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1. Introduction

Technique of computerized tomography has a wide application not only in medicine but
also in different fields of technique. In many applications because of some reasons one
cannot obtain the full set of projection data of a reconstructed object, e.g. the projection data
are not available at each angle of view or they are very limited in number. Sometimes
because of the large size of objects and limitation in the size of the scanners it is not possible
to obtain the complete set of required projections. In these cases we deal with the problem of
image reconstruction from incomplete projection data. In particular, such kind of problems
arise in mineral industries and engineering geophysics connected with acid drainage, the
stability of mine workers, mineral exploration and others.

When the projection data available are not limited in number and complete, the transform
methods of reconstructions are usually used (Herman, 1980), (Natterer, 1986), (Kak &
Slaney, 1988). For incomplete projection data these methods cannot be used directly. In this
case there often used different kinds of algebraic iterative algorithms the most well-known
from which are algorithms of algebraic reconstruction technique (ART) (Gordon et al., 1970),
(Herman et al., 1973), (Eggermont et al., 1981). They are generally simple, flexible and
permit to use a priori knowledge of the object before its reconstruction that is very
important in many practical applications. Recently algebraic iterative algorithms are also
used in magnetic resonance imaging (MRI) (Liang & Lauterbur, 2000), (Harshbarger &
Twieg, 1999) and low-contrast 3D-cone-beam tomography (Mueller et al., 1997).

However the application of algebraic iterative algorithms to real practical problems has
some important obstacles. The main repellant for using these algorithms are their
significantly slow reconstruction speed and so a large time of computations for obtaining
the good results, and a large memory space required to store the reconstruction image,
projection data and the projection matrix. In order to avoid these difficulties there are often
used the algebraic algorithms which can be allowed to parallelize and can be realized on the
parallel computing systems (PCS). The main general types of parallel iterative algebraic
algorithms for computerized tomography were proposed by Y. Censor (Censor, 1988). The
efficient performance of some of the parallel algorithms were described in (De Pierro &
Iusem, 1985); (Chen & Lee, 1994); (Chen et al., 1990); (Laurent et al., 1996); (Gubareni, 1998a).
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One of the most perspective areas of parallel computations is an elaboration of
asynchronous realizations of iterative algorithms. The main characteristic of the
organization of asynchronous computations is that the solution is obtained during a non-
synchronous interaction of processor elements of a parallel structure. Each processor of this
PCS updates the values of corresponding components of the solution using available
information about other components of the solution, and it obtains this information from
local processors or shared memory without waiting their full update. The researches
showed that the asynchronous realizations of parallel algorithms are more efficient from the
point of view of their speed of convergence in many important cases (Kung, 1976);
(Bertsekas & Tsitsiklis, 1989; 1991); (Savari & Bertsekas, 1996). Note that the convergence of
asynchronous algorithms and their synchronous prototypes may be different. Some models
of asynchronous iterative methods for image reconstruction are considered in (Baudet,
1978); (Chazan & Miranker, 1969); (Bru et al., 1988); (Elsner et al., 1990); (Kaszkurewicz et al.,
1990). Some generalization of these models for image reconstruction were considered in
(Baran et al., 1996); (Gubareni et al., 1997b); (Gubareni, 1999).

This chapter is devoted to consider the problem of image reconstruction from incomplete
projection data for particular reconstruction systems which arise in engineering geophysics
and mineral industry. Besides the well-known algorithms such as ART and MART their
chaotic, parallel and block-parallel implementations are considered in this chapter. The use
of these algorithms to reconstruct high-contrast objects from incomplete data is examined.
The influence of various parameters of these algorithms, such as the relaxation coefficients,
the number of iterations, the number of projections, and noise in projection data on the
reconstruction quality for different schemes of reconstruction are investigated.

Numerical results of image reconstruction from incomplete projection data for some
modeling objects, comparing evaluations of errors and the rate of convergence of these
algorithms are presented and discussed. It is shown that for some choice of parameters one
can obtain a good quality of reconstruction with these algorithms under the noise and
incomplete data.

2. Problem of incomplete projection data

The main goal of computerized tomography is to recover an unknown density function
from its line integrals. Let f{x,y) be a density function which represents the spatial
distribution of a physical parameter. If L: /=xcos@+ ysiné is a line (ray) in the plane then
the line integral

~+00 +00

pr = J.f(x,y)dL = _[ J.f(x,y)é‘(lfxcosé’fysin O)dxdy, (1)

L —00 —0
which is called a projection, is usually obtained from physical measurements.
From mathematical point of view the problem of reconstruction from projection data is to
find an unknown function f(x,y) by means of a given set of projections p; for all L.

Theoretically it is possible to reconstruct the function f(x,y) from the set of projections p; by

means of the Radon inversion formula (Radon, 1917). The classical inversion formula of
Radon requires information of all the line integrals in order to recover the function f(x,y) in
each point. Unfortunately, this mathematical problem represents only an idealized
abstraction of problems which occur in real practical applications. In practice there is given
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only a discrete set of projection data that estimate p for a finite number of rays. Since
projection data are obtained by physical measurements with limited precision, they are
given with some errors. Therefore all these restrictions do not allow to use the Radon
inversion formula directly.

The projection data for computerized tomography is said to be complete if they are obtained
from every aspect of view angle. In many practical applications projections are often not
available at each direction and may be very limited in number. Moreover, because of the
large size of objects it is not possible to obtain the complete set of the required projection
data. In these cases one says that there is a problem of image reconstruction from incomplete
projection data. In particular, such kind of problems arise in mineral industries and
engineering geophysics connected with acid drainage, the stability of mine workers, mineral
exploration and others (Patella, 1997), (Williams, et al., 2004).

There exist two fundamentally different approaches for solving the image reconstruction
problem. In the first approach the problem is formulated for continuous functions f and p
and the inversion formula is derived in this continuous model. This method is called the
transform method approach (Censor & Zenios, 1997). The second approach is connected
with the discretization of functions f and p at the outset. So the object /' and measurements p
become the vectors in the finite dimensional Euclidean space. In this case the methods of
linear algebra and optimization theory are used for solving the problem of image
reconstruction. This approach is called the fully discretized model (Censor & Zenios, 1997).
If the projection data can be obtained from every aspect of view angle and their number can
be obtained large enough (in medicine, for example), then it is more preferred to use the
transform method approach, e.g. the convolution back projection (CBP) algorithm
(Ramachandran & Lakhshminarayanan, 1970) or direct Fourier technique.

In dependence on the obtaining system of projections there are many image reconstruction
schemes, the main of them are parallel and beam schemes in the two-dimensional space.
Both of them are represented in Figure 1.

Fig. 1. Parallel and beam schemes of obtaining projection data in image reconstruction. 1-
sources; 2- detectors; 3 - projections; 4 - a research object

In some practical problems, in engineering for example, it is impossible to obtain projections
from all directions because of the existence of some important reasons (such as situation,
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size or impossibility of an access to a research object). This situation arises, for example, in
the coal bed working. During the preparing process for working in this coal bed the access
to longwalls may be very difficult or impossible at all in dependence on the scheme of
obtaining projection data. Sometimes it is impossible to access to one or two sides of
longwalls, and sometimes it is impossible only to access to the basis but all the longwalls are
accessible. Each this situation has its own scheme of obtaining information.

Some examples of the schemes for obtaining projection data is shown in Figure 2. In the first
case there is an access to a research object from only two opposite sides. Therefore the sources
of rays can be situated only on one side and the detectors are situated on the opposite side of
the research part of a coal bed. This scheme will be called the system (1 x 1). And in the second
case there is an access to all four sides of an object. Therefore the sources can be situated, for
example, onto two neighboring sides, and the detectors can be situated on the opposite sides.
So the projections can be obtained from two pairs of the opposite sides.

i

1
Fig. 2. Schemes for obtaining projections data. 1 - sources of rays; 2- a research object; 3 -
rays; 4 - detectors.

3. Algebraic iterative algorithms

The numerical solution of equation (1) using ART requires the discretization of the cross-
section of an object. To construct a discretized model, a reconstructed domain D < R2 is
included into a rectangle E and divided into n small elements (pixels). The full discrete
model of the problem of image reconstruction is based on the main principal that a research
object has the constant distribution inside each pixel. So for any i-th pixel one can
correspond an unknown x;. Secondly, one can assume that sources and detectors are points
and the rays between them are lines. Denote by a; the length of the intersection of the i-th
ray with j-th pixel. The length a; represents the contribution of the j-th pixel to the total
attenuation along the i-th ray. Thus, the discretized model of the problem of image
reconstruction is reduced to a system of linear algebraic equations:

A-x =p, 2
where:

A =(a;) e R™" is the matrix of coefficients,

X = (X1, %,...,x,)" €R"is the image vector,
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e p=(p,Prs--s pm)T € R" is the measurement vector of projection data.

This system has a few characteristics: it is a rectangular as a rule and it has a very large
dimension. For solving this system it is often used different kinds of algebraic iterative
algorithms the most well-known of which are the additive algorithm ART (Herman, el. al.,
1973), (Herman, 1975), (Herman, 1980), (Eggermont, el. al., 1981). These algorithms are very
flexible and allow to apply different a priory information about object before its
reconstruction that is especially very important when we have incomplete projection data.
Denote

Pi(x):xf&_);p"ai, ©)
Il
P’ =(1- o)l +oP;, @

where a’ is the i-th row of the matrix A, and @is a relaxation parameter.

Algorithm 1 (ART-1).
1. X9 ¢R” isan arbitrary vector;
2. The k-th iteration is calculated in accordance with the following scheme:

x*V Z cp@x®  (i=12,..m), ©)

where P{’* are operators defined by (4), @, are relaxation parameters, C is a constraining

operator, and i(k) = k(modm)+1.

This algorithm was proposed by Kaczmarz (Kaczmarz, 1937) and independently discovered
and investigated by G.T.Herman, A.Lent, S.Rowland in (Herman, el. al., 1973). It was used
successfully in application of computerized tomography in medicine. This algorithm runs
through all equations cyclically with modification of the present estimate x®) in such a way
that the present equation with index i is fulfilled.

The multiplicative variant of ART, the algorithm MART, is given by the following form.

Algorithm 2 (MART).

1. xXQeR” isan arbitrary vector and x©>0.
2. The k+1-th iteration is calculated by the following way:

(u,iai/
PN, 0

where
e ai is the i-th row of the matrix A,

. a),’C is a relaxation parameter,

e p; is the i-th coordinate of the projection vector p,
o i(k) =k (mod m) +1.
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This algorithm was invented and reinvented in several fields. It was shown that it is
convergent if 0 < a),iaij <1 for all i, k, j, and its solution gives the solution of the linearly

constrained entropy optimization problem (Lent, 1977), (De Pierro, 1990), (Censor & Zenios,
1997).

In practice the vector of projection data is given as a rule with some error. Therefore instead
of a system of linear equations (2) there results a system of linear inequalities:

p-e<A-x <p +e )

where e = {¢), &, ..., & } is a non-negative vector. And one can consider that the vector e is
given a priory and defines the errors of projection data.
Introduce the following projection operator:

(@W-pi-e) -(pi-e-@x)"

P,(x)=x — ®)
d
where
+ |8, ifs20;
5 {0, otherwise
and
P,” =(1- o)l + wP;, ©)

where a’ is the i-th row of a matrix A, and @ is a relaxation parameter.
In this case there results the following additive algorithm which is analogous to the algorithm 1.

Algorithm 3 (ART-3).

1. x9 e R” is an arbitrary vector.
2. The k+1-th iteration is calculated by the following way:

xEV = cpx® (i=12,..,m), (10)

where P/% are operators defined by (8) and (9), @, are relaxation parameters,

i(k) = k(modm)+1, and C is a constraining operator.

This algorithm was investigated by G.T. Herman (Herman, 1975), and it was used
successfully in medicine.

4. Block-parallel iterative algorithms

The convergence rate of algebraic iterative algorithms considered in the previous section is
very slow and a lot of iterations should be made to obtain a good reconstruction. It is more
efficient to apply the algorithms which use simultaneously all equations (or inequalities) of
system (2) (or (3)) at each step of iteration process. The examples of these algorithms are the
generalized algorithms of the Cimmino type (Censor, 1988) which can be related to the class
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of parallel algorithms. Following Y. Censor (Censor, 1988), the iterative algorithm is
considered to be parallel if it can be represented in the following form:

yk’i = Ri(x(k),ai,Pi) (11)
kD _ S({yk,i }iej) (12)

where R; is an operator of the row type, S is an algorithmic operator which uses
simultaneously information obtained while solving all equations (inequalities) of system (2)
(or (7)) and generalizes them, J={1,2,...,m}, k is the number of iteration.

Consider the operator S from R" to R" in the following form:

sl ], )- S Bkyhs (13)

i=l
m
where BY are nxn-matrices with real nonnegative elements and ZBlk =E (E is the
i=1
identity matrix).
Consider the following class of parallel iterative algorithms.
Algorithm 4 (PART).

1. x9 ¢R” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

vy =pex® (i=12,.,m), (14)
m .
X(k+1) :CZBf'{yk’l, (15)
i=l1

where P/* are operators defined by (9), w, are relaxation parameters, C is a constraining

operator and BY are matrices of dimension nxn with real nonnegative elements and
< pk S| Rk
2B =E,  X|Bi|<l (16)
i=1 i=1

forall k € N.

Remark 1. Let Bf-‘ = (757);5:1 be a diagonal matrix with elements 0< yj»j <1.1If 7‘;]4 =y,; for

eachj e J,i € I, w; =1, C =1, then there results the Cimmino algorithm (Censor, 1978). If

;/j»j =1/mforeachj e ], iel, wy=1,C =1, then there results the von Neumann algorithm

(Censor, 1978).

The study of different variants of this class of parallel algorithms by analyzing their
convergence was conducted by many authors, e.g. (Censor, 1978), (De Pierro & Iusem,
1985a, 1985b), (Censor & Zenious, 1997), (Gubareni, 1997).
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For many practical applications x > 0, the elements of a matrix A= (a;) are nonnegative real
numbers and p; > 0 for all i € I In this case one may consider the following parallel
multiplicative algorithm for solving system of linear inequalities (7) (Censor, 1974), (De
Pierro, 1990).

Algorithm 5 (MARTP).

1. xXD eR” and x> 0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

m .
D = O (17)
i=1
where
, Viay
ki _ i
Vi _[(ai,x(k))J , 19

(i=1,2,.., m; j=1,2,.., n), yl-lj‘» are positive real numbers for every j, k.

These algorithms may be realized on parallel computing structure consisted of m elementary
processors and one central processor. On each (k+1)-th step of iteration every i-th
elementary processor computes the coordinates of the vector y*in accordance with formula
(14) or (18) and then the central processor computes the (k+1)-th iteration of the image
vector x in accordance with formula (15) or (17).

The main defect of parallel algorithms considered above is their practical realization on
parallel computational structures because it needs a lot of local processors in an MPCS. In
order to reduce the number of required local processors consider block-iterative additive
and multiplicative algorithms considered in (Elfving, 1980), (Eggermont et al. 1981),
(Censor, 1988), (Gubareni, 1997).

For this purpose decompose the matrix A and the projection vector p into M subsets in
accordance with a decomposition

{L,2,..m}=H VH, U..UH,,, (19)
where

Hi={mu+1, mu+2, ..., m}, (20)
O=mo<ms<...< my=m, 1<t <M.

Algorithm 6 (BPART).

1. x9 ¢R” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

xV=c ) BR*y, (21)
iEHt(k)
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where t(k) = k(mod M) +1, P are operators defined by (9), 0< @, <2 are relaxation

parameters, C is a constraining operator and BY are matrices of dimension nxn with real

nonnegative elements and

S Rk S| Rk
2.B; =E, 2B lI<1, (22)
ieHl(k) iEH[(k)

forall k e N.

The parallel implementation of this algorithm can be described as follows:
yk’i = Pim" x5 (i€ H ),

m .
X(k+1) -C Znyk”,
ith(k)

The block-iterative algorithms represent examples of sequential-parallel algorithms. They
may be considered as intermediate version between sequential algorithms and full parallel
ones. In each step of an iterative process the block-iterative algorithm uses simultaneously
information about all equations concerning to a given block.

Block-iterative algorithms may be also considered in the case of multiplicative algorithms.
In this case there results the following algorithm.

Algorithm 7 (BMART).

1. xD eR" and x> 0.
2. The k+1-th iteration is calculated in accordance with the following scheme:

= ] [ o ] ’ =
iEH,(k) (a » X )
where }/,f are positive real numbers such that
k
0< Zaijyii <1 (24)
iEH,(k)

for every j, k; Hiy are defined in accordance with (20) and t(k) is almost cycle control
sequence.

If 7/1'];' =y; for all kj and 0 < a; <1, ie; 7; =1, then there results the block-iterative
t(k)

multiplicative algorithm proposed in (De Pierro & Iusem, 1985).
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5. Chaotic and asynchronous algorithms

First chaotic and asynchronous algorithms for image reconstruction were proposed and
studied in (Bru et al., 1988), (Elsner et al., 1990). These algorithms are based on the methods
of asynchronous iterations introduced first by Chasan and Miranker (Chazan & Miranker,
1969). The further development of these methods and their generalizations for the case of
non-linear operators was obtained by Baudet (Baudet, 1978).

Recall some important notions of the theory of chaotic and asynchronous iterations (Chazan
& Miranker, 1969), (Baudet, 1978), Bertsekas D.P. (1983), (Bertsekas & Tsitsiklis, 1989),
(Bertsekas & Tsitsiklis, 1991).

Definition 1. A sequence of nonempty subsets / = {I A }f:() of the set {1,2..., m} is a sequence

of chaotic sets if
limsup/;, ={1,2,...,m} (25)
k—w
(another words, if each integer je{l,2,...,m} appears in this sequence an infinite number of
times).
For the first time such sequences were used by Baudet (Baudet, 1978).

Definition 2. If any subset of a sequence of chaotic sets I has the form 7 ={j;} , where

Jr €11,2,...,m} (i.e. each set consists of only one element), then the sequence I is called

acceptable (or admissible).

Suppose that PCS (Parallel Computing System) consists of m processors working local
independently. In this case the notion of the sequence of chaotic sets has a simple
interpretation: it sets the time diagram of work of each processor during non-synchronous
work of PCS. So the subset I; is the set of the numbers of those processors which access the
central processor at the same time.

Note, that the definition of the sequence of chaotic sets can be given in the following
equivalent form:

Lemma 1. Let I ={I, }f=0 be a sequence of nonempty subsets of the set {1,2..., m}. Then the

following conditions are equivalent:
1) limsup/, ={1,2,...,m}

k—o0
2) the set { k | i€ I} is unlimited for eachi=1,2..., m.
3) for each j €N there exists p(j) € N such that the following condition satisfies:
J+p(j)
UZL = {1,2,....m} . (26)

i=j+l1

For any sequence of chaotic sets the numbers p(;) depends on a number j. In practice and
for researching the convergence of asynchronous implementations of iterative processes
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there are more important sequences of chaotic sets, for which these numbers do not depend
on number j.

Definition 3. If for a sequence of chaotic sets / = {I P }fzo the numbers p(j) defined by (26)

do not depend on the choice of number j, i.e. p(j)=T =const for each jeN, then this
sequence is called regular, and the number T is called the number of regularity of the
sequence 1.

Note, that this definition coincides with a concept of a regular sequence, introduced in (El
Tarazi, 1984) for the case of an admissible sequence. In this work El Tarazi obtained
important results introducing the obvious model for the class of a synchronous algorithms
and giving the first correct conditions of convergence in the non-linear case of contraining
operators.

Other important concept in the theory of an asynchronous iterations is the concept of a
sequence of delays.

Definition 4. A sequence J = {c)'(k)}?=1 of m-dimensional vectors o (k)= {o|(k),c,(k)....,c,,(k)}
with integer coordinates, satisfying the following conditions:

1) 0<o,(k)<k-1; 27)
2) lim o,(k) =, (28)

foreach i=1,2..,mand k €N, is called a sequence of delays.
In the case, when instead of condition 2) it holds the following condition:
2’) there exists a fixed number L €N such that

k—o;(k)<L (29)
for each k€N and i = 1,2...,m, the sequence is called a sequence with limited delays and
the number L is called a delay, or an asynchronous measure.

The sequence of delays determines the numbers of using iterations by each fixed processor,
and the number L shows a depth of used iterations and actually reflects possibilities of the
concrete computing system. For synchronous implementation of the iterative process the
difference k—o;(k) isequal to O for Vi=1,2..., mand keN.

Consider the definition of some generalized model of asynchronous computational process
(Robert, et al., 1975), (Baran et al., 1996), (Gubareni et al., 1997b).

Definition 5. Let there exist a set of nonlinear operators Ti: R* — R#, ie{l,2,..,m} and an

initial valuex” eR". A generalized model of asynchronous iterations with limited
delays for the set of operators T;, i=1,2,...,m is called a method of building the sequence of

vectors {x(k) }?:0 , which is given recursively by the following scheme:
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ki T,-x(ai(k)), ifiel)

yk _l’i, otherwise (30)

w -sho oo, )

where = {Ik }}f:l is a sequence of chaotic sets such that 7, < {1,2,....m} and J; = {o"(k)}fkn:1

are sequences of limited delays (i=1,2,...,m).

Apply the generalized model of asynchronous iterations for an implementation of the ART
algorithm on a non-synchronous computer structure. In this case there results the following
asynchronous algorithm, where the numbers of operators are chosen by a chaotic way.

Algorithm 8.

1. xY eR” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

ghHi Pi“’kx("’(k>), ifiel,
k,i

vy, otherwise (31)
XD S (212,
iE]k

where P/’ are operators defined by (9), @, are relaxation parameters, 7k are positive real

numbers for each keN, = {I X }le is a sequence of chaotic sets such that 7, < {1,2,...,m},

J;= {Ji(k)}::l are sequences of delays.
The convergence of this algorithm is given by the following theorem:

Theorem 1. Let system (2) be consistent, /={ k};;l a regular sequence of chaotic sets

I < {1,2,...,m} with a number of regularity T, {o-i (k)}zoz1 sequences with limited delays and

0'; (k)=0,(k), and let a delay be equal to T. If 0<a; <2, y,-k are positive real numbers with

property Y yi =1, then for every point x¥ ¢R” the sequence {xk }Z:o defined by the
iely

algorithm 8 converges to some point x e H , which is a fixed point of orthogonal projection

operators P; (i=1,2,...,m).

Consider the particular case of the algorithm 8 when there are no delays and the sequence of
chaotic sets is acceptable.

Algorithm 9 (CHART).

1. x9 ¢R” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:
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ki _{Piw" x(kfl), ifiel)

k-1
y >

xXB = ykyh (i=12,..,m),
iEIk

otherwise (32)

where P are operators defined by (9), @, are relaxation parameters, ! are positive real

numbers for each keN, I={I; }le is an acceptable sequence of chaotic sets such that

I, < {1,2,...,m} and C is a constraining operator.
The convergence of the algorithm 9 is given by the following theorem.

Theorem 2. Let system (2) be consistent, / = {] P }le be an acceptable sequence of chaotic sets

Iy c{12,..,m} . If 0<aw, <2, yk are positive real numbers with property 3 7 =1, then for
iely

every point x(¥ eR” the sequence {xk r—o defined by the algorithm 9 converges to some

solution of this system.

6. Block-parallel asynchronous algorithms for computer tomography

Block-parallel asynchronous algorithms with application to tomographic reconstruction
from incomplete data were studied by Elsner, Koltracht and Neumann in (Elsner et al. 1990).
In this section the generalized model of asynchronous iterations is applied for an
implementation of the algorithm BPART on a non-synchronous computer structure. In this
case there results the following algorithm, where the numbers of operators are chosen by the
chaotic way:

Algorithm 10.

1. x© eR” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

oo S BEpx(@ ), (33)
[GH,(k)

where P/ are operators defined by (9), @, are relaxation parameters, C is a constraining

operator, t(k) = I, =1, }f:o is a sequence of chaotic sets such that 7, < {1,2,..,M} and B

are matrices of dimension nxn with real nonnegative elements which satisfy conditions

(22), J; = {a"(k)};::] are sequences of delays.

Theorem 3. Let system (2) be consistent, /= {I k }ZOZO a regular sequence of chaotic sets

I < {1,2,...,M} with a number of regularity T, J; = {ai(k)}f:] sequences with limited delays
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and o-j» (k)= 0,(k) , and let the number of delay be equal to T. Then for every point x¥) ¢ R”

the sequence {x*}7_, defined by the algorithm 10 converges to some point x* € H, which is

a fixed point of orthogonal projection operators P; (i =1,2,..., M).

Let the particular case of algorithm 10 when there are no delays and the sequence of chaotic
sets is acceptable. Decompose the matrix A and the projection vector p into M subsets in
accordance with decomposition (13) and (20). Consider s, = |H ,| =m; —m,_; be the

cardinality of H, .

Algorithm 11 (CHBP).

1. x9 ¢R” isan arbitrary vector;
2. The k+1-th iteration is calculated in accordance with the following scheme:

M 4
Xk+1 — Cz B;{y(k+1),l , (34)
i=1
where
yEDi Z Q. xF,
Q; = Pi,si Pi,sl- —1-~'Pi,1’
® M k .
P =P; ZlBi  J€li,
i
P/’ are operators defined by (9), @ is a relaxation parameter, C is a constraining operator,

I= {[i(k)}le is a sequence of chaotic sets such that /;;) < {mi1+1, mia+2,..., m; }=H; and B!

are matrices of dimension nxn with real nonnegative elements which satisfy conditions
(22) for each k € N.

Remark 2. If operator P; is defined by (3), algorithm CHART, PART, BPART, CHBP will be
called CHART-1, PART-1, BPART-1, CHBP-1 respectively, and if P; is defined by (8) these
algorithms will be called by CHART-3, PART-3, BPART-3, CHBP-3 respectively.

7. Computer simulation and numerical results

In this section there are presented some numerical results of applying the different
algorithms considered in the previous sections for reconstruction of high contrast objects
from incomplete projection data in the case when they are not available at each angle of
view and they are a few-number limited. There are also studied the influence of various
parameters of these algorithms such as a pixel initialization, relaxation parameters, number
of iterations and noise in the projection data on reconstruction quality and convergence of
these algorithms (Gubareni, 1998a), (Gubareni & Pleszczynski, 2007), (Gubareni &
Pleszczynski, 2008).

In order to evaluate the goodness of the computer reconstruction of a high-construct image
there were tested different kinds of geometric figures and reconstruction schemes. In this
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chapter the results of image reconstruction are presented for two different schemes of
obtaining projection data (1 x 1) and (1 x 1, 1 x 1), which are described above.

An important factor in the simulation process of image reconstruction is the choice of
modeling objects which describe the density distribution of research objects. In a coal bed,
where one searches the reservoirs of compressed gas or interlayers of a barren rock, the
density distribution may be considered discrete and the density difference of three
environments (coal, compressed gas and barren rock) is significant. Therefore for illustration
of the implementation of the algorithms working with incomplete data there were chosen
the discrete functions with a high contrast.

The first discrete function f(x,y) is given in the following form:

1, (x,y)eDCECRz,

(35)
0, otherwise

NGy = {
where E is a square E ={(x,y):—1<x,y <1}, and D is a subset of E of the following form:

D=[-0.4,-0.2] x [-0.5,0.5] U [-0.2,0.2] x[0.3,0.5] U [-0.2,0.2] x[0.1,0.1] U [0,0.2] x [0.1,0.3]. (36)

The second discrete function f,(x,y) is given in the following form:

1, (x,y)echEch,
2, (x,y)echEch,
fr(x,»)=43, (x,y)eD3c EcCR?, 37)
4, (X,y)€D4CECR2,
0, otherwise

where E is a square E ={(x,y):—1<x,y <1}, and D; are subsets of E of the following form:
D;=1[-0.7,-0.4] x [-0.5,0.2], D»=[-0.2,0.2] x [-0.1,0.1],

D5 =1[-0.2,0.2] x [0.3,0.5], D4 = [0.4,0.7] % [0.4,0.7].
The three-dimensional view of the plots of these functions are given in Figure 3.

Fig. 3. The original functions f(x,y) (on the left side) and f;(x,y) (on the right side).
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As was shown earlier (see, e.g. (Eggermont, el. al., 1981), (Herman, 1980)), the image
reconstruction of such objects from complete data gives a good enough results after 6-7 full
iterations.
The main criteria which are used to evaluate the quality of reconstruction are the following
reconstruction errors: the maximal absolute error, the mean root square error, the maximum
relative error, the mean absolute error, the absolute error.
In this paper the convergence characteristics of image reconstruction are presented in a view
of plots for the following measures of errors:

e the absolute error:

S, y) =l f(xy)— f(x,2)]

e the maximal absolute error:

A=max| f; - f'|
1
e  the maximal relative error
max/; - 7
=t .100%,
max | f; |
1
e  the mean absolute error
] ~
& =—3|r -7
n

where f; is the value of a given modeling function in the center of the i-th pixel and ]N’, is the
value of the reconstructed function in the i-th pixel.
In all considered computer simulations it was assumed that C= C; C,, where
a, if x;<a;
(C[x]), =4x;, if a<x; <b; (38)
b, if x; > b;

0, if p,=0anda;; #0;
(Qnm—{ b (39)
xj, otherwise
From the conducted research it follows that the optimal value of a relaxation parameter ®is
equal to 1.1 for the system (1 x1, 1 x1) and it is equal to 1.3 for the system (1 x 1) in the case
where there is no noise in projections. In the case when there is a noise in the projection data
the optimal value of @is changed in dependence on the value of the noise.
In all presented numerical results it was assumed, that
e 1 -is the number of pixels, i.e. the number of variables,
e m - is the number of rays, i.e. the number of equations,
e M -is the number of blocks,
e ifer - is the number of full iterations.

In all experiments it was also assumes that
e Mais equal to the number of detectors;
e the sequence of chaotic sets J; has the form { &, }, where &, is an integer random
variable in the interval [1,m] with uniform distribution.
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e the reconstruction domain E ={(x,y):-1<x,y <1} was divided into » = 20 x 20
pixels.

e the number of projections m in the system (1 x 1) is equal to 788, and in the system
(1 x1,1 x 1) the number m= 644.

7.1 Reconstruction with algorithms ART-3 and MART-3
The reconstruction of f(x,y) with ART-3 after 15 iterations in the scheme (1 x 1,1 x 1) is

presented in Figure 4. The plot of the reconstruction function is shown on the left side, and
the plot of the absolute errors for this image reconstruction is shown on the right side.

Fig. 4. Reconstruction and the the absolute error &x,y) of fi(x,y) with ART-3 for n=20 x20,
m= 644, iter=15 in the scheme (1 x 1,1 x 1).

For comparison this function fj(x,y) was reconstructed with the multiplicative algorithm
MART-3 for the same parameters and ®=6.9 and the plots, which are presented in Figure 5,
illustrate the dependence of the maximum relative error & and the mean absolute error &,
on number of iterations with ART-3 and MART-3 in the system (1 x 1, 1 x 1).

81 a)
14, . 3,
12f Y ! 3
Y #  LRT 0.004] \
10 | }
8 \ 0.003}
hi % - MART %
= *. % !
* 0.002p *.
4 E ! )
. Fooww 4 I
2 . *ok 0,001
e i
L — e ——% it
£ g 10 1z © 11 T 'teT :

Fig. 5. Dependence of the maximum relative error & (on the left side) and the mean absolute
error & (on the right side) on the number of iterations for image reconstruction of f;(x,y)

with ART-3 and MART-3 for n=400, m= 644 in the system (1 x 1, 1 x 1).
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