
i

An Introduction to
Statistical Signal Processing

Pr(f ∈ F ) = P ({ω : ω ∈ F}) = P (f−1(F ))

f−1(F )
f

F

-

January 4, 2011



ii

An Introduction to

Statistical Signal Processing

Robert M. Gray

and

Lee D. Davisson

Information Systems Laboratory

Department of Electrical Engineering

Stanford University

and

Department of Electrical Engineering and Computer Science

University of Maryland

c©2004 by Cambridge University Press. Copies of the pdf file may be

downloaded for individual use, but multiple copies cannot be made or printed

without permission.



iii

to our Families



Contents

Preface page ix

Acknowledgements xii

Glossary xiii

1 Introduction 1

2 Probability 10

2.1 Introduction 10

2.2 Spinning pointers and flipping coins 14

2.3 Probability spaces 22

2.4 Discrete probability spaces 44

2.5 Continuous probability spaces 54

2.6 Independence 68

2.7 Elementary conditional probability 70

2.8 Problems 73

3 Random variables, vectors, and processes 82

3.1 Introduction 82

3.2 Random variables 93

3.3 Distributions of random variables 102

3.4 Random vectors and random processes 112

3.5 Distributions of random vectors 115

3.6 Independent random variables 124

3.7 Conditional distributions 127

3.8 Statistical detection and classification 132

3.9 Additive noise 135

3.10 Binary detection in Gaussian noise 142

3.11 Statistical estimation 144

3.12 Characteristic functions 145

3.13 Gaussian random vectors 151

3.14 Simple random processes 152

v



vi Contents

3.15 Directly given random processes 156

3.16 Discrete time Markov processes 158

3.17 ⋆Nonelementary conditional probability 167

3.18 Problems 168

4 Expectation and averages 182

4.1 Averages 182

4.2 Expectation 185

4.3 Functions of random variables 188

4.4 Functions of several random variables 195

4.5 Properties of expectation 195

4.6 Examples 197

4.7 Conditional expectation 206

4.8 ⋆Jointly Gaussian vectors 209

4.9 Expectation as estimation 211

4.10 ⋆Implications for linear estimation 218

4.11 Correlation and linear estimation 221

4.12 Correlation and covariance functions 228

4.13 ⋆The central limit theorem 231

4.14 Sample averages 234

4.15 Convergence of random variables 236

4.16 Weak law of large numbers 243

4.17 ⋆Strong law of large numbers 245

4.18 Stationarity 249

4.19 Asymptotically uncorrelated processes 255

4.20 Problems 258

5 Second-order theory 275

5.1 Linear filtering of random processes 276

5.2 Linear systems I/O relations 278

5.3 Power spectral densities 284

5.4 Linearly filtered uncorrelated processes 286

5.5 Linear modulation 292

5.6 White noise 296

5.7 ⋆Time averages 299

5.8 ⋆Mean square calculus 303

5.9 ⋆Linear estimation and filtering 331

5.10 Problems 349

6 A menagerie of processes 363

6.1 Discrete time linear models 364

6.2 Sums of iid random variables 369



Contents vii

6.3 Independent stationary increment processes 370

6.4 ⋆Second-order moments of isi processes 373

6.5 Specification of continuous time isi processes 376

6.6 Moving-average and autoregressive processes 378

6.7 The discrete time Gauss–Markov process 380

6.8 Gaussian random processes 381

6.9 The Poisson counting process 382

6.10 Compound processes 385

6.11 Composite random processes 386

6.12 ⋆Exponential modulation 387

6.13 ⋆Thermal noise 392

6.14 Ergodicity 395

6.15 Random fields 398

6.16 Problems 400

Appendix A Preliminaries 411

A.1 Set theory 411

A.2 Examples of proofs 418

A.3 Mappings and functions 422

A.4 Linear algebra 423

A.5 Linear system fundamentals 427

A.6 Problems 431

Appendix B Sums and integrals 436

B.1 Summation 436

B.2 ⋆Double sums 439

B.3 Integration 441

B.4 ⋆The Lebesgue integral 443

Appendix C Common univariate distributions 446

Appendix D Supplementary reading 448

References 453

Index 457



Preface

The origins of this book lie in our earlier book Random Processes: A Math-

ematical Approach for Engineers (Prentice Hall, 1986). This book began as

a second edition to the earlier book and the basic goal remains unchanged

– to introduce the fundamental ideas and mechanics of random processes to

engineers in a way that accurately reflects the underlying mathematics, but

does not require an extensive mathematical background and does not bela-

bor detailed general proofs when simple cases suffice to get the basic ideas

across. In the years since the original book was published, however, it has

evolved into something bearing little resemblance to its ancestor. Numer-

ous improvements in the presentation of the material have been suggested

by colleagues, students, teaching assistants, and reviewers, and by our own

teaching experience. The emphasis of the book shifted increasingly towards

examples and a viewpoint that better reflected the title of the courses we

taught using the book for many years at Stanford University and at the

University of Maryland: An Introduction to Statistical Signal Processing.

Much of the basic content of this course and of the fundamentals of random

processes can be viewed as the analysis of statistical signal processing sys-

tems: typically one is given a probabilistic description for one random object,

which can be considered as an input signal. An operation is applied to the

input signal (signal processing) to produce a new random object, the output

signal. Fundamental issues include the nature of the basic probabilistic de-

scription, and the derivation of the probabilistic description of the output

signal given that of the input signal and the particular operation performed.

A perusal of the literature in statistical signal processing, communications,

control, image and video processing, speech and audio processing, medi-

cal signal processing, geophysical signal processing, and classical statistical

areas of time series analysis, classification and regression, and pattern recog-

nition shows a wide variety of probabilistic models for input processes and

ix
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for operations on those processes, where the operations might be determin-

istic or random, natural or artificial, linear or nonlinear, digital or analog, or

beneficial or harmful. An introductory course focuses on the fundamentals

underlying the analysis of such systems: the theories of probability, random

processes, systems, and signal processing.

When the original book went out of print, the time seemed ripe to convert

the manuscript from the prehistoric troff format to the widely used LATEX

format and to undertake a serious revision of the book in the process. As the

revision became more extensive, the title changed to match the course name

and content. We reprint the original preface to provide some of the original

motivation for the book, and then close this preface with a description of

the goals sought during the many subsequent revisions.

Preface to Random Processes: An Introduction for Engineers

Nothing in nature is random . . . A thing appears random only
through the incompleteness of our knowledge.

Spinoza, Ethics I

I do not believe that God rolls dice.
attributed to Einstein

Laplace argued to the effect that given complete knowledge of the physics of an
experiment, the outcome must always be predictable. This metaphysical argument
must be tempered with several facts. The relevant parameters may not be measur-
able with sufficient precision due to mechanical or theoretical limits. For example,
the uncertainty principle prevents the simultaneous accurate knowledge of both po-
sition and momentum. The deterministic functions may be too complex to compute
in finite time. The computer itself may make errors due to power failures, lightning,
or the general perfidy of inanimate objects. The experiment could take place in a
remote location with the parameters unknown to the observer; for example, in a
communication link, the transmitted message is unknown a priori, for if it were not,
there would be no need for communication. The results of the experiment could be
reported by an unreliable witness – either incompetent or dishonest. For these and
other reasons, it is useful to have a theory for the analysis and synthesis of pro-
cesses that behave in a random or unpredictable manner. The goal is to construct
mathematical models that lead to reasonably accurate prediction of the long-term
average behavior of random processes. The theory should produce good estimates
of the average behavior of real processes and thereby correct theoretical derivations
with measurable results.

In this book we attempt a development of the basic theory and applications of
random processes that uses the language and viewpoint of rigorous mathematical
treatments of the subject but which requires only a typical bachelor’s degree level of
electrical engineering education including elementary discrete and continuous time
linear systems theory, elementary probability, and transform theory and applica-
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tions. Detailed proofs are presented only when within the scope of this background.
These simple proofs, however, often provide the groundwork for “handwaving” jus-
tifications of more general and complicated results that are semi-rigorous in that
they can be made rigorous by the appropriate delta-epsilontics of real analysis or
measure theory. A primary goal of this approach is thus to use intuitive arguments
that accurately reflect the underlying mathematics and which will hold up under
scrutiny if the student continues to more advanced courses. Another goal is to en-
able the student who might not continue to more advanced courses to be able to
read and generally follow the modern literature on applications of random processes
to information and communication theory, estimation and detection, control, signal
processing, and stochastic systems theory.

Revisions

Through the years the original book has continually expanded to roughly

double its original size to include more topics, examples, and problems. The

material has been significantly reorganized in its grouping and presentation.

Prerequisites and preliminaries have been moved to the appendices. Major

additional material has been added on jointly Gaussian vectors, minimum

mean squared error estimation, linear and affine least squared error estima-

tion, detection and classification, filtering, and, most recently, mean square

calculus and its applications to the analysis of continuous time processes.

The index has been steadily expanded to ease navigation through the book.

Numerous errors reported by reader email have been fixed and suggestions

for clarifications and improvements incorporated.

This book is a work in progress. Revised versions will be made available

through the World Wide Web page http://ee.stanford.edu/˜gray/sp.html.

The material is copyrighted by Cambridge University Press, but is freely

available as a pdf file to any individuals who wish to use it provided only

that the contents of the entire text remain intact and together. Comments,

corrections, and suggestions should be sent to rmgray@stanford.edu. Every

effort will be made to fix typos and take suggestions into account on at least

an annual basis.
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Glossary

{ } a collection of points satisfying some property, e.g. {r :

r ≤ a} is the collection of all real numbers less than or

equal to a value a

[ ] an interval of real points including the end points, e.g.

for a ≤ b [a, b] = {r : a ≤ r ≤ b}. Called a closed interval

( ) an interval of real points excluding the end points, e.g.

for a ≤ b (a, b) = {r : a < r < b}. Called an open inter-

val. Note this is empty if a = b

( ], [ ) denote intervals of real points including one endpoint

and excluding the other, e.g. for a ≤ b (a, b] = {r : a <

r ≤ b}, [a, b) = {r : a ≤ r < b}
∅ the empty set, the set that contains no points.

∀ for all

Ω the sample space or universal set, the set that contains

all of the points

#(F ) the number of elements in a set F
∆
= equal by definition

exp the exponential function, exp(x)
∆
= ex, used for clarity

when x is complicated

F sigma-field or event space

B(Ω) Borel field of Ω, that is, the sigma-field of subsets of

the real line generated by the intervals or the Cartesian

product of a collection of such sigma-fields

iff if and only if

l.i.m. limit in the mean

o(u) function of u that goes to zero as u → 0 faster than u
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xiv Glossary

P probability measure

PX distribution of a random variable or vector X

pX probability mass function (pmf) of a random variable X

fX probability density function (pdf) of a random variable

X

FX cumulative distribution function (cdf) of a random vari-

able X

E(X) expectation of a random variable X

MX(ju) characteristic function of a random variable X

⊕ addition modulo 2

1F (x) indicator function of a set F : 1F (x) = 1 if x ∈ F and 0

otherwise

Φ Φ-function (Eq. (2.78))

Q complementary Phi function (Eq. (2.79))

Zk
∆
= {0, 1, 2, . . . , k − 1}

Z+
∆
= {0, 1, 2, . . .}, the collection of nonnegative integers

Z ∆
= {. . . ,−2,−1, 0, 1, 2, . . .}, the collection of all integers
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Introduction

A random or stochastic process is a mathematical model for a phenomenon

that evolves in time in an unpredictable manner from the viewpoint of the

observer. The phenomenon may be a sequence of real-valued measurements

of voltage or temperature, a binary data stream from a computer, a mod-

ulated binary data stream from a modem, a sequence of coin tosses, the

daily Dow–Jones average, radiometer data or photographs from deep space

probes, a sequence of images from a cable television, or any of an infinite

number of possible sequences, waveforms, or signals of any imaginable type.

It may be unpredictable because of such effects as interference or noise in a

communication link or storage medium, or it may be an information-bearing

signal, deterministic from the viewpoint of an observer at the transmitter

but random to an observer at the receiver.

The theory of random processes quantifies the above notions so that

one can construct mathematical models of real phenomena that are both

tractable and meaningful in the sense of yielding useful predictions of fu-

ture behavior. Tractability is required in order for the engineer (or anyone

else) to be able to perform analyses and syntheses of random processes, per-

haps with the aid of computers. The “meaningful” requirement is that the

models must provide a reasonably good approximation of the actual phe-

nomena. An oversimplified model may provide results and conclusions that

do not apply to the real phenomenon being modeled. An overcomplicated

one may constrain potential applications, render theory too difficult to be

useful, and strain available computational resources. Perhaps the most dis-

tinguishing characteristic between an average engineer and an outstanding

engineer is the ability to derive effective models providing a good balance

between complexity and accuracy.

Random processes usually occur in applications in the context of environ-

ments or systems which change the processes to produce other processes.

1



2 Introduction

The intentional operation on a signal produced by one process, an “input

signal,” to produce a new signal, an “output signal,” is generally referred to

as signal processing, a topic easily illustrated by examples.

r A time-varying voltage waveform is produced by a human speaking into a mi-

crophone or telephone. The signal can be modeled by a random process. This

signal might be modulated for transmission, then it might be digitized and coded

for transmission on a digital link. Noise in the digital link can cause errors in

reconstructed bits, the bits can then be used to reconstruct the original signal

within some fidelity. All of these operations on signals can be considered as signal

processing, although the name is most commonly used for manmade operations

such as modulation, digitization, and coding, rather than the natural possibly

unavoidable changes such as the addition of thermal noise or other changes out

of our control.r For digital speech communications at very low bit rates, speech is sometimes

converted into a model consisting of a simple linear filter (called an autoregressive

filter) and an input process. The idea is that the parameters describing the model

can be communicated with fewer bits than can the original signal, but the receiver

can synthesize the human voice at the other end using the model so that it sounds

very much like the original signal. A system of this type is called a vocoder .r Signals including image data transmitted from remote spacecraft are virtually

buried in noise added to them on route and in the front end amplifiers of the

receivers used to retrieve the signals. By suitably preparing the signals prior to

transmission, by suitable filtering of the received signal plus noise, and by suitable

decision or estimation rules, high quality images are transmitted through this very

poor channel.r Signals produced by biomedical measuring devices can display specific behavior

when a patient suddenly changes for the worse. Signal processing systems can look

for these changes and warn medical personnel when suspicious behavior occurs.r Images produced by laser cameras inside elderly North Atlantic pipelines can

be automatically analyzed to locate possible anomalies indicating corrosion by

looking for locally distinct random behavior.

How are these signals characterized? If the signals are random, how does one

find stable behavior or structures to describe the processes? How do opera-

tions on these signals change them? How can one use observations based on

random signals to make intelligent decisions regarding future behavior? All

of these questions lead to aspects of the theory and application of random

processes.

Courses and texts on random processes usually fall into either of two

general and distinct categories. One category is the common engineering

approach, which involves fairly elementary probability theory, standard un-
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dergraduate Riemann calculus, and a large dose of “cookbook” formulas –

often with insufficient attention paid to conditions under which the formu-

las are valid. The results are often justified by nonrigorous and occasionally

mathematically inaccurate handwaving or intuitive plausibility arguments

that may not reflect the actual underlying mathematical structure and may

not be supportable by a precise proof. While intuitive arguments can be

extremely valuable in providing insight into deep theoretical results, they

can be a handicap if they do not capture the essence of a rigorous proof.

A development of random processes that is insufficiently mathematical

leaves the student ill prepared to generalize the techniques and results when

faced with a real-world example not covered in the text. For example, if

one is faced with the problem of designing signal processing equipment for

predicting or communicating measurements being made for the first time

by a space probe, how does one construct a mathematical model for the

physical process that will be useful for analysis? If one encounters a process

that is neither stationary nor ergodic (terms we shall consider in detail),

what techniques still apply? Can the law of large numbers still be used to

construct a useful model?

An additional problem with an insufficiently mathematical development is

that it does not leave the student adequately prepared to read modern liter-

ature such as the many Transactions of the IEEE and the journals of the Eu-

ropean Association for Signal, Speech, and Image Processing (EURASIP).

The more advanced mathematical language of recent work is increasingly

used even in simple cases because it is precise and universal and focuses on

the structure common to all random processes. Even if an engineer is not

directly involved in research, knowledge of the current literature can often

provide useful ideas and techniques for tackling specific problems. Engineers

unfamiliar with basic concepts such as sigma-field and conditional expecta-

tion will find many potentially valuable references shrouded in mystery.

The other category of courses and texts on random processes is the typical

mathematical approach, which requires an advanced mathematical back-

ground of real analysis, measure theory, and integration theory. This ap-

proach involves precise and careful theorem statements and proofs, and uses

far more care to specify precisely the conditions required for a result to

hold. Most engineers do not, however, have the required mathematical back-

ground, and the extra care required in a completely rigorous development

severely limits the number of topics that can be covered in a typical course

– in particular, the applications that are so important to engineers tend to

be neglected. In addition, too much time is spent with the formal details,
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obscuring the often simple and elegant ideas behind a proof. Often little, if

any, physical motivation for the topics is given.

This book attempts a compromise between the two approaches by giving

the basic theory and a profusion of examples in the language and notation

of the more advanced mathematical approaches. The intent is to make the

crucial concepts clear in the traditional elementary cases, such as coin flip-

ping, and thereby to emphasize the mathematical structure of all random

processes in the simplest possible context. The structure is then further de-

veloped by numerous increasingly complex examples of random processes

that have proved useful in systems analysis. The complicated examples are

constructed from the simple examples by signal processing, that is, by using

a simple process as an input to a system whose output is the more com-

plicated process. This has the double advantage of describing the action of

the system, the actual signal processing, and the interesting random process

which is thereby produced. As one might suspect, signal processing also can

be used to produce simple processes from complicated ones.

Careful proofs are usually constructed only in elementary cases. For ex-

ample, the fundamental theorem of expectation is proved only for discrete

random variables, where it is proved simply by a change of variables in a

sum. The continuous analog is subsequently given without a careful proof,

but with the explanation that it is simply the integral analog of the sum-

mation formula and hence can be viewed as a limiting form of the discrete

result. As another example, only weak laws of large numbers are proved in

detail in the mainstream of the text, but the strong law is treated in detail

for a special case in a starred section. Starred sections are used to delve

into other relatively advanced results, for example the use of mean square

convergence ideas to make rigorous the notion of integration and filtering of

continuous time processes.

By these means we strive to capture the spirit of important proofs with-

out undue tedium and to make plausible the required assumptions and con-

straints. This, in turn, should aid the student in determining when certain

tools do or do not apply and what additional tools might be necessary when

new generalizations are required.

A distinct aspect of the mathematical viewpoint is the “grand experiment”

view of random processes as being a probability measure on sequences (for

discrete time) or waveforms (for continuous time) rather than being an infin-

ity of smaller experiments representing individual outcomes (called random

variables) that are somehow glued together. From this point of view random

variables are merely special cases of random processes. In fact, the grand ex-



Introduction 5

periment viewpoint was popular in the early days of applications of random

processes to systems and was called the “ensemble” viewpoint in the work of

Norbert Wiener and his students. By viewing the random process as a whole

instead of as a collection of pieces, many basic ideas, such as stationarity

and ergodicity, that characterize the dependence on time of probabilistic de-

scriptions and the relation between time averages and probabilistic averages

are much easier to define and study. This also permits a more complete dis-

cussion of processes that violate such probabilistic regularity requirements

yet still have useful relations between time and probabilistic averages.

Even though a student completing this book will not be able to follow

the details in the literature of many proofs of results involving random pro-

cesses, the basic results and their development and implications should be

accessible, and the most common examples of random processes and classes

of random processes should be familiar. In particular, the student should

be well equipped to follow the gist of most arguments in the various Trans-

actions of the IEEE dealing with random processes, including the IEEE

Transactions on Signal Processing, IEEE Transactions on Image Processing,

IEEE Transactions on Speech and Audio Processing, IEEE Transactions on

Communications, IEEE Transactions on Control, and IEEE Transactions

on Information Theory, and the EURASIP/Elsevier journals such as Image

Communication, Speech Communication, and Signal Processing.

It also should be mentioned that the authors are electrical engineers and,

as such, have written this text with an electrical engineering flavor. How-

ever, the required knowledge of classical electrical engineering is slight, and

engineers in other fields should be able to follow the material presented.

This book is intended to provide a one-quarter or one-semester course

that develops the basic ideas and language of the theory of random pro-

cesses and provides a rich collection of examples of commonly encountered

processes, properties, and calculations. Although in some cases these exam-

ples may seem somewhat artificial, they are chosen to illustrate the way

engineers should think about random processes. They are selected for sim-

plicity and conceptual content rather than to present the method of solution

to some particular application. Sections that can be skimmed or omitted for

the shorter one-quarter curriculum are marked with a star (⋆). Discrete time

processes are given more emphasis than in many texts because they are sim-

pler to handle and because they are of increasing practical importance in

digital systems. For example, linear filter input/output relations are carefully

developed for discrete time; then the continuous time analogs are obtained
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