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1. Introduction

Portfolio insurance is based on the principal of risk transfer i.e., one person’s protection is
another person’s liability. The cost of portfolio insurance is the mechanism to equilibrate its
demand with supply. In the theory of finance minimum-cost portfolio insurance has been
characterized as a very important investment strategy. In this chapter, we discuss the invest-
ment strategy called minimum-cost portfolio insurance as a solution of a cost minimization
problem and we propose computational methods that translate the economics problem into
the language of computing. This strategy not only enables an investor to avoid losses but also
allows him/her to capture the gains at the minimum cost. In general, it is well known that
the minimum-cost insured portfolio depends on security prices. The cases where it is price-
independent (i.e., it does not depend on arbitrage-free security prices) are very important
not only because the insured portfolio can be selected without knowledge of current secu-
rity prices but also because we can present it in a simple form. Market structures in which
minimum-cost portfolio insurance is price-independent relies on the theory of vector lattices
(Riesz spaces). In particular, we focus our study in two very important classes of subspaces of
a vector lattice, namely vector sublattices and lattice-subspaces. Vector lattices have been used
by Brown & Ross (1991) and by Green & Jarrow (1987) in the framework of options markets.
Also, Ross (1976) gave a characterization of complete markets by observing that derivative
markets are complete if and only if the asset span is a vector sublattice of R

k. Completeness of
derivative markets is a sufficient but not necessary condition for the minimum-cost portfolio
insurance to be price-independent. Let us denote by X the subspace of payoffs of all portfolios
of securities; then in Aliprantis et al. (2000) it is proved that the minimum-cost insured port-
folio exists and is price-independent for every portfolio and at every floor if and only if X is a
lattice-subspace of R

k. An equivalent necessary and sufficient condition so that X is a lattice-
subspace is the existence of a positive basis for X, that is a basis of limited liability payoffs
such that every marketed limited liability payoff has a unique representation as a nonnega-
tive linear combination of basis payoffs. The notion of a positive basis for X is a generalization
to incomplete markets of a basis of Arrow securities for complete markets. From the previous
discussion, it is evident that the mathematical theory of lattice-subspaces has been used in or-
der to provide a characterization of market structures in which the cost minimizing portfolio
is price-independent. In general, the theory of lattice-subspaces has been extensively used in
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the last years in Mathematical Economics, especially in the areas of incomplete markets and
portfolio insurance (e.g., Aliprantis et al. (1997; 2000; 2002); Polyrakis (2003)) as well as in com-
pletion of security markets (Kountzakis & Polyrakis (2006)). The study of finite-dimensional
lattice-subspaces is important since many economic models are finite, such as, for example,
the well-known Arrow-Debreu model. Additional applications of lattice-subspaces in eco-
nomics appear in Aliprantis et al. (1998); Henrotte (1992). In this chapter, the main advantage
of the computational techniques that we present is that we are able to solve the minimization
problem without making use of any linear programming method. This is possible by using
the theory of positive bases in vector lattices; specifically, we are able to provide a practical
numerical way to check whether a subspace X is a lattice-subspace or a vector sublattice.
In Polyrakis (1996; 1999), lattice-subspaces and vector sublattices are studied in the space of
continuous real valued functions C(Ω) defined on a compact Hausdorff topological space
Ω. In the case where Ω is finite, for example Ω = {1, 2, . . . , k}, then C(Ω) = R

k and the
results of Polyrakis (1996; 1999) can be applied for the determination of the lattice-subspaces
and vector sublattices of R

k. In particular, in Polyrakis (1996) it is provided a solution to
the problem of whether a finite collection of linearly independent positive functions in C(Ω)
generates a lattice-subspace. In addition, he proposed an algorithm under which one can
check whether the vector subspace1 X = [x1, ..., xn] is a lattice-subspace, where x1, ..., xn are
linearly independent positive functions in C(Ω). Another approach to the same problem of
whether X forms a lattice-subspace of R

k is presented in Abramovich et al. (1994).
In Katsikis (2007), based on Abramovich et al. (1994), a computational solution is given to the
problem of whether a finite collection of linearly independent, positive vectors of R

k gener-
ates a lattice-subspace. In addition, in Katsikis (2007), applications to the cost minimization
problem that ensures the minimum-cost insured portfolio are discussed. The same reference
concludes with a Matlab function which is an elegant and accurate tool in order to provide
whether or not a given collection of vectors forms a lattice-subspace.
Also, in Katsikis (2008), a different computational method is presented based upon the
Polyrakis algorithm (1996), in order to solve the corresponding problem in C[a, b]. This com-
putational method implements a general algorithmic process and when slightly modified, this
process can also be used in the case of lattice-subspaces of R

k. Following this remark, Katsikis
(2009) presents the translation followed by the implementation of this algorithm in R

k within
a Matlab function. This function provides an important tool in order to investigate lattice-
subspaces and vector sublattices of R

k with direct applications to portfolio insurance. Finally,
the results of Katsikis (2009) can be applied in completion of security markets and the theory
of efficient funds.
The material in this chapter is spread out in 8 sections. Section 2 gives the fundamental prop-
erties of lattice-subspaces and vector sublattices of R

k together with the solution to the prob-
lem of whether a finite collection of linearly independent, positive vectors of R

k generates
a lattice-subspace or a vector sublattice. Section 3 studies, in detail, from the computational
point of view the mathematical problem stated in Section 2 and presents an efficient compu-
tational method in order to solve it. Comparison results with other existing computational
methods are also provided. Section 4 studies finite dimensional lattice-subspaces of C[a, b]
and presents the solution to the problem stated in Section 2, in the case where the initial space
is C[a, b]. Section 5 presents computational methods in order to determine finite dimensional
lattice-subspaces of C[a, b]. Section 6 provides the most important interrelationship between
lattice-subspaces and the minimization problem of minimum-cost portfolio insurance. Also,

1 [x1, ..., xn] denotes the n-dimensional vector subspace generated by x1, ..., xn.
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the reader will find in this Section a study that involves the computational techniques pre-
sented in Section 3 and Section 5 in order to calculate the minimum-cost insured portfolio
both in the case of R

k and C[a, b]. Section 7 provides a computational technique, based on
Section 3, in order to solve the problem of completion by options of a two-period security
market in which the space of marketed securities is a subspace of R

k. Methods on computing
the efficient funds of the market are also presented. Conclusions and research directions are
provided in Section 8.
In this chapter, all the numerical tasks have been performed using the Matlab 7.8 (R2009a)
environment on an Intel(R) Pentium(R) Dual CPU T2310 @ 1.46 GHz 1.47 GHz 32-bit system
with 2 GB of RAM memory running on the Windows Vista Home Premium Operating System.

2. Lattice-subspaces and vector sublattices of R
k

In this section, a brief introduction is provided to the theory of lattice-subspaces and vector
sublattices of R

k. In addition, we present the solution to the problem of whether a finite
collection of linearly independent, positive vectors of R

k generates a lattice-subspace or a
vector sublattice.

2.1 Preliminaries and notation

We view R
k as an ordered space, then the pointwise order relation in R

k is defined by

x ≤ y if and only if x(i) ≤ y(i), for each i = 1, ..., k.

The positive cone of R
k is defined by R

k
+ = {x ∈ R

k|x(i) ≥ 0, for each i} and if we suppose

that X is a vector subspace of R
k then X ordered by the pointwise ordering is an ordered

subspace of R
k with positive cone X+ defined by X+ = X ∩R

k
+. For a two-point set S = {x, y},

we denote by x ∨ y (x ∧ y) the supremum of S i.e., its least upper bound (the infimum of S i.e.,
its greatest lower bound). Thus, x ∨ y (x ∧ y) is the componentwise maximum (minimum) of
x and y defined by

(x ∨ y)(i) = max{x(i), y(i)} ((x ∧ y)(i) = min{x(i), y(i)}), for all i = 1, ..., k.

An ordered subspace X of R
k is a lattice-subspace of R

k if it is a vector lattice in the induced
ordering, i.e., for any two vectors x, y ∈ X the supremum and the infimum of {x, y} both exist
in X. Note that the supremum and the infimum of the set {x, y} are, in general, different in
the subspace than the supremum and the infimum of this set in the initial space. An ordered
subspace Z of R

k is a vector sublattice or a Riesz subspace of R
k if for any x, y ∈ Z the

supremum and the infimum of the set {x, y} in R
k belong to Z. Suppose that X is an ordered

subspace of R
k and B = {b1, b2, ..., bm} is a basis for X. Then B is a positive basis of X if the

positive cone X+ of X has the form,

X+ = {x =
m

∑
i=1

λibi|λi ≥ 0, for each i}.

Therefore, if x = ∑
m
i=1 λibi and y = ∑

m
i=1 µibi then x ≤ y if and only if λi ≤ µi for each

i = 1, 2, ..., m. The existence of positive bases is not always ensured, but in the case where
X is a vector sublattice of R

k then X has always a positive basis. Moreover, it holds that
an ordered subspace of R

k has a positive basis if and only if it is a lattice-subspace of R
k. If

B = {b1, b2, ..., bm} is a positive basis for a lattice-subspace (or a vector sublattice) X then the
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lattice operations in X, namely x!y for the supremum and x " y for the infimum of the set
{x, y} in X, are given by

x!y =
m

∑
i=1

max{λi, µi}bi and x " y =
m

∑
i=1

min{λi, µi}bi,

for each x = ∑
m
i=1 λibi, y = ∑

m
i=1 µibi ∈ X. A vector sublattice is always a lattice-subspace, but

the converse is not true as shown in the next example.

Example 0.1. Let X = [x1, x2, x3] be the subspace of R
4 generated by the vectors x1 =

(6, 0, 0, 1), x2 = (6, 4, 0, 0), x3 = (8, 4, 2, 0). An easy argument shows that the set B = {b1, b2, b3}
where 



b1

b2

b3



 =





2 0 2 0
12 8 0 0
6 0 0 1





forms a positive basis of X therefore X is a lattice-subspace of R
4. On the other hand, let us

consider the vectors y1 = 2x1 + x2 = (18, 4, 0, 2) and y2 = x3 − x2 = (2, 0, 2, 0) of X. Then,
y1 ∨ y2 = (18, 4, 2, 2) and since y1 = 1

2 b2 + 2b3, y2 = b1, it follows that y1!y2 = b1 +
1
2 b2 +

2b3 = (20, 4, 2, 2). Therefore, X is not a vector sublattice of R
4, since the supremum on the

subspace X is different than the supremum on the whole space.

For an extensive presentation of lattice-subspaces, vector sublattices and positive bases the
reader may refer to Abramovich et al. (1994); Polyrakis (1996; 1999).

2.2 The mathematical problem

Suppose that {x1, x2, ..., xn} is a collection of linearly independent, positive vectors of R
k. The

problem is, under what conditions the subspace X = [x1, x2, ..., xn] is a lattice-subspace or a
vector sublattice of R

k?
Let us denote by β the basic function of x1, x2, ..., xn, that is, β : {1, 2, ..., k} → R

k such that

β(i) =
( x1(i)

z(i)
,

x2(i)

z(i)
, ...,

xn(i)

z(i)

)

,

for each i ∈ {1, 2, ..., k} with z(i) > 0, where z = ∑
n
i=1 xi. The set

R(β) = {β(i)|i = 1, 2, ..., k, with z(i) > 0},

is the range of the basic function and the cardinal number, cardR(β), of R(β) is the number of
different elements of R(β). Let cardR(β) = m then it is clear that n ≤ m ≤ k. Denote by K the
convex hull of R(β). Since K is the convex hull of a finite subset of R

k it is a polytope with d
vertices and each vertex of K belongs to R(β) therefore n ≤ d ≤ m.
Suppose that R(β) = {P1, P2, ..., Pm} such that, under a proper enumeration, the vertices
P1, P2, ..., Pn are linearly independent and P1, P2, ..., Pd are the vertices of K, i.e.,

R(β) = {

vertices of K
︷ ︸︸ ︷

P1, P2, ...Pn
︸ ︷︷ ︸

linearly independent

, Pn+1, ...Pd, ..., Pm}.

The following theorem, from (Polyrakis, 1999), provides a full answer to the stated problem.
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Theorem 0.1. Suppose that the above assumptions are satisfied. Then,

(i) X is a vector sublattice of R
k if and only if R(β) has exactly n points (i.e., m = n) and a positive

basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., m.

(ii) X is a lattice-subspace of R
k if and only if the polytope K has n vertices (i.e., d = n) and a

positive basis {b1, b2, ..., bn} for X is defined by the formula

(b1, b2, ..., bn)
T = A−1(x1, x2, ..., xn)

T ,

where A is the n × n matrix whose ith column is the vector Pi, for each i = 1, 2, ..., d.

2.3 The algorithm

The basic steps of an algorithmic process that will accurately implement the ideas of Theorem
0.1 are the following:

(1) Determine R(β).

(2) Compute the number m = cardR(β), and the number d of vertices of the polytope K.

(3) If n = m (vector sublattice case) or n = d (lattice-subspace case) then, determine a
positive basis for X.

Based on a theorem of Edmonds, Lovász and Pulleybank in Edmond et al. (1982), we close
this section with some remarks on the existence of a polynomial-time decision procedure, in
order to decide whether the collection of vectors {x1, x2, ..., xn} generates a lattice-subspace
or a vector sublattice. We shall present this result, in a suitable form for our analysis, as it is
presented in Aliprantis et al. (1997).

Theorem 0.2. There exists a polynomial-time algorithm that for any polytope, P, defined as the convex
hull of a given finite set of vectors, determines the affine hull of P. Specifically the algorithm finds
affinely independent vertices u0, u1, ..., u! of P such that

aff(P) = aff({u0, u1, ..., u!}).

Recall that, algorithms which have a polynomial or sub-polynomial time complexity (that
is, they take time O(g(n)) where g(n) is either a polynomial or a function bounded by a
polynomial), are practical. Such algorithms with running times of orders O(log n), O(n),
O(n log n), O(n2), O(n3) etc. are called polynomial-time algorithms. There are several ar-
guments to support the thesis that “polynomial” is a synonym to practical and the general
conclusion is that a problem can be considered “efficiently solved” when a polynomial-time
algorithm has been found for it.
In order to implement algorithm 2.3, we shall use the Quickhull algorithm from Barber et
al. (1996) for computing the convex hull of a given set of points. According to Barber et al.
(1996) (Theorem 3.2) if d is the dimension, n is the number of input points, r the number of

processed points, and fr the maximum number of facets of r vertices ( fr = O(r#
d
2 $/# d

2 $!) then
the worst-case complexity of Quickhull is O(n log r) for d ≤ 3 and O(n fr/r) for d ≥ 4.
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3. The computational method

3.1 Method presentation

In this section we present the translation followed by the implementation of algorithm 2.3
within a Matlab function named SUBlatSUB from Katsikis (2009). This function provides an
important tool in order to investigate lattice-subspaces and vector sublattices of R

k since we
are able to perform fast testing for a variety of dimensions and subspaces. Recall that, the
numbers n, m, d, k denote the dimension of X, the cardinality of R(β), the number of vertices
of the convex hull of R(β) and the dimension of the initial Euclidean space, respectively.
The function SUBlatSUB first checks if the given collection of vectors generates a vector sub-
lattice by examining the validity of condition (i) of Theorem 0.1. In the case of a vector sub-
lattice, i.e., m = n, the program responds with the output:

vector sublattice

followed by a n × k matrix whose rows are the vectors of the positive basis.
If, instead, the collection does not generate a vector sublattice, that is m "= n, then the function
SUBlatSUB checks if the given collection generates a lattice-subspace by examining the va-
lidity of condition (ii) of Theorem 0.1. In the case of a lattice-subspace, i.e., d = n, the program
responds with the output:

lattice-subspace

followed by a n × k matrix whose rows are the vectors of the positive basis.
If m "= n and d "= n then the program responds with the output:

not a lattice-subspace

ans=

[]

So, in order to decide whether a given collection of linearly independent, positive vectors
generates a lattice-subspace or a vector sublattice of R

k, we construct a matrix whose columns
are the vectors of the given collection and then we apply the function SUBlatSUB on that
matrix. It is possible to produce the numbers n, m, d, k, with this order, as a 4 × 1 matrix with
the following code,

>> [positivebasis,dimensions]=SUBlatSUB(a)

where a is the matrix whose columns are the given vectors.

3.2 Numerical examples

In order to describe the most important features of SUBlatSUB, we illustrate some examples
featured in Katsikis (2007) for various collections and dimensions. Also, we close this section
with comparison results of the SUBlatSUB function and the alternative function, namely K

function, presented in Katsikis (2007).
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Example 0.2. Consider the following 7 vectors x1, x2, ..., x7 in R
10,





















x1

x2

x3

x4

x5

x6

x7





















=





















1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0 1





















According to the definition of the β function, the rows of the following matrix u are the differ-
ent elements of R(β),

u =

0 0 0 0 0 0 1

0 0 0 0 0 0.5 0.5

0 0 0 0 1 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0.5 0 0 0 0 0.5

0 1 0 0 0 0 0

0.5 0 0 0 0.5 0 0

Thus, m = 8 and it is clear that rows u(1), . . . , u(5), u(7), u(8) of u are linearly indepen-
dent. This means that these vectors belong to the convex hull of R(β). Also, it is easy to
see that row u(6) of u is a convex combination of the other rows. Therefore, d = 7 and
X = [x1, x2, x3, x4, x5, x6, x7] is a lattice-subspace.
For a numerical solution, we invoke the SUBlatSUB function by typing in the command
window of the Matlab environment:

>> [positive basis,dimensions]=SUBlatSUB(a)

The results, then, are as follows:

lattice-subspace

positivebasis =

0 1 0 0 0 0 0 0 0 1

0 0 0 0 0 0 2 0 0 0

0 0 0 0 1 1 0 0 1 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0

2 0 0 0 0 0 0 0 0 0

dimensions =

7

8

7

10
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We conclude with some comments based on the results of the SUBlatSUB function. A positive
basis is unique in the sense of positive multiples since each element of the basis is an extremal2

point of the positive cone of the subspace. If we denote by {b1, b2, ..., b7} the positive basis that
we obtained by using the K function (see Katsikis (2007)) and by {B1, B2, ..., B7} the positive
basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (b7, 2b5, b4, b3, b2, b6, 2b1).

Example 0.3. Consider the following 7 vectors x1, x2, ..., x7 in R
10,





















x1

x2

x3

x4

x5

x6

x7





















=





















2 2 4 3 0 0 0 0 1 1
0 0 1 1 2 3 1 3 4 4
3 3 0 0 0 0 4 0 0 0
1 1 0 1 0 1 0 1 0 0
0 0 1 0 1 0 1 0 1 1
0 0 0 0 0 0 6 0 0 0
0 0 0 0 0 0 0 0 6 6





















where following the same procedure, as before, one gets

vector sublattice

positivebasis =

0 0 0 0 0 0 12 0 0 0

0 0 0 0 3 0 0 0 0 0

0 0 0 0 0 4 0 4 0 0

0 0 0 0 0 0 0 0 12 12

6 6 0 0 0 0 0 0 0 0

0 0 0 5 0 0 0 0 0 0

0 0 6 0 0 0 0 0 0 0

dimensions =

7

7

10

If we denote by {b1, b2, ..., b7} the positive basis that we obtained by using the K function and
by {B1, B2, ..., B7} the positive basis we found with the SUBlatSUB function then it holds

(B1, B2, B3, B4, B5, B6, B7) = (12b6, 3b4, 4b5, 12b7, 6b1, 5b3, 6b2).

Example 0.4. Consider the following 5 vectors x1, x2, ..., x5 in R
10,













x1

x2

x3

x4

x5













=













1 1 1 1 1 1 1 1 2 1
1 1 1 2 1 1 1 2 1 2
1 1 1 2 1 1 1 2 1 1
1 1 1 1 1 1 1 2 2 1
2 1 2 1 1 1 1 1 1 1













For the above set, the program yields

2 A nonzero element x0 of X+ is an extremal point of X+ if, for any x ∈ X, 0 ≤ x ≤ x0 implies x = λx0

for a real number λ.

www.intechopen.com



!"#$%&'&(")'*+'),+#'&-.#'&(/'*+#.&-",0+()+$"1&2"*("+()0%1')/.+3+4+54674839'0.,+'$$1"'/- GHK

lattice-subspace

positivebasis =

0 0 0 0 0 0 0 8 0 0

0 7/4 0 7 7/4 7/4 7/4 0 0 0

6 3/2 6 0 3/2 3/2 3/2 0 0 0

0 0 0 0 0 0 0 0 0 6

0 7/4 0 0 7/4 7/4 7/4 0 7 0

dimensions =

5

6

5

10

In this case it holds
(B1, B2, B3, B4, B5) = (8b3, 7b2, 6b1, 6b5, 7b4).

For the purpose of monitoring the performance, we present in Table 1 the execution times of
the SUBlatSUB function and the method presented in Katsikis (2007) (K function).

Matlab functions Example 0.2 Example 0.3 Example 0.4

SUBlatSUB 0.052 0.030 0.035
K 0.516 0.828 0.969

Table 1. Time in seconds

3.3 The case of coplanar points

The correct performance of the SUBlatSUB function requires the use of the convhulln Matlab
function which is based on Qhull3 and Qhull implements the Quickhull algorithm (Barber et
al. (1996)) for computing the convex hull of a given set of points. Suppose that a denotes the
matrix whose rows are the coefficients of the given points, then the convhulln function returns
the indices of the points in a that comprise the facets of the convex hull of a. The convhulln

function is facing problems during the calculation of the convex hull of points that lie in a
q-manifold, with q ≤ n − 1, in the n-dimensional space of the given data. So, we cannot use
convhulln to solve our problem directly.
We illustrate the details in this case through the following example and we also provide an
improvement technique to solve the resultant problem in this particular case.

Example 0.5. Consider the following four vectors x1, x2, x3, x4 in R
7,









x1

x2

x3

x4









=









1 2 1 0 1 1 4
0 1 1 1 1 0 2
2 1 0 1 1 1 2
1 0 1 1 1 0 0









.

Following the second step of algorithm 2.3, the calculation of the convex hull of R(β) is re-
quired to check whether X = [x1, x2, x3, x4] is a lattice-subspace or a vector sublattice of R

7.

3 For information about Qhull see http://www.qhull.org/
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In this case, and after the necessary calculations it is clear that R(β) = {P1, P2, P3, P4, P5, P6}
where

















P1

P2

P3

P4

P5

P6

















=



















0 1
3

1
3

1
3

1
4 0 1

2
1
4

1
2 0 1

2 0
1
3

1
3 0 1

3
1
2

1
4

1
4 0

1
4

1
4

1
4

1
4



















.

Therefore, in order to determine the convex hull of R(β) we have used the convhulln function.
In this case the convhulln function yields with the following warning message:

??? qhull precision warning: The initial hull is narrow (cosine of

min. angle is 1.0000000000000002). A coplanar point may lead to a

wide facet.

If we use the following simple rank test:

>> y=[0 1/3 1/3 1/3;1/4 0 1/2 1/4;1/2 0 1/2 0;1/3 1/3 0 1/3;

1/2 1/4 1/4 0;1/4 1/4 1/4 1/4];

>> rank(bsxfun(@minus,y,y(6,:)))

then one gets

ans =

3

Thus, by our previous analysis it is clear that the points P1, P2, P3, P4, P5, P6 of R
4 lie in a 3-

manifold and we cannot use convhulln to solve our problem directly. A solution to this prob-
lem can be given under the following methodology:

• Translate the points to a hyper-plane that passes through the origin.

• Determine a set of basis vectors for the subspace.

• Transform the points into an equivalent lower dimensional space.

• Form the convex hull triangulation in the lower dimensional space.

Let us describe, in detail, the procedure for this particular example. First, one has to translate
the given points to a hyper-plane that passes through the origin by subtracting one of the
vectors from the others,

>> ytrans = bsxfun(@minus,y,y(6,:))

ytrans =

-0.2500 0.0833 0.0833 0.0833

0 -0.2500 0.2500 0

0.2500 -0.2500 0.2500 -0.2500

0.0833 0.0833 -0.2500 0.0833

0.2500 0 0 -0.2500

0 0 0 0

Then, we form an orthonormal basis for the range of ytrans.
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>> rot = orth(ytrans’)

rot =

0.5 -0.64505 0.28967

0.5 -0.28967 -0.64505

-0.5 0.64505 -0.28967

0.5 0.28967 0.64505

Recall that, if {v1, v2, . . . , vr} is an orthonormal basis for a finite dimensional subspace W of
an inner product space V and u is any vector of V, then the projection of the vector u in W is
given by the formula projW u =< u, v1 > v1 + . . .+ < u, vr > vr.
Now, we project the points into an equivalent lower dimensional space where rot is a basis
for this space. Hence,

>> yproj = ytrans*rot

yproj =

0.16667 0.21502 -0.096557

-0.25 0.23368 0.088845

-0.5 3.0531e-16 5.5511e-17

0.16667 -0.21502 0.096557

-0.25 -0.23368 -0.088845

0 0 0

Note that, the rows of yproj matrix are the coordinates of the initial points in terms of the
basis in the lower dimensional space.
Finally, we form the convex hull triangulation in the projected subspace yproj.That is,

>> tri = convhulln(yproj)

tri =

1 2 3

2 4 3

4 2 1

5 1 3

4 5 3

5 4 1

Since we are only interested for the number of vertices of the convex hull of R(β), we can only
determine the number of vertices of the convex hull in the projected subspace. Therefore,

>> length(unique(tri(:)))

ans =

5

So, there are 5 vertices in the hull. This procedure is included in the SUBlatSUB function
therefore, for a direct answer in the previous example, one can apply the SUBlatSUB function
directly to the given collection by using the code,

>> [positive basis,dimensions]=SUBlatSUB(a)

the results, then, are as follows:
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not a lattice-subspace

positivebasis =

[]

dimensions =

4

6

5

7

where a denotes a matrix that has the vectors xi, i = 1, 2, 3, 4 as columns.

3.4 Comparison results

In this section, we compare the performance of the SUBlatSUB function to that of the K func-
tion. The numerical method, based on the introduction of the SUBlatSUB function, enables
us to perform fast and accurate estimations of the lattice-subspace or the vector sublattice for a
finite collection of positive, linearly independent vectors of R

k for a variety of dimensions. For
this purpose we have used the Matlab function rand in order to produce 50 full rank matrices
for each rank n, n = 3, ..., 30. The cumulative results are presented in Figure 1 (Figure 1 shows
the time efficiency curves, i.e., the rank of the 50 tested matrices versus the total computation
time (in seconds)) and in Table 2. From the previous results (see Figure 1,Table 2) it is evident
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!"

Fig. 1. Time efficiency curves for the K function and the SUBlatSUB function

that using the SUBlatSUB function the interested user can reach a fast computational solution
using a reduced amount of computational resources.

4. Finite dimensional lattice-subspaces of C[a, b]

In what follows we shall denote by C[a, b] the space of all continuous real functions defined
on the interval [a, b]. As in the case of R

k, lattice-subspaces of C[a, b] are subspaces which are
vector lattices in the induced ordering, i.e., for any two vectors x, y of the subspace the supre-
mum and the infimum of the set {x, y} both exist in the subspace. Recall that the supremum
and the infimum of the set {x, y} are, in general, different in the subspace than the supremum
and the infimum of this set in the initial space. In this section we present a brief introduction
to the theory of lattice-subspaces in C[a, b]. In addition, we describe in detail the construction
of a powerful and efficient package for the translation, into the language of computing, of the
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Rank SUBlatSUB K Rank SUBlatSUB K

(Time in seconds) (Time in seconds) (Time in seconds) (Time in seconds)
3 0.141 0.205 17 0.553 5.548
4 0.140 0.322 18 0.665 6.230
5 0.073 0.641 19 0.853 6.992
6 0.115 0.805 20 1.100 7.681
7 0.113 1.090 21 1.290 8.545
8 0.207 1.257 22 1.620 9.457
9 0.191 1.572 23 1.882 10.420

10 0.198 1.980 24 2.292 11.382
11 0.209 2.358 25 2.823 12.470
12 0.153 2.858 26 3.353 13.662
13 0.371 3.161 27 4.154 14.854
14 0.308 3.694 28 5.030 16.040
15 0.272 4.135 29 5.815 17.384
16 0.477 4.781 30 6.978 18.617

Table 2. Results for 50 tested full rank matrices for each rank n, n = 3, ..., 30.

mathematical problem of whether the vector subspace X = [x1, ..., xn] is a lattice-subspace of
C[a, b], where x1, ..., xn are linearly independent positive functions in C[a, b].

4.1 Preliminaries and notation

Let C[a, b]+ be the positive cone of C[a, b] and assume that X is a subspace of C[a, b]. The
induced ordering on X is the ordering defined by X+ = X ∩ C[a, b]+ (induced cone of X). An
ordered subspace of C[a, b] is a subspace of C[a, b] under the induced ordering. A lattice-subspace
of C[a, b] is an ordered subspace X of C[a, b] which is a vector lattice in its own, that is, for
each x, y ∈ X the supremum and the infimum of the set {x, y} exists in X. If X is a lattice-
subspace of C[a, b] then we will denote by x!y the supremum of the set {x, y} in X. Similarly,
x " y stands for the infimum of the set {x, y} in X. If x ∨ y denotes the supremum and x ∧ y
the infimum in E of the set {x, y} and we suppose that x " y, x ∧ y, x ∨ y, x!y exists, then it
follows that

x " y ≤ x ∧ y ≤ x ∨ y ≤ x!y (1)

For example, consider C[0, 1], the space of all continuous real functions in the interval [0, 1]
and X = {ax + b|a, b ∈ R}. Then X is a lattice-subspace of C[0, 1] and (1) holds for each
x, y ∈ X (Figure 2).
One of the most serious difficulties in the study of lattice-subspaces comes from the fact that
the supremum and the infimum depend both on the subspace.
For a general definition of a positive basis, let E be a (partially) ordered Banach space. Then a
sequence {en} of positive vectors of E is a positive basis if it is a Schauder basis of E and

E+ = {x =
∞

∑
i=1

λiei ∈ E|λn ≥ 0, for all n ∈ N}.

Equivalently, one can say that {en} is a positive basis of E if

x =
∞

∑
i=1

λiei ≥ 0 ⇔ λn ≥ 0, for all n ∈ N.

Let Y be a closed subspace of E = C[a, b] with basis {bn} (not necessarily positive). Fix t ∈
[a, b] and m ∈ N. Following the terminology introduced in Polyrakis (1996), if bm(t) (= 0 and
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1

Fig. 2. Relation (1) for x=t, y=1-t,t∈[0,1].

bn(t) = 0 for each n "= m, then we shall say that the point t is an m-node (or simply a node) of the
basis {bn}. If for each n there exists an n-node tn of the basis {bn}, then we shall say that {bn}
is a basis of Y with nodes and that tn is a sequence with nodes of {bn}. If dim Y = n and for each
m ∈ {1, 2, ..., n} there exists an m-node tm of the basis of Y, then we shall say that {b1, b2, ..., bn}
is a basis of Y with nodes and that the points t1, t2, ..., tn are nodes of the basis {b1, b2, ..., bn}.
The support of a function x ∈ C[a, b] is the closure of the set {t ∈ [a, b] : x(t) > 0} and shall be
denoted by suppx.

4.2 The mathematical problem

In this section, we present the method developed in Polyrakis (1996), for the determination
of the finite-dimensional lattice-subspaces of C[a, b] and we shall discuss the necessary and
sufficient conditions for a collection of linearly independent, positive functions, x1, x2, ..., xn of
C[a, b] to generate a lattice-subspace. Recall that the Wronski determinant of the functions xi,
i = 1, ..., n is the n × n determinant which ith row is constituted of the (i − 1)th derivatives of
the functions xi. Our first approach to the problem is given through the following Wronskian
criterion:

Theorem 0.3. Consider the closed interval [a, b] of R and dim X > 2, where X = [x1, x2, ..., xn].
Suppose that (c, d) is an open interval of R which contains [a, b]. If the functions xi have continuous
derivatives up to the nth order in (c, d) and the Wronskian of the functions xi is nonzero for any point
of (c, d), then X is not a lattice-subspace of C[a, b].

As in the case of R
k, let x1, ..., xn in C[a, b], we shall denote by z the sum z = ∑

n
i=1 xi and by β

the function β : [a, b] → R
n such that

β(t) =
( x1(t)

z(t)
,

x2(t)

z(t)
, ...,

xn(t)

z(t)

)

for each t ∈ [a, b] with z(t) > 0. We shall refer to β as the basic curve of the functions
x1, x2, ..., xn. Also, we shall denote by D(β) the domain and by R(β) the range of the basic
curve β of x1, x2, ..., xn. If K is a subset of R

n then we shall denote by K the closure of K, by
int(K) the interior of K and by ∂K the boundary of K. We shall denote by co(K) the convex
hull of K and by co(K) the closure of co(K).
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The following theorem, is a criterion for lattice-subspaces and provides a full answer to the
problem of whether a collection of positive functions x1, x2, ..., xn of C[a, b] generates a lattice-
subspace. In addition, if we are in the case of a lattice-subspace then the theorem determines
a positive basis for X = [x1, x2, ..., xn].

Theorem 0.4. The following statements are equivalent,

(i) X is a lattice-subspace of C[a, b].

(ii) There exist n linearly independent P1, P2, ..., Pn vectors in R
n, belonging to the closure of the

range of β such that for each t ∈ D(β) the vector β(t) is a convex combination of the vectors
P1, P2, ..., Pn, i.e., R(β) ⊆ co({P1, P2, ..., Pn}).

If (ii) is true, Pi = limν→∞ β(ωiν) for each i, A is the n × n matrix whose ith column is the
vector Pi and b1, b2, ..., bn are the functions defined by the formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))
T ,

then X has the following properties:

(a) The set {b1, b2, ..., bn} is a positive basis of X. In addition, if ti is a limit point of the sequence
{ωiν : ν = 1, 2, ...}, then ti ∈ suppbi and bk(ti) = 0, for each k &= i.

(b) The closed convex hull of R(β) and the convex polygon with vertices the points P1, P2, ..., Pn

coincide.

(c) If Pk = β(tk), then tk is a k-node of the basis {b1, b2, ..., bn}.

(d) If Pk = β(tk) for some interior point tk of [a, b] and xi are C2− functions in a neighborhood of
tk, then

β′(tk) = 0.

The set E(β) is the extreme subset of the basic curve β if there exists a subset G of R(β) consisting
of n linearly independent vectors such that R(β) ⊆ co(G), then we put E(β) = G, otherwise
we put E(β) = ∅.
From Theorem 0.4 and the preceding definition the following proposition should be immedi-
ate.

Proposition 0.1. The subspace X satisfies the properties

(i) X is a lattice-subspace if and only if E(β) &= ∅.

(ii) If β(t) ∈ E(β), then t is a node of the positive basis of X.

(iii) X has a positive basis with nodes if and only if E(β) is a nonempty subset of R(β).

From Theorem 0.4 it is evident that if P ∈ E(β) and P /∈ R(β), then we have that P =
limν→∞ β(tν), where tν is a sequence of D(β) having all limit points in the boundary ∂D(β) of
D(β).
So, the limit set L(β) of the curve β is defined as follows:

L(β) = {P ∈ R
n : ∃{tν} ⊆ D(β) with its limit points in ∂D(β), P = lim

ν→∞

β(tν)}.

Also, if a, b ∈ D(β) then we shall denote by β(∂[a, b]) the set

β(∂[a, b]) = {β(a), β(b)}.
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If t is an interior point of [a, b] and β(t) ∈ E(β), then t is a root of the equation

β′(t) = 0, (2)

and we shall denote by I(β) the images of the roots of equation (2), i.e.,

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)}.

Any subset of L(β) ∪ I(β) ∪ β(∂[a, b]) consisting of n linearly independent vectors will be
called a possible extreme subset of β.

Proposition 0.2. If the functions x1, x2, ..., xn are C2−functions in the set Int([a, b]) ∩ D(β), then
E(β) ⊆ L(β) ∪ I(β) ∪ β(∂[a, b]).

The set β(∂[a, b]) is known because ∂[a, b] = {a, b} and if D(β) = [a, b] then L(β) = ∅. In
addition, if we assume that the domain of β has the form

D(β) = [a, t1) ∪ (t1, t2) ∪ ... ∪ (tn−1, tn) ∪ (tn, b]

and the limits
Pi = lim

t→ti

β(t)

exist for each i, then
L(β) = {P1, P2, ..., Pn}.

In view of Proposition 0.2 one has to determine the set L(β) ∪ I(β) ∪ β(∂[a, b]) and then must
investigate when one of the possible extreme subsets of β is indeed an extreme subset of β.
The details are included in the next algorithm.

4.3 The algorithm

Based upon Theorem 0.3, Theorem 0.4 and the discussion in Subsection 4.2, next, we illustrate
the steps of an algorithm in order to decide whether the collection {x1, x2, ..., xn} generates a
lattice-subspace.

(1) Does the Wronskian of the functions x1, x2, ..., xn have at least one root in the interval
[a, b]?

(2) Determine the sets L(β), I(β), β(∂[a, b]) and the possible extreme subsets of β.

(3) Is one of the possible extreme subsets an extreme subset of β ?

(4) If step (3) holds, determine a positive basis of X.

5. The computational method

5.1 Method presentation

In this section, we present a procedure that will accurately implement the ideas of algorithm
4.3 while the main concern is to further calculate the positive basis (if one exists) in order to
provide an exact description of the lattice-subspace. So, the first step of our approach consists
of describing the functionality of the functions wr, V, L, I, sisets and xitest from Katsikis
(2008).
According to Theorem 0.3, function wr checks if the Wronskian of the given collection
{x1, x2, ..., xn} of C[a, b] has at least one root in the interval [a, b]. In addition, the wr function
provides the roots (if there exist any) of the Wronskian. So, in this case the program responds
with the output:
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The Wronskian has at least one root in [a,b]

and it yields the roots of the Wronskian. If, instead, the Wronskian does not have any roots in
the interval [a, b], then the program provides only the roots outside the interval [a, b] (if there
exist any).
Suppose that the given collection passes the Wronskian test, then we try to determine the
possible extreme subsets of the basic curve β starting with the computation of the set β(∂[a, b]).
So, in our next step we call the function V. Function V first checks whether there are any real
roots of the function z(t) = ∑

n
i=1 xi. If that is the case it displays the message

Possible non empty limit set

so that we can continue in order to determine the limit set of the curve β. Function V responds
with a matrix whose columns are the elements of the set β(∂[a, b]).
In the case of a non empty limit set, we use the function L in order to determine the limit set
of the curve β. The output of the function L is a matrix whose columns are the elements of the
set L(β).
In order to determine the set

I(β) = {β(t) : t ∈ Int([a, b]) ∩ D(β) and t is root of the equation (2)},

we use the function I. The function I provides a matrix whose columns are the elements of the
set I(β).
Suppose that {P1, ..., Pn} is a possible extreme subset of β and

β(t) = ξ1(t)P1 + ... + ξn(t)Pn.

In order to prove that {P1, ..., Pn} is an extreme subset of β we must show that ξi(t) ≥ 0, for
each i and each t ∈ [a, b]. So, for the next step in our approach, we need to construct all the
possible extreme subsets of β and check whether there exists an extreme subset of β. To this
end, we make use of the function sisets in order to generate all the possible extreme subsets of
the curve β. Note that, sisets calls automatically the function xitest in order to determine the
domain where each one of the ξi(t) are negative. Let us denote by ∆i the domain of negativity
that corresponds to the function ξi(t), for i = 1, ..., n then, if for at least one of the ξi(t), ∆i

has non empty intersection with the interval [a, b], the set {P1, ..., Pn} is not an extreme subset
of β. In the case where an extreme subset exists we determine the positive basis by using the
formula

(b1(t), b2(t), ..., bn(t)) = A−1(x1(t), x2(t), ..., xn(t))
T ,

from Theorem 0.4.

5.2 Numerical examples

For the purpose of monitoring the performance, in the following we present some examples in
C[a, b] for various collections of functions together with the time responses we obtained when
running these examples (Table 3).

Example 0.6. Let x1(t) = t2 − 2t + 2, x2(t) = −t3 + 2t2 − t + 2 and x3(t) = t3 − 3t2 + 3t and
X be the subspace of C[0, 2] generated by the functions x1, x2, x3.
Our first step consists of loading the data of the problem by using the following commands:
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