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1. Introduction

The work in this chapter presents some applications of recurrent neural networks to general
optimization problems. While particular problems presented in this research relates to
linear, quadratic and nonlinear programming, monotone variational inequalities and
complementarity problems, I fell that the methodology by which one solves these problems
are quite general and warrants attention in and of themselves. Correspondingly, I hope that
this material will be taken as both a response to a particular problem and a general method.
Constrained optimization problems are defined as the mathematical representation of real
world problems concerned with the determination of a minimum or a maximum of a
function of several variables, which are required to satisfy a number of constraints. Such
function optimization are sought in diverse fields, including mechanical, electrical and
industrial engineering, operational research, management sciences, computer sciences,
system analysis, economics, medical sciences, manufacturing, social and public planning
and image processing.

Although many classical optimization algorithms such as simplex, Karmarkar interior point,
direct and indirect techniques are given to solve linear, quadratic and nonlinear
optimization problems, in many applications, it is desire to have real-time on-line solutions
of corresponding optimization problems. However, traditional optimization algorithms are
not suitable for real-time on-line implementation on the computer. The dynamical system
approach is one of the promising approaches that can handle these difficulties.

In the recent years many artificial neural networks models developed to solve optimization
problems. Several basic and advance questions associated with these models have
motivated the studies presented in this chapter.

The goal of this chapter is twofold. The theoretical areas of interest include fundamental
methods, models and algorithms for solving general optimization problems using artificial
recurrent neural networks. On the other hand, it will try to present and discuss the
numerical analysis for the corresponding models, simulations and applications of recurrent
neural networks that solve various practical optimization problems.

Recurrent dynamical neural network is an area of neural networks which is one of the
fundamental topics of the subject, and combines many mathematical concepts like ordinary
and partial differential equations, dynamical systems, unconstrained and constrained
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256 Recurrent Neural Networks

optimization, local and global optima for a function of several variables, sigmoid functions,
error estimation, integration and gradient descent methods. Students are often familiar with
the local optima of a function with one variable before embarking on an undergraduate
course, and in practical way will have integrals which they can not express in closed
analytical form. Here we must compute the optimal solution for the constrained
optimization problem with objective function of several variables that corresponds with the
solution of a system of ordinary differential equations. From mathematical point of the view
convergence of the solution and stability of the method has quiet importance, while as an
engineer we might look for an algorithm that works for many different problems.

The troublesome problem of just what numerical optimization analysis is arises in recurrent
dynamical neural network, as it does in other branches of the field. Should the optimization
analysis part be the main aim, or is it the generation of an efficient, tested and validated
program which is important? The answer is surely that both areas are important, but at the
end of the day numerical analysis and mathematical techniques are some service industry
and what the customers want is reliable codes to solve their problems. The theoretical
analysis forms part of the reliability assessment, as it determines bounds on errors and
levels of stability. These error bounds form the basis of a theoretical justification for the
solution convergence of the corresponding numerical algorithm to the actual solution of the
original neural network model.

The chapter covers a range of topics from early undergraduate work on constrained linear
and quadratic programming through to recent research on nonlinear constrained
optimization problems and recurrent neural networks. The source of the optimization work
is the lecture notes for graduate students participated in my advance linear programming
and optimization courses. The notes have grown in sixteen years of teaching the subject. The
work on recurrent neural network models is based partly on my own research. It has taken
annual updates as new models have proposed in some of the thesis of my postgraduate
students during the last ten years. This research is enriched by the huge literature which has
grown in the last two decades.

I am grateful to the applied mathematics department here at Tarbiat Modares University
which has made available the technical equipment for the work. The novel models and
numerical programs have been tested, compared and improved using the various
computers which have been installed over the years.

In the next section we study solution methods for general optimization problems under the
assumption that there exists an optimal solution.

2. Optimization problems

In this section, we shall first consider an important class of constrained linear programming
problems and their general dual form. Second, we shall introduce primal and dual form of a
constrained convex quadratic programming problem. Then we will consider the nonlinear
convex programming problems. This, as we shall see, leads to discovering some primal-dual
relationships that exists for corresponding class of constrained optimization problems.
Among the class of constrained optimization problems, an important and richly studied
subclass of problem is that of convex programs.

Definition 1. The problem of maximizing a concave function or minimizing a convex
function over a convex set is known as convex programming.
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2.1 Constrained linear optimization problems
A problem of the form

Maximize z=c"x
Subject to
(PLP) @
Ax>b

x>0

is said to be a primal linear programming problem, where x€R",ceR",AeR"™",beR".

m

Here A=(a,)is the coefficient matrix of the inequality constraints, b=(b,,...,b,)"is the

vector of constants, the components of ¢ = (c,,...,c,) are called cost factors, x = (x,,...,x,)" is

the vector of variables, called the decision variables. Associated with (PLP) is the linear
programming problem (DLP), called the dual of (PLP):

Minimize v=>b"y
Subject to
(DLP) , 2
Ay<C
y=0
In (DLP) formulation ) is the vector of m dual variables. We can define the dual of any

linear problem after writing it in the primal form (PLP), [1].

Remark 1. Primal and dual linear programs (PLP) and (DLP) are convex programs since the
set of feasible solutions to a linear program is a convex set and a linear objective function is
both convex and concave.

2.2 Constrained quadratic optimization problems
We consider a primal quadratic programming problem in

1
Minimize — f(x)= ExT Ax+c'x

subject to gx)=Dx-b=0, x>0, 3)

Where A is a mxm symmetric positive semidefinite matrix, D is a nxm matrix and rank
(D)= m, beR", x,c € R". We define the dual problem (DQP) as follows:

1
Minimize f(x)= —ExTAx-i-bTy

Subject to g(x)=D"y-Vf(x)<0, (4)

where Vf(x)=Ax+c, yeR".
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Lemma 1. The primal quadratic program (PLP) and its dual (DLP) are convex programs.
1 1
This is because the quadratic forms Exr Ax+c'x and —Exr Ax+b"y are convex if and

only if A4 is a positive semidefinite matrix (for example see [2]). Clearly the standard linear
programming problem

Maximize z=c"x

Subject to
©)
Dx=b
x20
and its dual
Minimize v=>b"y
Subject to
r (6)
Ay=c

y is free in sign,

are special cases of the (3) and (4) respectively, for which A=0

mxm *

2.3 Constrained nonlinear optimization problems
Consider the following nonlinear convex programming problem (NP) with nonlinear
constraints:

(NP) Minimize f(x)

Subject to g(x) <0, x € Q (7)

where ¥=(x,....x,) €R", f:R—>R". g(x)=(g(x),...,g,(x)) is m-dimensional vector-
valued continuous function of n variables. The functions f and g,,...,g, assumed to be
convex and twice differentiable for Q) < R”".

Definition 2. A vector X is called a feasible solution to (NP) if and only if x satisfies m+n

constraints of the (NP).
Definition 3. Any feasible solution x is said to be a regular point if the gradients of

g;(x), Vg,(x)for (iel={j|g,(x)=0}), arelinearly independent.

Definition 4. The (NP) has at least one optimal solution [3] when
i.  the set of all feasible solutions is nonempty and bounded,

ii. the feasible set is unbounded but f(x) has a bound level set.

2.4 Monotone variational inequalities and complementarity problems
The problem of finding a vector point x € R” such that
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x'eS, (F(x),x-x)>0 forall xe$§ (8)

where x =(x,,...,x,)’ € R", is called the monotone variational inequality problem [4]. F is
a continuous mapping from R" into itself, and § = {x €ER"|Ax-b20, Bx=c, x20 }

where A€ R™, rank (4A)=m, BeR™, rank(B)=r,0<m, r<n, beR", ceR’,
and S is a nonempty closed convex subset of R”and (., .) denotes the inner product in

R". In the special case whereS =R/, problem (8) can be rewritten as the following

nonlinear complementarity problem
x>0, F(x)=0, (', F(x))=0. e

For § = R", problem (8) reduces to solving the system of nonlinear equation F(x)=0, [5].

Remark 2. For a continuously differentiable function f, if X " is a solution of the problem

Minimize{f(x)|xeS} ; S:{xeR” | Ax—=b>0, Bx=c, x>0 } then x'is also a solution

of (8) with F((x) =Vf(x), and Vf(x)= (af /0x,,...,0f / Ox, )T € R" is the gradient vector of
f(x) atpointx.

Definition 5. [6] A mapping F : R" — R" is said to be monotone on S if

(F(x)-F(x"),x—=x"%>0 forall x,x'€S. (10)

F is strictly monotone on S, if strict inequality holds in (10) whenever x # x'.
Lemma 2. If Fis continuously differentiable and the Jacobean matrix VF is positive
definite for allx € S, i.e.

(d,VFd)>0 forall xeS, deR" (d#0).

then F is strictly monotone on S .

Proof. For example see [7].

The variational inequalities problems have wide variety of scientific and engineering
applications (for example see [2], [6], [8] to [11]). In many applications, real-time on-line
solutions of (8) and (9) are desired. However, traditional algorithms (see [2], [6], [8], [12] and
[13]) are not suitable for real-time on-line implementation on the computer. One promising
approach to handle these problems is to employ an artificial neural network based on circuit
implementation. Many continuous-time neural networks for constrained optimization
problems, have been developed ([14] to [18]) using network parameters. To avoid using
penalty parameters, some significant works have been done in recent years. A few primal
and dual neural networks with two-layer and one-layer structure were developed in [14],
[17] and [18]. These neural networks were proved to be globally convergent to an exact
solution.

In the next section, we discuss some general ideas about artificial neural networks.
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3. Artificial neural networks

Artificial neural networks consist of a calculation unit called neuron. Every neuron has some
real valued inputs. Inside every neuron, each input is multiplied with corresponding neural
coefficient defining its value. The sum of all these products adds to a value called bias.
Finally, activation function affects this sum and determines the real valued output of the
neuron feed forwardly [19] or by some feed back [20].

3.1 Feed forward back propagation neural networks

Primary discussions regarding artificial neural networks introduced in the 40's with
presentation of the feed forward neural networks. Artificial neural networks in some extents
are modeled from the brain and neural system of the human, which are able to give
acceptable solutions based on correct information records from the problem.

The basic structure for the feed forward back propagating neural network (nets without feed
back) consists of some number of nodes in the input layer, the hidden layer, and the output
layer that has one node. The sigmoid functions approximate linear functions, yet allow the
update scheme to propagate backwards through differentiable functions. The manner in
which input data generates output data for a given neural network depends on the
interconnection weights. These weights are adjusted to reduce the error between the neural
network outputs and the actual output values. i.e.

actual net

1 n
E=EZ( 0, -0,) (11)
i=1

where O is the actual output for the i"” training point. O is the estimated value from

the neural network for the i” training point from the neural network. 7 is the total number
of training points obtained by taking known data points for a given task. Here the objective
is to train the network so that the output from the network minimizes equation (11).

3.2 Recurrent dynamical artificial neural network

Khanna in year 1990 [21], describes associative memory as "the ability to get from one
internal representation to another or to infer a complex representation from a portion of it".
Effectively our goal in applying neural networks is to create a functional mapping from
steady optimization space to either dynamical time dependent space or some parameter
space. Two approaches to achieving this mapping have been extensively studied by Xia [14],
[15] and [22] to [25], Malek [4], [16], [26] and [27] and their coauthors.

The first approach relies on a structure with adjustable parameters. On the basis of known
input/output pairs, these parameters are selected or changed. If this approach is successful,
the appropriate selection of these parameters will yield a mapping device which will always
provide the associated output values for a given input.

The second approach uses information from the primal and dual optimization problem and
applied primarily by Malek in year 2005 [16]. The basis for such systems is a precisely
defined set of ordinary differential equations that automatically satisfy the related primal
and dual optimization problems simultaneously. These information are defined by the
cumulative designing the system and are laid out in a hierarchical fashion. The system then
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performs a sequential set of values, using the output from the previous as the input to the
next. If successful, a system can be created which will associate input with its correlated
output. The challenge is to make the system complete enough (consistent, convergent and
stable) to always associate the correct output with a given input.

The primary difference in these two approaches is that adjustable parameters in the first are
a prior, i.e., the parameters are settled upon and maintained before data is introduced into
the system. The second approach has no adjustable parameters thus its model is simple to
use. The advantage of this approach is that in this way, we can obtain a solution for the
given real life problem, however we wish to assume a prior knowledge of relationships
between constrained optimization problem and dynamical system. Moreover the solution
for optimization problem consists of a solution for real life problem, since optimization
problem is simulated from the corresponding real life problem.

The work presented in this section applies recurrent dynamical artificial neural network. We
shall emphasize on networks that do not use network parameters or penalty parameters in
advance. This approach is a metric driven method. i.e., we establish distance between the
input and the neural network output. For a given input, the neural network outputs the
value whose distance from the given input is smallest using linear constraint least square
technique or any other related method. One manner of doing this mapping is to associate
the equilibrium points of a dynamical system with the optimal points of constraint
optimization problem. When the input is the initial condition of the dynamical system, the
system will converge to an equilibrium point. Thus this optimal solution contains a solution
that minimizes equation (11), where we use the feed back process to produce corresponding
optimal weights. This means that the artificial neural network structure is recurrent.

The structure of the recurrent dynamical artificial neural network is different from the feed
forward artificial neural network. However it is possible to make some corresponding
relations between these two neural networks (see Rumelhart 1986, [28]). i.e., there is a sense
in which the error back propagation scheme may be applied to networks that contain feed
back, (see Fig. 3.1). The feed forward network in Fig. 3.1 may be represented to simulate a
feed back network with a given set of weight and bias parameters.

Having developed the equivalent structure as shown in Fig. 3.2, it becomes proper to say
"the goal for recurrent dynamical artificial neural network, as with the back propagation
artificial neural network, is to minimize the error function given by equation (11).

Training of dynamical neural networks has received considerable attention in the last 30
years [20], [29] and [30]. The equations governing the behavior of the simplest supervised
recurrent dynamical neural network are

% =—u+ AS(u)+ B, Wipigiar =0 12)
u =AS@u")+ Bx (13)
y=CTu (14)

where S(u) = —

l+e
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is the sigmoid function. The adjustable parameters in this supervised recurrent dynamical
neural network are found in the A, B matrices and vector C. The inputx of the neural
network corresponds to the input data associated with a training point. This input is then
applied to the system governed by equation (12). When equation (13) reaches an equilibrium
value u* for this input, we obtain the output of the neural network by taking the dot product
of C and u* by equation (14). This neural network output will then compare with the actual
output. To update the elements of A, B, and Cone may use gradient descent method using

ou Ou Ou
— ,—,and —.
0A; 0B, oC,
This minimization task requires that the neural network possess enough parameter freedom
to enable each input set to generate an output close to the actual value. This is not a case in

many problems. Thus in the next section we emphasize on the unsupervised recurrent
dynamical artificial neural networks.

Feed forward network (back propagation)

Time level t

Time level t-1

Time level t-2

Feed back network (recurrent)

. byw, -
Unit 1 Unit 2

byw,

Fig. 3.1 Equivalent structures of a two unit network; Feed forward network, and feed back
network for a given biases b; and b, and weights w, and w, .

4. Networks dynamic analysis

For many times dependent cost functions an online optimizer on the basis of an analog
circuit [31], [32] and [33]) is desirable. Dynamic solvers or analog computer, was first
proposed by Dennis [34], Rybashov [35] and [36], Karpinskaya [37], and later studied by
Kenedy and Chua [38], Rodriguez-Vazquez et al. [39], Tank and Hopfield [31]. These
dynamic solvers usually employ neural networks since they have many advantages over the
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traditional algorithms. Massively parallel processing and fast convergence are two of the
most important advantages of the neural networks.

4.1 Models for linear programming

Use of neural network for the solution of linear programming problems goes back to 1985,
when Hopfield and Tank [31] provide fast algorithm based on analog electrical components.
Chen and Fang [40] in 1998 examined the theoretical properties of a method proposed by
Kennedy and Chua in 1987, [38]. Malek and Yari in year 2005 proposed a fully stable
artificial recurrent neural network model for the solution of primal linear programming
problems of the type (1):

dX(t +1) dy
=g [C— A (Y 4y )]

dt dt (15)
dy dx
LD tacx 0y

dt dt

where 77,7); and 7}, are rate of learning (in the neural network dynamic). They are step sizes

in the process of optimization computation. 77,7); and 17, can stay constant or vary in each

iteration.

Model (15) transfers the linear programming problem into a dynamical system of equations
and gives approximation solution to the exact solution only for primal variables. This means
that by the recurrent neural network model (15) dual optimum value for objective function
does not coincide exactly with the optimum value obtained from primal problem.

The second model proposed by Malek in the same article is in the following form [16]:

LD (8- w4 0
t dt (16)
V(i) o U -

By a WS -5)

where U =(X,Y) and V is the corresponding dual variable to the dual form of problem
Maximize 7 = [CT (X + 770;—)() -b'(Y+ 77%)}
t t

Subject to A(X + 772—):) <b

el d_X <0
dt (17)

dy
—A"(Y+n=—)<-C
( ndl)
dy

b —<0
dt

X+d—X20, Y+77d—Y20
dt dt
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Z is a block matrix of the form

A n4 0 0
— |10 -=c" o 0
A =

0 0 -4" -pd

0 0 0 b’

for 4

s C= (C", nc", =b", —nb"), b= (6,0,—¢,0). We shall see that, A is a (m+n+2) X
(2m+2n) matrix and C is a vector with 2m+2n components and b is(m+n+2)X1

vector.

The following lemma shows that this model solves both primal and dual problems of the
type (1) and (2) simultaneously.

Lemma 3. For X" =(x,x;,...,x,) the optimum solution U" =(X",Y") of problems in the

forms (PLP) and (DLP), is the optimum solution for (P-D) iff Z" the maximum value for Z

vanishes where d—X — 0 and d—Y —0.
dt dt

Proof: See [16].
These models need some network parameters 77,77, and 77, that must be fixed in the starting

time.

4.2 Models for quadratic programming
Xin-Yu Wu et al. [22] in year 1996 proposed the following neural network model to solve
problems (3) and (4)

i(x]__ B(D"y+ Ax+c)+ BA[x—(x+D"y— Ax—c) ]+ D" (Dx-b) 18)
di\y) |B{Dx—b+D[(x+D"y—-Ax—c)" —x]}

where ﬁ:||x—(x+DTy—Ax—c)+

Youshen Xia [14] considered the adjusted form of model (1) as follows

2
-
d(x) I+ A)[x—(x+D"y—Ax—c)" 1+ D" (Dx—b) (19)
dt\y ~D[x—(x+D"y—Ax—c)"]+Dx-b

where [ is the identity matrix.

Malek and Oskoei [26] proposed three novel models based on model (1) in the following
forms:

d (xj_{ny—Ax—c—A[x—(x+DTy—Ax—c)*]—DT(Dx—b)} )

dt y) -D(x+D"y—Ax—c)" +b
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Model (20) is a simplified model (18) of Xin-Yu Wu et al. Here one may concerne of
obtaining better accuracy for the final solutions, while we do not use expensive analog
multipliers of Xin-Yu Wu et al. Therefore the relative question might be: is there a simpler
neural network models in the manipulation of hardware tools. Malek & Oskoei [26] show
that for some examples model (20) converges to the exact solution with 13 exact decimal
points. While in the same conditions the solutions for neural network proposed by Xin-Yu
Wu agrees with the corresponding exact solution only up to 3 decimal points.
It is still possible to simplify model (20). Model (21) has the advantage of serious
simplification and good accuracy in the same time. It is in the form [26]:
d (xj U+ ADx—(x+D"y—Ax—-c)"] 1)
de\y D(x+D"y—Ax—c) b

Let us assume that
(x,y)eV¥Y,V¥Y = {(x, y)|y eR",xeR",x > O},

(x)" = I:(xl)*,___,(xm)* ]T and (x,)" =max{0,x,.} , for i =1,...,m. We proposed following

model:

i(xj:_{x—(x+DTy—Ax—c)+ } @)
dr\y D[(x+D"y—Ax—c)']1-b

in [26] which appears to be more efficient than the models (20) and (21) when we investigate
the complexity, complexity of individual neurons, stability, and accuracy of the solutions,
(see Tables 1 and 2 in section 5).

Model (22) does not use any projection operator in practice thus it is different and simpler
from the model proposed by Qing Tao et al. Here in model (9), unlike the Qing Tao's model
we do not use any extension of Newton's optimal descent flow equation to solve the
problem.

If we assume that « =(x+D"y—Ax—c) and f = D" (Dx—b), then models (22) and (19)

are in the following forms respectively [41]:

a-—x,

1)
Wy —Da +b.

(I+4) (a—x)-p,

£0)
S —Da +b.

The network circuit implementation for solving problems (3) and (4) whose dynamics are

governed by (23) are given in the Fig. 3.2. The circuit consists of adders (summing
amplifiers) and integrators. In the Fig. 3.2, vectors ¢ and b are external input vectors, while
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x and y are the network outputs. In this diagram dynamical process of vector « is the

same as what is given in [14]. A simplified block diagram of « is illustrated in Fig. 3.3 to
show how expensive it is using vector ¢ in the arbitrary model.

Malek & Alipour, Applied Mathematics and Computation 192 (2007) 27-39 We now
compare the network (24) with our proposed network in (23) for solving problems (2) and
(3). The network (24) is stable to exact solution and there are no parameters to set, but the
main disadvantage of it is that too many expensive analog multipliers (¢, £ ) are required

for large scale quadratic programming problems, thus the set of hardware implementation
is expensive and therefore greatly affect the accuracy of solutions. Neural network model
(23) does not need to use f and therefore in practice needs relatively less computational

efforts. Moreover, this model is globally convergence to the corresponding exact solution
independent of where and how to choose the starting input initial values. Model (23) not
only has the same global convergence property as the model (24), but also has some more
advantages, plus simplicity. Network (23) is better than network (24) in the sense of
complexity, i.e. usage analog multipliers and hardware implementations.

x(0)
. J‘ ¥
e l
@_“; Pruc&s!ﬂg 4_C.
A
b

+

A
5
\

—
0
y(0)

Fig. 3.2. A simplified neural network diagram for model (23): Malek & Alipour, Applied
Mathematics and Computation 192 (2007) 27-39

Remark 3. Model in (23) may be used for solving general standard linear programming
problems by setting A =0, .

Simulation and numerical results are discussed in the next section.

Theorem 1. The recurrent dynamic artificial neural network (23) is globally convergent to
the solution set of the primal and dual quadratic programming problems (3) and (4).

Proof. Let in the proposed model of Qing Tao et al. [17], general projection operator to be
the identity operator. Then the proof is similar to Qing Tao's proof. (see [26] and also see
Theorem 4)

In the reminder of this subsection we will try to clarify the ideas in Theorem 1 from
theoretical point of view (see [41]).
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MY Va XX X,

%

Fig. 3.3. A simplified block diagram for & , where 4 =(a,)and D=(d,):

In this section, we shall study the dynamics of network (23).We define a specific Liapunov
function and get the global convergence of network (23).We first discuss some prerequisites.
Definition 6. A continuous-time neural network is said to be globally convergent if for any
given initial point, the trajectory of the dynamic system converges to an equilibrium point.

Lemma 4. Let Y be a closed convex set of R” .Then

[v-p, (v)]T[pW (v)-x]20veR".xeV¥

and ||pw v)- p. (u)”S v —ul.,v,ueRr"

where "" denote /, norm and the projection operator p,, (u) is defined by

p. (u)=arg min e = v|. Proof. See [42].
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Remark 4. Since R" = {x| X 0} is a closed convex and by the property of a projection on a

[v-) ][ -%]20,5cR",veR".

Theorem 2. X,y are solutions of problems (3) and (4), respectively, if and only if

(x* R y*) satisfies

X +D'y —Ax —¢) =x,
{( y ) )

D(x"+D"y—Ax" —c)" =b.
Proof . By Karush-Kuhn-Tucker theorem for convex programming problem [43] we have

x",y" are solutions of problems (3) and (4), respectively, if and only if (x* ) y*) satisfies

Dx" =b,x" >0,
xT(D"y —Ax" -¢)=0, (26)
D"y —Ax" —c<0.

Clearly, that (26) is equivalent to (25).
We will now prove a theorem that is a base for proving the global convergence of model (23).

Theorem 3. Let F; (x,y) :%(x_x*)r A(x—x*)+%"x—x*"2 and

1 .
Fz(x,y):E"y—y "2 and F(x,y):E(x,y)+l72(x,y).Then

%F(x,y)ﬁ—(x—x*)TA(x—x*)— x—(x+DTy—Ax—c)+ 2

Proof .
d
dt
= (A(x—x*))r ((x+DTy—Ax—c)+ —x)+(x—x*)r ((x+DTy—Ax—c)+ —x)
Note that

d w7 - .
EFI(x,y)z(A(x—x )) 7):+(x—x )

(A(x—x*))r ((x+DTy—Ax—c)* —x)

:(A(x—x*))r((x+DTy—Ax—c)+ -X +x —x)

:(A(x—x*))r (x* —x)+((x+DTy—Ax—c)+ —x*)T (Ax+c)
~((x+D y—Ax—c)' —x*)r (4x +c)
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On the other hand,

T

(x+D'y—Ax—c)' —x) (Ax+c)

) (
(x+D"y—Ax—c) —x )I(Ax+c D'y—x+(x+D"y—Ax— c))

(
(
+((x+DTy—Ax—c)+—x )T(x (x+D"y— Ax— c))
( )

+((x+D"y—Ax—c)" —x

(x+D"y—Ax—c)" —x) (Ax+c—DTy—x+(x+DTy—Ax—c)*)

(x+D"y—Ax—c) —x) (x—(x+DTy—Ax—c)+)
x— ) (x—(x-l—DTy—Ax—c)*)

+
+

+((x+D"y—Ax—c)* —x) D'y

(
(
(
(

and
((x+D"y—Ax—c) —x') (4x"+¢)
:((x+DTy—Ax—c)T—x) (Ax +c-D"y") +((x+D"y—Ax—c)’ —x) D'y
So
d NP
—F (o) =(Ae=x) (x=)
+(x+Dy—Ax—c) =x') (Ax+e—D'y—x+(x+Dy-Ax—c)’)
|-G+ D'y—Ax—c) | ~((+ D y—Ax—c) =x) (A +c-D'y)
+(x+D'y-Ax—c) =x') (D'y-D'y").
Thus by (22) we have

((x+DTy—Ax—c)+—x*)T(DTy*—Ax*—C)
:((x+DTy—Ax—c)*)T( y —Ax —c) (D y —Ax —c)
:((x+DTy—Ax—c)+)T( Yy —Ax —c)SO

Using lemma 4 we have

RGeS =(x=x ) o)

dt

+((x+D"y—Ax—c) -x") (D'y-D"y").
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Since
d T d
ZFz(xay):(y‘y )Tj):
=(»-»") (-D(x+D"y—Ax—c)' +Dx")
then

2

%F(x,y)s—(x—x*)TA(x—x*)— x—(x+DTy—Ax—c)+

The proof is complete.
Theorem 4. Network (4) is globally convergent to the solutions set of problems (3) and (4).
Proof . Using lemma 4, the right hand side of (23) is a Lipschitz mapping. From the existence

theory of ordinary differential equations [44], we can assume that for any (x,,»,) € R" x R"

there exists a unique solution (x(t), y(t)) of (4) and its maximal existence interval

[0,4(x,. ) -
Let x'," be solutions of problems (3) and (4) respectively. Let

V= {(x, y)ER"XR"

F(x,y) < %(xﬂ —x) A(x, —x") -i—%"x—x*"2 + %"y—y*"z}
Using theorem 3, F(x,y) is a Liapunov function of system (23) on V. Since
(x—x) A(x—x")=0 we have
Pz x| g |

T2 2 '

This proves that V is bounded. By the extension theory of ordinary differential equations [],
A(x,,,) = +oo .Using the LaSalle invariant principle [45], there exists a constant k, such that

(x(t), y(t)) —> M N F'(k),t > 40 , where M is the maximal invariant set in

Q= {(x,y)

d _
EF(x,y) =0,(x,y) € V}.

Now we will prove that every point in set M is a solution of problems (3) and (4).
V(x,y)eN ,let ()cI ®), (t)) be a solution of equation (23) with initial point(x,,y,), its

maximal existence interval is [O, Ax, 0, )) By the invariant of M and bounded ness of V, we
have A(x,y,) =+, x,(1)=x,. If (x,y) is not a solution of problems (3) and (4), using
theorem 2 and 3 D(x] +D"y, — Ax, — c)+ # b . From (23)

We have " Y (t)" — 0 as t — oo . It is contradictory to the bound ness of V. Thus (x,,y,) is

a solution of problems (3) and (4). Since (x,,,) is arbitrary the proof is completed.
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4.3 Models for nonlinear programming
Malek and Yashtini proposed the following recurrent dynamical artificial neural network
[46]

d [)CJ:[PQ[X—Vf(X)—Vg(X)y]—X] o
dt [y+g()] -y ’
for the solution of nonlinear programming problem:
Minimize  f(x)
Subject to Ax<bh (28)

xeQ
where 4 € R, beR".

4.4 Models for variational inequalities
The systems governing the behavior of the recurrent dynamical artificial network
corresponding to the variational inequalities problem (8) are [4]

x (x-F(x)+A"y+B"z)" —x
du d .
=—|y|= (y—Ax+b)y -y (29)

dt
z —Bx+c

X =(x'-Fx)+A4"y +B'z")"
y =(y —4Ax +b) (30)

Bx =c

where (xl.)+:max{0,xl.}for all i=1,...,n and (yj)*zmax{O,yj} for all j=1,....m,

and x" is the solution of monotone variational inequalities problem (...).
Now, let x(.), ¥(.) and z(.) be some dependent variables to time f. We initiate u,,., =0 to

initial

the system governed by (29), when system (30) reaches an equilibrium value u for this
input, we obtain the output of the neural network. The goal for the continuous time based
dynamical system described by two systems (29) and (30), is to minimize the error function
given by equation (11).

Yashtini and Malek [4] proved that the recurrent neural network based on the systems (29)
and (30) are stable in the sense of Lyapunov and globally convergent to an optimal solution.

5. Work examples

For the following three models proposed by Xia, Malek and their coauthors solve quadratic
programming problem in Example 1.
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