroups. Also, DT provides a superior means for prognostic classification.
Rather than fitting a model to the data, DT sequentially divides the patient group into two
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subgroups based on prognostic factor values (e.g., tumor size < 2 cm vs tumor size > 2 cm).
The repeated partitioning creates “bins” of observations that are approximately
homogeneous. This permits the use of some summary functions (e.g., Kaplan-Meier or
cumulative incidence function (CIF)) to compare prognosis between the “bins.” The
combination of binning and the interpretability of the resulting tree structure make DT
extremely well suited for developing prognostic stratifications.

The landmark work of DT in statistical community is the Classification and Regression Trees
(CART) methodology of Breiman et al. (1984). A different approach was C4.5 proposed by
Quinlan (1993). Original DT method was used in classification and regression for categorical
and continuous response variable, respectively. In a clinical setting, however, the outcome
of primary interest is often duration of survival, time to event, or some other incomplete
(that is, censored) outcome. Therefore, several authors have developed extensions of
original DT in the setting of censored survival data (Banerjee & Noone, 2008).

In science and technology, interest often lies in studying processes which generate events
repeatedly over time. Such processes are referred to as recurrent event processes and the
data they provide are called recurrent event data which includes in multivariate survival
data. Such data arise frequently in medical studies, where information is often available on
many individuals, each of whom may experience transient clinical events repeatedly over a
period of observation. Examples include the occurrence of asthma attacks in respirology
trials, epileptic seizures in neurology studies, and fractures in osteoporosis studies. In
business, examples include the filing of warranty claims on automobiles, or insurance claims
for policy holders. Since multivariate survival times frequently arise when individuals
under observation are naturally clustered or when each individual might experience
multiple events, then further extensions of DT are developed for such kind of data.

In some studies, patients may be simultaneously exposed to several events, each competing
for their mortality or morbidity. For example, suppose that a group of patients diagnosed
with heart disease is followed in order to observe a myocardial infarction (MI). If by the end
of the study each patient was either observed to have MI or was alive and well, then the
usual survival techniques can be applied. In real life, however, some patients may die from
other causes before experiencing an MI. This is a competing risks situation because death
from other causes prohibits the occurrence of MI. MI is considered the event of interest,
while death from other causes is considered a competing risk. The group of patients” dead of
other causes cannot be considered censored, since their observations are not incomplete.

The extension of DT can also be employed for competing risks survival time data. These
extensions can make one apply the technique to clinical trial data to aid in the development
of prognostic classifications for chronic diseases.

This chapter will cover DT for multivariate and competing risks survival time data as well
as their application in the development of medical prognosis. Two kinds of multivariate
survival time regression model, i.e. marginal and frailty regression model, have their own
DT extensions. Whereas, the extension of DT for competing risks has two types of tree. First,
the “single event” DT is developed based on splitting function using one event only.
Second, the “composite events” tree which use all the events jointly.
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2. Decision Tree

A DT is a tree-like structure used for classification, decision theory, clustering, and
prediction functions. It depicts rules for dividing data into groups based on the regularities
in the data. A DT can be used for categorical and continuous response variables. When the
response variables are continuous, the DT is often referred to as a regression tree. If the
response variables are categorical, it is called a classification tree. However, the same
concepts apply to both types of trees. DTs are widely used in computer science for data
structures, in medical sciences for diagnosis, in botany for classification, in psychology for
decision theory, and in economic analysis for evaluating investment alternatives.

DTs learn from data and generate models containing explicit rule-like relationships among
the variables. DT algorithms begin with the entire set of data, split the data into two or more
subsets by testing the value of a predictor variable, and then repeatedly split each subset
into finer subsets until the split size reaches an appropriate level. The entire modeling
process can be illustrated in a tree-like structure.

A DT model consists of two parts: creating the tree and applying the tree to the data. To
achieve this, DTs use several different algorithms. The most popular algorithm in the
statistical community is Classification and Regression Trees (CART) (Breiman et al., 1984).
This algorithm helps DTs gain credibility and acceptance in the statistics community. It
creates binary splits on nominal or interval predictor variables for a nominal, ordinal, or
interval response. The most widely-used algorithms by computer scientists are ID3, C4.5,
and C5.0 (Quinlan, 1993). The first version of C4.5 and C5.0 were limited to categorical
predictors; however, the most recent versions are similar to CART. Other algorithms include
Chi-Square Automatic Interaction Detection (CHAID) for categorical response (Kass, 1980),
CLS, AID, TREEDISC, Angoss KnowledgeSEEKER, CRUISE, GUIDE and QUEST (Loh,
2008). These algorithms use different approaches for splitting variables. CART, CRUISE,
GUIDE and QUEST use the statistical approach, while CLS, ID3, and C4.5 use an approach
in which the number of branches off an internal node is equal to the number of possible
categories. Another common approach, used by AID, CHAID, and TREEDISC, is the one in
which the number of nodes on an internal node varies from two to the maximum number of
possible categories. Angoss KnowledgeSEEKER uses a combination of these approaches.
Each algorithm employs different mathematical processes to determine how to group and
rank variables.

Let us illustrate the DT method in a simplified example of credit evaluation. Suppose a
credit card issuer wants to develop a model that can be used for evaluating potential
candidates based on its historical customer data. The company's main concern is the default
of payment by a cardholder. Therefore, the model should be able to help the company
classify a candidate as a possible defaulter or not. The database may contain millions of
records and hundreds of fields. A fragment of such a database is shown in Table 1. The
input variables include income, age, education, occupation, and many others, determined by
some quantitative or qualitative methods. The model building process is illustrated in the
tree structure in Figure 1.

The DT algorithm first selects a variable, income, to split the dataset into two subsets. This
variable, and also the splitting value of $31,000, is selected by a splitting criterion of the
algorithm. There exists many splitting criteria (Mingers, 1989). The basic principle of these
criteria is that they all attempt to divide the data into clusters such that variations within
each cluster are minimized and variations between the clusters are maximized. The follow
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up splits are similar to the first one. The process continues until an appropriate tree size is
reached. Figure 1 shows a segment of the DT. Based on this tree model, a candidate with
income at least $31,000 and at least college degree is unlikely to default the payment; but a
self-employed candidate whose income is less than $31,000 and age is less than 28 is more
likely to default.

Name Age Income Education Occupation Default
Andrew 42 45600 College Manager No
Allison 26 29000 High School Self Owned Yes
Sabrina 58 36800 High School Clerk No
Andy 35 37300 College Engineer No

Table 1. Partial records and fields of a database table for credit evaluation

< 31,000 >31,000
/@\
<28 >28 < college > coIIege
self-owned not self—owned < 32 000 > 32, 000

default

Fig. 1. The decision tree for the credit evaluation example

We begin with a discussion of the general structure of a popular DT algorithm in statistical
community, i.e. CART model. A CART model describes the conditional distribution of y
given X, where y is the response variable and X is a set of predictor variables (X =
(X1,X2,...,Xp)). This model has two main components: a tree T with b terminal nodes, and a
parameter ® = (,6,..., ) < RF which associates the parameter values 6,, with the mt
terminal node. Thus a tree model is fully specified by the pair (T, ©). If X lies in the region
corresponding to the m terminal node then y | X has the distribution f(y | £,,), where we use f
to represent a conditional distribution indexed by 6. The model is called a regression tree
or a classification tree according to whether the response y is quantitative or qualitative,
respectively.

2.1 Splitting a tree
The DT T subdivides the predictor variable space as follows. Each internal node has an
associated splitting rule which uses a predictor to assign observations to either its left or
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right child node. The internal nodes are thus partitioned into two subsequent nodes using
the splitting rule. For quantitative predictors, the splitting rule is based on a split rule ¢, and
assigns observations for which {x; < ¢} or {x; > c} to the left or right child node respectively.
For qualitative predictors, the splitting rule is based on a category subset C, and assigns
observations for which {x; € C} or {x; ¢ C} to the left or right child node, respectively.

For a regression tree, conventional algorithm models the response in each region R, as a
constant 6,,. Thus the overall tree model can be expressed as (Hastie et al., 2001):

b

flx)=2 0,I(X<R,) (1)

m=1

where R, m = 1, 2,...,b consist of a partition of the predictors space, and therefore
representing the space of b terminal nodes. If we adopt the method of minimizing the sum

of squares Z(y,. -f (X,.))2 as our criterion to characterize the best split, it is easy to see that
the best §

m/

is just the average of y; in region R

A 1
gm :ave(yi |Xz € Rnx):N_ Zyx (2)

m XieR,,

where N, is the number of observations falling in node . The residual sum of squares is

Q.0 Yl -6,f ®

m XieRy,

which will serve as an impurity measure for regression trees.
If the response is a factor taking outcomes 1,2,...,K, the impurity measure Q,(T), defined in
(3) is not suitable. Instead, we represent a region R, with N, observations with

Pou(T)=— zl(yi:k) 4)

which is the proportion of class k(k € {1, 2,...,K}) observations in node m. We classify the
observations in node m to a class k(m)=argmax, p,, , the majority class in node m. Different
measures Q,,(T) of node impurity include the following (Hastie et al., 2001):

Misclassification error: L ZI (yi 2 k) =1-p,,
m ieR,,

K

Gini index: Z ﬁmkﬁmk' = Z ﬁmk (1 - f)mk) (5)

k=k' k=1

K
Cross-entropy or deviance: Z;}mk log P,

k=1
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For binary outcomes, if p is the proportion of the second class, these three measures are
1-max(p, 1-p), 2p(1 —p) and —p log p — (1 — p) log(1 - p), respectively.

All three definitions of impurity are concave, having minimums at p =0 and p =1 and a
maximum at p = 0.5. Entropy and the Gini index are the most common, and generally give
very similar results except when there are two response categories.

2.2 Pruning a tree

To be consistent with conventional notations, let's define the impurity of a node h as I(h) ((3)
for a regression tree, and any one in (5) for a classification tree). We then choose the split
with maximal impurity reduction

AI:I(h)_p(hL)I(hL)_p(hR)I(hR) (6)

where h; and hir are the left and right children nodes of /i and p(h) is proportion of sample
that falls in node .

How large should we grow the tree then? Clearly a very large tree might overfit the data,
while a small tree may not be able to capture the important structure. Tree size is a tuning
parameter governing the model's complexity, and the optimal tree size should be adaptively
chosen from the data. One approach would be to continue the splitting procedures until the
decrease on impurity due to the split exceeds some threshold. This strategy is too short-
sighted, but however, a seeming worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree Ty, stopping the splitting process when some
minimum number of observations in a terminal node (say 10) is reached. Then this large tree
is pruned using pruning algorithm, such as cost-complexity or split complexity pruning
algorithm.

To prune large tree Tj by using cost-complexity algorithm, we define a subtree T < Tj to be

any tree that can be obtained by pruning To, and define T to be the set of terminal nodes of
T. That is, collapsing any number of its terminal nodes. As before, we index terminal nodes

by m, with node m representing region R,,. Let | T| denotes the number of terminal nodes in
T (|7~" |= b). We use |7~"| instead of b following the "conventional" notation and define the

risk of trees and define cost of tree as

7|

Regression tree: R(T)= Z N,Q,(T),
m=1

)
Classification tree: R(T)= Z p(hyr(h),
heT
where (/) measures the impurity of node & in a classification tree (can be any one in (5)).
We define the cost complexity criterion (Breiman et al., 1984)
R,(T)=R(T)+a|T| ®)

where o(> 0) is the complexity parameter. The idea is, for each ¢, find the subtree T, < Ty to
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minimize R,(T). The tuning parameter « > 0 "governs the tradeoff between tree size and its
goodness of fit to the data" (Hastie et al., 2001). Large values of « result in smaller tree T,
and conversely for smaller values of ¢. As the notation suggests, with « = 0 the solution is
the full tree To.

To find T, we use weakest link pruning: we successively collapse the internal node that
produces the smallest per-node increase in R(T), and continue until we produce the single-
node (root) tree. This gives a (finite) sequence of subtrees, and one can show this sequence
must contain T, , see Breiman et al. (1984) and Ripley (1996) for details. Estimation of (&)
is achieved by five- or ten-fold cross-validation. Our final tree is then denoted as T, .

It follows that, in CART and related algorithms, classification and regression trees are
produced from data in two stages. In the first stage, a large initial tree is produced by
splitting one node at a time in an iterative, greedy fashion. In the second stage, a small
subtree of the initial tree is selected, using the same data set. Whereas the splitting
procedure proceeds in a top-down fashion, the second stage, known as pruning, proceeds
from the bottom-up by successively removing nodes from the initial tree.

Theorem 1 (Brieman et al., 1984, Section 3.3) For any value of the complexity parameter o, there
is a unique smallest subtree of Ty that minimizes the cost-complexity.

Theorem 2 (Zhang & Singer, 1999, Section 4.2) If o > a, the optimal sub-tree corresponding to
a is a subtree of the optimal subtree corresponding to a.

More general, suppose we end up with m thresholds, 0 < o1 < & < ... < o, and let o= 0.
Also, let corresponding optimal subtrees be { P SN D }, then

T >T

a al

=T

a2

=..=T, )

where T, >T,, means that T,

al

is a subtree of T, . These are called nested optimal subtrees.

3. Decision Tree for Censored Survival Data

Survival analysis is the phrase used to describe the analysis of data that correspond to the
time from a well-defined time origin until the occurrence of some particular events or end-
points. It is important to state what the event is and when the period of observation starts
and finish. In medical research, the time origin will often correspond to the recruitment of
an individual into an experimental study, and the end-point is the death of the patient or the
occurrence of some adverse events. Survival data are rarely normally distributed, but are
skewed and comprise typically of many early events and relatively few late ones. It is these
features of the data that necessitate the special method survival analysis.

The specific difficulties relating to survival analysis arise largely from the fact that only
some individuals have experienced the event and, subsequently, survival times will be
unknown for a subset of the study group. This phenomenon is called censoring and it may
arise in the following ways: (a) a patient has not (yet) experienced the relevant outcome,
such as relapse or death, by the time the study has to end; (b) a patient is lost to follow-up
during the study period; (c) a patient experiences a different event that makes further
follow-up impossible. Generally, censoring times may vary from individual to individual.
Such censored survival time underestimated the true (but unknown) time to event.
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Visualising the survival process of an individual as a time-line, the event (assuming it is to
occur) is beyond the end of the follow-up period. This situation is often called right
censoring. Most survival data include right censored observation.

In many biomedical and reliability studies, interest focuses on relating the time to event to a
set of covariates. Cox proportional hazard model (Cox, 1972) has been established as the
major framework for analysis of such survival data over the past three decades. But, often in
practices, one primary goal of survival analysis is to extract meaningful subgroups of
patients determined by the prognostic factors such as patient characteristics that are related
to the level of disease. Although proportional hazard model and its extensions are powerful
in studying the association between covariates and survival times, usually they are
problematic in prognostic classification. One approach for classification is to compute a risk
score based on the estimated coefficients from regression methods (Machin et al., 2006). This
approach, however, may be problematic for several reasons. First, the definition of risk
groups is arbitrary. Secondly, the risk score depends on the correct specification of the
model. It is difficult to check whether the model is correct when many covariates are
involved. Thirdly, when there are many interaction terms and the model becomes
complicated, the result becomes difficult to interpret for the purpose of prognostic
classification. Finally, a more serious problem is that an invalid prognostic group may be
produced if no patient is included in a covariate profile. In contrast, DT methods do not
suffer from these problems.

Owing to the development of fast computers, computer-intensive methods such as DT
methods have become popular. Since these investigate the significance of all potential risk
factors automatically and provide interpretable models, they offer distinct advantages to
analysts. Recently a large amount of DT methods have been developed for the analysis of
survival data, where the basic concepts for growing and pruning trees remain unchanged,
but the choice of the splitting criterion has been modified to incorporate the censored
survival data. The application of DT methods for survival data are described by a number of
authors (Gordon & Olshen, 1985; Ciampi et al., 1986; Segal, 1988; Davis & Anderson, 1989;
Therneau et al., 1990; LeBlanc & Crowley, 1992; LeBlanc & Crowley, 1993; Ahn & Loh, 1994;
Bacchetti & Segal, 1995; Huang et al., 1998; Keles & Segal, 2002; Jin et al., 2004; Cappelli &
Zhang, 2007; Cho & Hong, 2008), including the text by Zhang & Singer (1999).

4. Decision Tree for Multivariate Censored Survival Data

Multivariate survival data frequently arise when we faced the complexity of studies
involving multiple treatment centres, family members and measurements repeatedly made
on the same individual. For example, in multi-centre clinical trials, the outcomes for groups
of patients at several centres are examined. In some instances, patients in a centre might
exhibit similar responses due to uniformity of surroundings and procedures within a centre.
This would result in correlated outcomes at the level of the treatment centre. For the
situation of studies of family members or litters, correlation in outcome is likely for genetic
reasons. In this case, the outcomes would be correlated at the family or litter level. Finally,
when one person or animal is measured repeatedly over time, correlation will most
definitely exist in those responses. Within the context of correlated data, the observations
which are correlated for a group of individuals (within a treatment centre or a family) or for
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one individual (because of repeated sampling) are referred to as a cluster, so that from this
point on, the responses within a cluster will be assumed to be correlated.

Analysis of multivariate survival data is complex due to the presence of dependence among
survival times and unknown marginal distributions. Multivariate survival times frequently
arise when individuals under observation are naturally clustered or when each individual
might experience multiple events. A successful treatment of correlated failure times was
made by Clayton and Cuzik (1985) who modelled the dependence structure with a frailty
term. Another approach is based on a proportional hazard formulation of the marginal
hazard function, which has been studied by Wei et al. (1989) and Liang et al. (1993).
Noticeably, Prentice et al. (1981) and Andersen & Gill (1982) also suggested two alternative
approaches to analyze multiple event times.

Extension of tree techniques to multivariate censored data is motivated by the classification
issue associated with multivariate survival data. For example, clinical investigators design
studies to form prognostic rules. Credit risk analysts collect account information to build up
credit scoring criteria. Frequently, in such studies the outcomes of ultimate interest are
correlated times to event, such as relapses, late payments, or bankruptcies. Since DT
methods recursively partition the predictor space, they are an alternative to conventional
regression tools.

This section is concerned with the generalization of DT models to multivariate survival data.
In attempt to facilitate an extension of DT methods to multivariate survival data, more
difficulties need to be circumvented.

4.1 Decision tree for multivariate survival data based on marginal model

DT methods for multivariate survival data are not many. Almost all the multivariate DT
methods have been based on between-node heterogeneity, with the exception of Molinaro et
al. (2004) who proposed a general within-node homogeneity approach for both univariate
and multivariate data. The multivariate methods proposed by Su & Fan (2001, 2004) and
Gao et al. (2004, 2006) concentrated on between-node heterogeneity and used the results of
regression models. Specifically, for recurrent event data and clustered event data, Su & Fan
(2004) used likelihood-ratio tests while Gao et al. (2004) used robust Wald tests from a
gamma frailty model to maximize the between-node heterogeneity. Su & Fan (2001) and Fan
et al. (2006) used a robust log-rank statistic while Gao et al. (2006) used a robust Wald test
from the marginal failure-time model of Wei et al. (1989).

The generalization of DT for multivariate survival data is developed by using goodness of
split approach. DT by goodness of split is grown by maximizing a measure of between-node
difference. Therefore, only internal nodes have associated two-sample statistics. The tree
structure is different from CART because, for trees grown by minimizing within-node error,
each node, either terminal or internal, has an associated impurity measure. This is why the
CART pruning procedure is not directly applicable to such types of trees. However, the
split-complexity pruning algorithm of LeBlanc & Crowley (1993) has resulted in trees by
goodness of split that has become well-developed tools.

This modified tree technique not only provides a convenient way of handling survival data,
but also enlarges the applied scope of DT methods in a more general sense. This is especially
for those situations where defining prediction error terms is relatively difficult, so growing
trees by a two-sample statistic, together with the split-complexity pruning, offers a feasible
way of performing tree analysis.
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The DT procedure consists of three parts: a method to partition the data recursively into a
large tree, a method to prune the large tree into a subtree sequence, and a method to
determine the optimal tree size.

In the multivariate survival trees, the between-node difference is measured by a robust
Wald statistic, which is derived from a marginal approach to multivariate survival data that
was developed by Wei et al. (1989). We used split-complexity pruning borrowed from
LeBlanc & Crowley (1993) and use test sample for determining the right tree size.

4.1.1 The splitting statistic

We consider n independent subjects, each subject have K potential types or number of
failures. If there are an unequal number of failures within the subjects, then K is the
maximum. We let Ty = min(Yi,Ci ) where Yy = time of the failure in the ith subject for the
kth type of failure and Ci = potential censoring time of the ith subject for the kth type of
failure withi=1,...,n and k =1,...,K. Then i = I (Y < Cy) is the indicator for failure and the
vector of covariates is denoted by Zix = (Z1ik,..., Zpi)T.

To partition the data, we consider the hazard model for the ith unit for the kth type of
failure, using the distinguishable baseline hazard as described by Wei et al. (1989), namely

Ay (t) = Ao (t)exp(ﬂ : I(Zz'k < C)) (10

where the indicator function I(Zi < c) equals 1 if Z < c and 0 otherwise, which corresponds
to a split, say s, based on a continuous covariate Z; (j = 1,..,p). If the covariate is categorical,
then I(Zy € A) for any subset A of its categories need to be considered.

Parameter f is estimated by maximizing the partial likelihood. If the observations within
the same unit are independent, the partial likelihood functions for # for the distinguishable
baseline model (10) would be,

LI eXP(ﬁ' : I(Zz'k < C))
i=1 k=1 [(Tik >T, )exP(IB . I(ij < C))

Since the observations within the same unit are not independent for multivariate failure
time, we refer to the above functions as the pseudo-partial likelihood.

The estimator ,é can be obtained by maximizing the likelihood by solving

”(ﬂ)=al%;(ﬁ) =0. Wei et al. (1989) showed that Jn! @— ﬂA)is normally distributed with

mean 0. However the usual estimate, a-1(f), for the variance of B, where

a(p)= —(lj%ﬂﬁ)

n op? (12)

p=p
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is not valid. We refer to a-1(f) as the naive estimator. Wei et al. (1989) showed that the correct

estimated (robust) variance estimator of Jn (ﬂ - ﬁ) is

d(B)=a”(Bp(B)a"(B) (13)

where b(p) is weight and d(f) is often referred to as the robust or sandwich variance
estimator. Hence, the robust Wald statistic corresponding to the null hypothesis Ho : f=0is

. _ P
Iw = d(ﬂ) (14)

4.1.2 Tree growing

To grow a tree, the robust Wald statistic is evaluated for every possible binary split of the

predictor space Z. The split, s, could be of several forms: splits on a single covariate, splits on

linear combinations of predictors, and boolean combination of splits. The simplest form of
split relates to only one covariate, where the split depends on the type of covariate whether
it is ordered or nominal covariate.

The “best split” is defined to be the one corresponding to the maximum robust Wald

statistic. Subsequently the data are divided into two groups according to the best split.

Apply this splitting scheme recursively to the learning sample until the predictor space is

partitioned into many regions. There will be no further partition to a node when any of the

following occurs:

1. The node contains less than, say 10 or 20, subjects, if the overall sample size is large
enough to permit this. We suggest using a larger minimum node size than used in CART
where the default value is 5;

2. All the observed times in the subset are censored, which results in unavailability of the
robust Wald statistic for any split;

3. All the subjects have identical covariate vectors. Or the node has only complete
observations with identical survival times. In these situations, the node is considered as
‘pure'.

The whole procedure results in a large tree, which could be used for the purpose of data

structure exploration.

4.1.3 Tree pruning
Let T denotes either a particular tree or the set of all its nodes. Let S and T denote the set of

internal nodes and terminal nodes of T, respectively. Therefore, T = T+S. Also let |-
denotes the number of nodes. Let G(h) represents the maximum robust Wald statistic on a
particular (internal) node h. In order to measure the performance of a tree, a split-complexity
measure G,(T) is introduced as in LeBlanc and Crowley (1993). That is,

G.(1)-G(r)-als
- > Glo)-als| o)

heS
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where the number of internal nodes, | S|, measures complexity; G(T) measures goodness of
split in T; and the complexity parameter o acts as a penalty for each additional split.

Start with the large tree Ty obtained from the splitting procedure. For any internal node / of
Ty, i.e. h € Sp, a function g(h) is defined as

o(n)=CT) (16)

where Tj denotes the branch with & as its root and S, is the set of all internal nodes of Tj.
Then the 'weakest link' 1, in Ty is the node such that

gl7y)= min g(h) 17)

heSy

Let o, = g(ﬁo)and T: be the subtree after pruning off the branch T, - In addition, let

a, = g(ﬁl): min, ¢(h) and T be the tree after pruning off the branch T;. - Repeating this

procedure leads to a nested sequence of subtrees T,, <...<T, <T, , <...<T, <T, where Ty

m m-1
is the root node, and the sequence © = oy >...> oy > o1 >...> a1 > o = 0.
It is important to note that &,'s are an increasing sequence. And for any « such that o, < a <

a+1, in particular, the geometric mean of o, @', =4 a,a,,, - It follows that T(a) = T(am) =

m m7m+1

T(a’ ) = Ty This implies that we can get the best pruned subtree for any penalty « from the
pruning algorithm.

4.1.4 The best-sized tree based on test sample

Now we need to select one or several appropriately sized trees from the nested sequence.
Several methods have been suggested for this purpose, one of them is test sample method.
When the sample size is large enough, the test sample is the preferred method of
determining the right tree size. To do this, the whole sample is divided into two parts: a
learning sample L; and a test sample L. Usually, the proportion is 2:1.

A large tree Ty is grown and pruned to obtain a nested sequence of subtrees using the
learning sample L;. Then the test sample L, is sent down along the large tree Tp and the
splitting statistics, G(h), are recalculated for each internal node, /i € S, using the validation
sample. The tree that maximizes the split-complexity measure G, (T) is chosen as the best-

sized subtree, where the constant penalty o is chosen for each split. It has been suggested
by LeBlanc and Crowley (1993) that o be typically chosen such that 2 < o, < 4, where o, = 2
is in the spirit of the AIC criterion and a. = 4 corresponds roughly to the 0.05 significance
level for a split under the y; curve.

Finally a marginal Kaplan-Meier survival curve is prepared separately (i.e., for each type of
failure) for all groups resulted from the best-sized tree. For example, if the best-sized trees
classified patients into three groups, then we prepare three corresponding marginal Kaplan-
Meier survival curves for each type of failure.

www.intechopen.com



Decision Tree for Prognostic Classification of Multivariate Survival Data and Competing Risks 13

4.1.5 Application: Bladder cancer data

In this section, we shall illustrate the proposed methods using the well-known bladder
tumour cancer data reported by Byar (1980). The data were from a randomized clinical trial
conducted by the Veterans Administration Co-operative Urological Group between 1971
and 1976 and consisted of 117 patients with superficial bladder tumours. The tumors were
removed transurethrally, and patients were then randomly assigned to one of three
treatments:  placebo,  pyridoxine  (Vitamin B6), or intravesical thiotepa
(triethylenetriphosphamide). Thiotepa is a member of the class of alkylating agents, which
were among the first anticancer drugs used. Alkylating agents are highly reactive and bind
to certain chemical groups found in nucleic acids. These compounds inhibit proper synthesis
of DNA and RNA, which leads to apoptosis or cell death. However, since alkylating agents
cannot discriminate between cancerous and normal cells, both types of cells will be affected
by this therapy. For example, normal cells can become cancerous due to alklyating agents.
Thus, thiotepa is a highly cytotoxic compound and can potentially have adverse effects.
Consequently, the effects of thiotepa on cancer recurrence and death are not obvious (Ghosh
& Lin, 2000).

Treatment was aimed at preventing bladder cancer recurrence following the removal of
superficial bladder tumours. Patients were examined every 3 months for recurrence of
tumour and any new tumors were removed. We used the version of data presented in
original paper by Wei et al. (1989) which is only available for the placebo and the thiotepa
groups. There were 38 patients in the thiotepa group and 48 placebo patients. The outcome
variable was number of months to the event since last tumour occurrence. Patients are
censored when they die, immediately after their fourth event or when the end of the study is
reached. Besides the treatment the number of initial tumours and diameter of the largest
initial tumour were also recorded for each patient. Particularly, the number of initial
tumours ranged from 1 to 8 with the respective counts of patients equal to 50, 11, 10, 4, 5, 2,
0, and 3.

Figure 2. shows the best-sized survival tree based on robust Wald splitting. At each level of
the tree, we show the best splitter (covariate with cutpoint), and the corresponding robust
Wald split statistic. A square denotes terminal nodes in the tree. Beneath each terminal node,

n denotes the number of patients.

yes no
1 2w=9.99
#tumors < 5?7
3
n=10
yes no
/ Y2=275.22 \
#tumors < 4?

4 5

n=71 n=4

Fig. 2. Survival tree based on robust Wald splitting.
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The root node was split by the number of initial tumours, with the best cutoff fewer than
five versus at least five initial tumours ( z;, = 9.99). The subgroup with at least five initial

tumours formed terminal node 3. On the opposite side of the tree, the subgroup with fewer
than five positive nodes was next split by number of initial tumours again (best cutoff <4 vs.
>4; yi = 275.22). None of these subgroups were further split and formed terminal nodes 4

and 5 in the tree. Hence, best-sized tree formed three groups of patients.

Prognostic grouping of the patients was based on the terminal nodes in Figure 2. We chose
survival probability to first and second recurrence represented by marginal Kaplan-Meier
curve as a measure of prognosis, and ranked each terminal node in the tree according to that
measure. The survival probability of first and second recurrence for three groups of patients
is presented in Figure 3. Among these three groups, patient with at least five initial tumours
have the poorest prognosis, that is, they are more likely to develop recurrence. Patient with
at most three initial tumours have the best prognosis, because they are less likely to develop
recurrence.

o 1. o L.
= el SR
[F] | !
B | i
: :; == node3 (initial #tumor >= 5) ‘-‘I i = = node3 (initial #tumor >= 5)
24 *Ej =*-- node4 (initial #tumor <= 3) 24 i = node4 (initial #tumor <= 3)
I .';I =* node5 (initial #tumor = 4) [} i ==- nodeb5 (initial #tumor = 4)
s -
N
[ .
o L1 s © | H
_ o 1 _ © M.,
S | [ [
2z 1 2 .
= 1= H R
= [ I P, > | I
2] [ %} Vo !
B T T S, < | Tl
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l._._l.-_-.:.- .- !
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0 10 20 30 40 50 60 0 10 20 30 40
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Fig. 3. Survival probability to the first (left) and second (right) recurrence for the three
prognostic groups derived from terminal nodes in Figure 2.

4.2 Decision tree for multivariate survival data based on frailty model

Quite the opposite to marginal models, frailty models directly account for and estimate
within subject correlation. A parameter estimate of within subject propensity for events is
obtained directly.

The random effects approach to frailty models involves the assumption that there are
unknown factors within a subject causing similarity (homogeneity) in failure times within
the subject and thus differences (heterogeneity) in failure times between different subjects.
The reason such factors are referred to as unknown is that if they were known to the
investigator, they could be included in the analysis, resulting in independence within a
subject. Frailty modeling (known as such because it examines the tendency for
failures/recurrences within a subject at similar times, or experience similar frailties) involves
specification of independence within a subject, conditional on an unobservable frailty ;.
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This frailty for the ith subject is incorporated (conditionally) into the proportional hazard
function previously examined as follows

A (t |0, ) =04 (t)exp(ﬂzik ) (18)

where the number of failure for the ith subject may be different, i.e. k=1,...,K:

4.2.1 The splitting statistic and tree growing

In this method, the splitting rule is defined as Wald test statistic evaluating covariate effect
based on frailty model. Thus, we create tree by maximizing between-node separation.

To split a node, a splitting function needs to be evaluated at every cutoff point. We consider
the following model

A (t |v; ) =04, (t)exp(ﬁ ’ I(Zik < C)) 19)

The parameter S corresponds to the effect of separation between two daughter nodes
induced by cutoff point ¢ which will be estimated by penalized likelihood method. The
penalized likelihood is developed by re-parameterizing model (19) as follows (Therneau &
Grambsch, 2000):

23 (t17)= 2 ()exp(B - 1(Z, <)+ Xy) (20)

where y=log(v)={y, jo,...,7u} is the vector of parameters for the re-parameterized frailty, and

X is the corresponding design matrix, which is a N by n matrix, where N = ZK . » such that
i=1

X =1 when kth failure belongs to Ith subject and Xy =0 otherwise, with k=1,..., N and I=

1,2,..., n. With this parameterization, model (20) has a similar structure as the classical Cox

model. Let 6 be the index parameter of the frailty distribution in the node. Then, the

penalized log-likelihood can be expressed as

PPL = PL(B, y;data) - g(7;6) (21)

where PL(fy ;data) is the partial likelihood and g(y6) is a penalty function. Specifically,
PL(f,y;data) is the usual partial likelihood for fand y,

N ®

PL(B,y;data :ZJ{ (ENI(z, <)+ Xy)- log{ ZW (t)expl(I (zk <c),B+Xk7)HdN( ) (22)

=1 o keR(t;)

where X; is the ith row of design matrix which corresponds to the ith recurrence in node,
Wi(t) is an indicator variables such that W(f)=1 when the item is at risk in time t; and 0
otherwise, and R(#;) is the risk set in time #. It has been shown (Therneau & Grambsch, 2000)
that the following penalty function will give exactly the same solution as EM algorithm
(Klein, 1992) when the frailty has a gamma distribution indexed by parameter 6,
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8(r;0)= *%Z [7. —exp(r,)] (23)

The parameters # and ycan be estimated by solving the score functions and parameter 8 is
estimated by maximizing the profile log-likelihood (Therneau & Grambsch, 2000). In turn,
following Gray (1992), the variance covariance matrix is V(£ = H! and

rean-acf) 0} -

where A is the second derivative matrix of usual partial likelihood with respect to f and y,
g" is the second derivative of penalty function with respect to y. The first diagonal element
of H1 corresponds to the variance of S (Therneau & Grambsch, 2000; Gray, 1992).
Comparing to EM algorithm, penalized likelihood method is computationally faster and has

been incorporated into standard statistical packages.

The splitting function is defined as x> = ﬁz /var(B), where ,é and var(p) are penalized
likelihood estimator and its estimated variance. In summary, when a tree is constructed, a
conditional proportional hazard structure given frailty is assumed within each node. The
splitting function is evaluated at each allowable split, and the best cutoff point c* is chosen
corresponding to the maximum Wald statistic. This process is applied recursively until all
the nodes cannot be further split. That is, the covariate space within the node becomes
homogeneous or only a few failures are left within the node. Consequently, the growing
procedure leads to a large initial tree, denoted by Th.

4.2.2 Tree pruning and the best-sized tree selection based on test sample

The data in a node are sent to one of two child nodes by a split point or split set selected.
This procedure is repeated until a certain criterion is met. A stopping rule might not detect
significant splits which occur at later nodes. To avoid this possibility, a pruning technique
can be applied to eliminate some insignificant nodes after splitting as many times as
possible until each node has fewer than a pre-specified number of cases.

The prediction error of the maximal tree is usually larger than that of a parsimonious tree
when estimated by an independent sample. Thus, some nodes need to be pruned. We adopt
the split-complexity pruning technique of LeBlanc & Crowley (1993), defining Wald statistic
as the goodness of split of a tree. The approach is to find a tree T maximizing the split-
complexity as follows:

1. Given a complexity parameter o > 0 and a tree T, define the split-complexity function

GoT) as G(T) = G (T) - «| S|, where G(T)= Zhés G(h) is the sum of the maximum Wald

statistic over the internal nodes of T and |S| is the number of internal nodes in T.

2. For each a > 0, there exists a tree maximizing the split-complexity. If a = 0, the tree
maximizing the split-complexity is the maximal tree. The larger the ¢, the smaller the
tree maximizing the split-complexity.

3. Let h be any node and T be the branch of a tree T with root node /i, then we define a
function g(h)=G(T, )/ |S .| » where Sy, is the set of all internal nodes of Tj.
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4. Prune branches at node 7, for which g(ﬁo ): min g(h).

heSg
5. Repeat the above steps to obtain a nested sequence of trees,
T,~T, »...>T,,>T, >...>T,,, where Tj is the maximal tree. T), is a tree with some

m=1
branches of T),.1 pruned, and Ty is the trivial tree with only the root node.

The final tree is selected by evaluating the sequence of maximal split-complexity trees.

However, the goodness of split of the trees is over-estimated by the learning sample. That is,

the estimation of the goodness of split by the learning sample is too optimistic. Thus, if an

independent test sample exists, the final tree can be selected as follows:

1.Let T,>~T, >...>T,, =T, »...>T,, be the pruned sequence of trees obtained from a

m-=1
learning sample L;. Pour a test sample L, down each tree.

2. Estimate the split-complexity G(T},) of each tree T,, with the test sample L.

3. Select the tree with the largest value of G(Ty).

4.2.3 Application: Chronic granulomatous disease (CGD) data

In this section, we illustrate the DT multivariate survival data based on frailty model by
analyzing a CGD data in Therneau & Grambsch (2000). CGD is a heterogeneous group of
uncommon inherited disorder characterized by recurrent pyogenic infections that usually
begin early in life and may lead to death in childhood. Interferon gamma is a principal
macrophage-activating factor shown to partially correct the metabolic defect in phagocytes,
and for this reason it was hypothesized that it would reduce the frequency of serious
infections in patients with CGD. In 1986, Genentech Inc. conducted a randomized, double-
blind, manized interferon gamma (rIFN-g) or placebo three times daily for a year. The
primary endpoint of the study was the time to the first serious infection. However, data
were collected on all serious infections until cessation of follow up, which occurred near day
400 for most patients. Thirty of the group had at least one serious infection. The total
number of infections was 56 and 20 in the placebo and treatment groups, respectively. A
question is whether a distinct group of patient based on their recurrent infections exist.
Covariates include the enrolling hospital and randomization data, age, height, weight, sex,
use of antibiotics or corticosteroids at the time of enrolment, and the pattern of inheritance.
The data set had 203 observations on 128 subjects.

Next, we applied the proposed DT method to these data. Then we developed a tree by using
all data, and the best sized tree with seven terminal nodes and its corresponding Kaplan-
Meier survival curves are presented in Figure 4 and Figure 5, respectively. The method first
splits on whether treatment is rIFN-g or placebo. Then age (< 5.5 versus > 5.5 years) and
height (< 132.9 versus > 132.9 cm) are chosen as the best partitions respectively. After 6
partitions, a best sized tree with 7 terminal nodes was developed, where circles and squares
represent internal nodes and terminal nodes respectively, and value 42 denoted the splitting
function for each partition. Final tree with seven terminal nodes lead to seven risk groups:
placebo with age < 5.5 years (node 4), rIFN-g with height < 132.9 cm (node 6), placebo with
age > 5.5 years and height < 158.5 cm (node 10), rIFN-g with 132.9 < height < 148 cm (node
14), rIFN-g with height > 148 cm (node 15), placebo with 5.5 < age < 20.5 years and height >
158.5 cm (node 22), and placebo with age > 20.5 years and height > 158.5 cm (node 23).
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