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1. Introduction 

In the past decades, Recurrent Neural Network (RNN) has attracted extensive research 

interests in various disciplines. One important motivation of these investigations is the 

RNN's promising ability of modeling time-behavior of nonlinear dynamic systems. It has 

been theoretically proved that RNN is able to map arbitrary input sequences to output 

sequences with infinite accuracy regardless underline dynamics with sufficient training 

samples [1]. Moreover, from biological point of view, RNN is more plausible to the real 

neural models as compared to other adaptive methods such as Hidden Markov Models 

(HMM), feed-forward networks and Support Vector Machines (SVM). From the practical 

point of view, the dynamics approximation and adaptive learning capability make RNN a 

highly competitive candidate for a wide range of applications. See [2] [3] [4] for examples. 

Among the various applications, the realtime signal processing has constantly been one of 
the active topics of RNN. In such kind of applications, the convergence speed is always an 
important concern because of the tight timing requirement. For example, the conventional 
training algorithms of RNN, such as the Backpropagation Through Time (BPTT) and the 
Real Time Recurrent Learning (RTRL) always suffer from slow convergence speed. If a large 
learning rate is selected to speed up the weight updating, the training process may become 
unstable. Thus it is desirable to develop robust learning algorithms with variable or 
adaptive learning coe±cients to obtain a tradeoff between the stability and fast convergence 
speed. 
The issue has already been extensively studied for linear adaptive filters, e.g., the famous 

Normalized Least Mean Square (N-LMS) algorithm. However, for online training 

algorithms of RNN this is still an open topic. Due to the inherent feedback and distributive 

parallel structure, the adjustments of RNN weights can affect the entire neural network state 

variables during network training. Hence it is difficult to obtain the error derivative for 

gradient type updating rules, and in turn difficulty in the analysis of the underlying 

dynamics of the training. So far, a great number of works have been carried out to solve the 

problem. To name a few, in [5], B. Pearlmutter presented a detail survey on gradient 

calculation for RNN training algorithms. In [6] [7] , M. Rupp et al introduced a robustness O
pe
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analysis of RNN by the small gain theorem. The stability was explained from the energy 

point of view that the ratio of output noise against input noise was guaranteed to be smaller 

than unity. In [8], J. Liang and M. Gupta studied the stability of dynamic back-propagation 

training algorithm by the Lyapunov method. An auxiliary term was appended to augment 

the learning error. The convergence speed was improved by introducing an extra increment 

in the updating rule. Later, A. Atiya and A. Parlos used a generalized steepest descent 

method to obtain a unified error gradient algorithm [9]. Recently, Q. Song et al proposed a 

simultaneous perturbation stochastic approximation training method for neural networks 

and robust stability is established by the conic sector theorem [10] [11]. 

The work presented in this chapter investigate the stability and robustness of the gradient-

type training algorithms of RNN in the discrete-time domain. A Robust Adaptive Gradient 

Descent (RAGD) training algorithm is introduced to improve the RNN training speed as 

compared to those conventional algorithms, such as the BPTT, the RTRL and the 

Normalized RTRL (N-RTRL). The main feature of the RAGD is the novel hybrid training 

concept, which switches the training patterns between the standard online Back Propagation 

(BP) and the N-RTRL algorithm via three adaptive parameters, the hybrid adaptive learning 

rates, the adaptive dead zone learning rates, and the normalization factors. These 

parameters allow RAGD to locate relatively deeper local attractors of the training and hence 

obtain a faster transient response. Different from the N-RTRL, the RAGD uses a specifically 

designed error derivatives based on the extended recurrent gradient to approximate the true 

gradient for realtime learning. Also the RAGD is different from the static BP in terms that 

the former uses the extended recurrent gradient to extend the instantaneous squared 

estimation error minimization into recurrent mode, while the latter is strictly based on the 

instantaneous squared estimation error minimization without specifically considering the 

recurrent signal. 

Weight convergence and robust stability of the RAGD are proved respectively based on the 

Lyapunov function and the Cluett's law, which is developed from the conic sector theorem 

of input- output system theory. Sufficient boundary conditions of the three adaptive 

parameters are derived to guarantee the L2 stability of the training. Different from precedent 

results [12], the present work employs the input-output systematic approach in analysis. 

This is because the input-output theory on basis of functional analysis requires minimal 

assumptions about the training statistics. Although the results are also derivable from 

conventional analysis method, we emphasize that input-output systematic scheme can 

provide an in-depth understanding of RNN training dynamics from different aspect. 

In addition to the theoretical analysis, we carried out three case studies of the applications in 
realtime signal processing via computer simulations, including time series prediction, 
system identification, and attractor learning for pattern association. With these case studies, 
we are able to qualify the effectiveness of the RAGD and hence justify that the algorithm 
outperforms other counterparts. 
The overall chapter is organized as follows: In Sections 2, we briefly introduce the structure 
of the RNN and the RAGD training algorithm. In Section 3, the robustness analysis of the 
RAGD is carried out for the Single-input Single-Output and Multi-input Multi-output RNN 
respectively. In addition, the conic sector theorem is introduced as the theoretical 
foundation of the analysis. Computer simulations are presented in Section 4 to show the 
efficiency of our proposed RAGD. Section 5 draws the final conclusions. 
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2. RAGD learning algorithm 

Consider a RNN with l output nodes and m hidden neurons. In discrete-time domain, the 

network output ŷ  at time instant k can be written as 

 (1) 

where V̂ (k) ∈ Rl×m and Ŵ  (k) ∈ Rm×n are output and hidden layer weights respectively (in 

matrix form), Φ(·) ∈ Rm×1 is a vector of nonlinear activation functions, and x̂ (k) ∈ Rn×1 is the 

state vector that consists of external input u(k) and n - 1 delayed output feedback entries 

 (2) 

in which T denotes transpose operation. To simplify the expression, we use notation Φ (k) 

instead of Φ (Ŵ (k) x̂ (k)) hereafter. When estimating a command signal d(k), the 

instantaneous modeling error of RNN can be defined by 

 (3) 

Note a disturbance term ε (k) ∈ Rl×1 is taken into account in (3). Without loss of generality, 

there is no assumption on the prior knowledge of ε (k) and its statistics. The training 

objective of RNN is to update the weight parameters step by step to minimize certain cost 

function f(e(k)), with the most convenient form being the squared instantaneous error e2(k)/2. 
Specifically, in an environment of time-varying signal statistics, a gradient based sequential 
training algorithm can be used to recursively reduce the f(e(k)) by estimating the weights at 
each time instant 

 

(4) 

where α is the learning rate of RNN, and Ŵ i(k) is the ith row of hidden layer weight matrix, 

with i = 1, 2, …, m. Note subscript i denotes ith row for matrices or ith entry for vectors. As 
for the above algorithm, a widely recognized problem is the slow convergence speed 
because of small learning rates for purpose of preserving weight convergence. So far the 
commonly accepted solution of this problem is to employ normalization, e.g., the N-RTRL 
algorithm [13] [1]. Indeed, the solution can be further improved if we can find effective 
boundary conditions of learning rates and normalization factors as will be shown in later 
sections. Moreover, hybrid learning rates can be employed to obtain the tradeoff between 
the transient and steady state response. Now based on the RNN model (1) and the gradient-
based training equation (4), we propose the RAGD learning algorithm as follows 

 

(5) 
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where Φ’(k) is the vector of activation function derivatives, αv(k), αw(k) are adaptive dead 

zone learning rates, βv(k), βw(k) are hybrid learning rates, ρv(k), ρw(k) are normalization 

factors, and Â (k), B̂ (k) are residual error gradients. These variables are defined in the 
following. 

(a) Φ’(k) ∈ Rm×1 

 (6) 

(b) Â (k) ∈ R1×m and B̂ (k) ∈ R1×n 

 
(7) 

 (8) 

where 
 
are block diagonal matrices 

with sub-matrix diag{Φ’ (k)} and Ŵ (k) on the diagonal respectively 

 

 

are long vector versions of the weight matrices V̂ (k) 

and Ŵ (k) respectively 

 

and the Jacobian  
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in which are sub-matrices. 

(c) β v(k) and β w(k) 

 (9) 

 (10)

where  is a small positive constant, I is the identity matrix, and I is employed to ensure the 

matrix and positive definite. 

(d) ρ v(k) and ρ w(k) 

 (11)

 
(12)

where  are positive constants, μ max is the maximu value of the 

activation function, and . Note we are using an inner 

product induced norm, the Frobenius norm, as the norm of weight matrices in this work. 

(e) αv(k) and αw(k) 

 

(13)

 

(14)

where   and sgn(�) function is defined by 

 

(15)

Remark 1 The RAGD algorithm uses the specific designed derivative as shown in (5). The state 

estimators are taken into account in the second terms of the partial derivatives on the right side of the 

equation. Further, to make the proposed algorithm realtime adaptive and recurrent, the D̂ v(k) and 

the D̂ w(k) in the partial derivatives are calculated on basis of the data from previous training steps, 

which is similar to that of the N-RTRL algorithm [14]. It is noteworthy only when the convergence 

and stability requirements (details will be given in Section 3) are met, they hybrid learning rate β will 

be turned on. In this case, since we have estimated the best available gradient at each step k, the 

combination of weights and state estimates in (5) should provide a relatively deeper local attractor of 

the nonlinear iteration, and hence to speed up the training. 
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3. Robust stability analysis 

In this section, we present detail analysis of robust stability of the RAGD algorithm. Proofs 
of weight convergence and L2 stability are derived on basis of Lyapunov function and input-
output systematic approach respectively. The boundary conditions on the three adaptive 
parameters, the hybrid learning rate, the adaptive dead zone learning rates, and the 
normalization factors, are obtained for the optimized transient response of the training. For 
better understanding of the algorithm, a simple case of Single-input Single-output (SISO) 
RNN is firstly given as an example. Then the results are extended to the more complicated 
case of Multi-input Multi-output (MIMO) RNN. Before proceeding, we introduce the 
Cluett's law and mathematical preliminaries. 

3.1 Cluett's laws 
The main concern of this work is discrete signals which are infinite sequences of real 
numbers. Each signal may be considered an element of a set known as a linear vector space. 
To provide a clear explanation, an immediate review is given on several mathematical 

notations. Let the x(k) ∈ Rn×1 denotes the series {x(1), x(2), …}, then 

i) The L2 norm of x(k) is defined as 
 

ii) If the L2 norm of x(k) exists, the corresponding normed vector spaces are called L2 spaces; 

iii) The truncation of x(k) is defined as  

iv) The extension of a space L2, denoted by L2e is the space consisting of those elements x(k) 

whose truncations are all lie in L2, i.e., , for all N ∈Z+ (the set of positive 

integers). 

Note • denotes the Euclidean norm of a vector, and • 2 for the L2 norm of a signal (could 

be either a vector or a scalar). Let's consider the closed loop system shown in Figure 1 
 

 

Figure 1. A general closed loop feedback system 

 

(16)

where operators H1;H2 : L2e →L2e, discrete time signals e0(k); e(k); φ(k) ∈ L2e and ε(k) ∈ L2. 

Theorem 1 (Cluett's Law-1) If the following two conditions hold 
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i)  

ii)  

for some α, β ∈ R, which are independent of k and N, and γ ≥ 0, η > 0, which are 

independent of N, then the closed loop feedback system of (16) is stable in the sense of e(k), 

 φ (k) ∈ L2. 

Proof: By the inequality i) and using e0(k) = ε(k) -φ (k) 

 

(17)

Combining inequality ii) and equation (17) 

 

(18)

Using the Schwartz inequality 

 

 
(19)

Assume as N→∞, then from equation (19) we derive η ≤0. This is 

a contradiction. Therefore is bounded for all N ∈ Z+, i.e., φ(k), e(k) ∈ L2. ■ 

Theorem 2 (Cluett's Law{2) For the feedback system (16), if 
i) H1 : e0(k) - e(k) satisfies 

 

ii) H2 : e(k) - φ (k) satisfies 

 

for some γ ≥ 0, η > 0, which are independent of N, and  ∈ (0, 1], which is independent of k 

and N, then the closed loop signals e(k), φ (k) ∈ L2. 
Proof: See corollary 2.1 in [15]. ■ 
Remark 2 As a matter of fact, the operator H1 represents the nonlinear mapping and H2 is a dynamic 
linear transfer function. When condition (i) and (ii) are satisfied, H2 is guaranteed to be passive and 

1

1
H

−
 is strictly interior conic (c1, r1), where c1 = 1 and r1 = (1- )1/2, or equivalently H1 is strictly 

interior the conic (c2, r2) where c2 =  -1
 and r1 =  -1

 (1 - )1/2 as long as  < 1 holds. Hence the 
feedback loop is L2-stable by the conic sector theorem. This conic relation is illustrated in Figure 2 
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Figure 2. Illustration of interior and exterior conic relations of H1 

3.2 Output layer analysis of SISO RNN 
In this and next section, we consider the RNN model of (1) with only one output node, i.e., 
l = 1. Such simplification is favorable for us to put more concentration on the basic ideas of 
the proof rather than the pure mathematics. Moreover, the results for SISO RNN will also be 
extended to the more general case of MIMO RNN in later sections. On the other hand, in a 
multi-layered RNN, it may not be able to update all the estimated weights within a single 
gradient approximation function. Hence we shall partition the training into different layers. 
Now with the assumption of SISO RNN, the training for output layer can be re-written as 

 
(20)

In order to analyze the dynamics of this training equation via input-output approach, the 
first step is to restructure (20) into an error feedback loop, which should be the same as that 
in Figure 1. Further, the weight estimation error must be referred as the output signal. For 
this purpose, define the estimation error 

 (21)

where V* ∈ R1×m and V# (k) = V (k) - V* are the ideal weight vector and estimation error 

vector of output layer respectively, and Φ*(k) is defined in analogous to Φ (k) as 

 (22)

where x*(k) ∈ Rn×1 is the ideal input state, W* ∈ Rm×n is the ideal weight matrix of hidden 
layer of the RNN. Then the training error of RNN can be expanded as 
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(23)

Because the term V* Φ*(k) - V* Φ (k) is temporarily constant in case of output layer training, 

we can define ε# v(k) = ε  (k) + V* Φ*(k) - V* Φ (k). Then (23) can be transformed as 

 (24)

Equation (24) has a similar form as the feedback path of the system (16), with ev(k) and e(k) 
corresponding to e(k) and e0(k) in Figure 1 respectively, and here the feedback gain is unity, 
i.e., H2 = 1. 

There is an important implication in the relation of (24). The ev(k), e(k) and ε# v(k) correspond 

to the weight estimation error, the RNN modeling error and the disturbance, respectively. 
Hence the training error is directly linked to the disturbance, and in turn, the parameter 
estimating error of the RNN output layer. If we further establish a nonlinear mapping from 

the original disturbance ε# v(k) to the parameter estimation error ev(k), the relationship 

between L2-stability of training algorithm and learning parameters can subsequently be 
studied by imposing the conditions of Theorem 2. 
Theorem 3 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 

(20), the weight V̂ (k) is guaranteed to be stable in the sense of Lyapunov 

 (25)

with V# (k) = V (k) - V*. Also the training will be L2-stable in the sense of ev(k) ∈ L2 if αv(k) ≠0 

for all k ∈ Z+. 
Proof: Subtracting V*and then squaring both sides of (20) 

 

 
 
 
 

(26)

Regarding the first term on the right side of (26), we find that it may be easily associated 

with the term ev(k) due to the explicit appearance of V# (k) and Φ(k). Following this idea, we 

need to apply certain transformation to β v(k) Â (k)T , such that Φ(k) can be extracted from the 
summation. When it comes to this point, our first thought is to left multiply 

 However, the transformation is not valid 

because Φ(k) Φ(k)T is not an invertible matrix (Φ(k) is a column vector). Fortunately, inspired 
by the approximation method of classical Gauss-Newton iteration algorithm [2] (pp.126-
127), we can add the term Φ(k) Φ(k)T by a small positive constant  to expand it into 
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 (27)

Such that the singular matrix problem can be avoided. On this basis, we have the following 

derivations 

  

         

                
(28)

 

           
(29)

where (29) is obtained by substituting (24) into (28). Then based on the triangular inequality 

 (29) can be further deducted as 

 
 

By the definition of βv(k), we may derive that  

Furthermore, because that  as defined in (11) which lead 

to 1 -  > 0, and by the definition of αv(k), the convergence of V# (k) can 

be derived 
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(30)

Next considering the case that the assumption αv(k) ≠0 holds for all k ∈ Z+, we can divide 

both sides of (28) by  and then sum 

up to N steps 

 

 

(31)

where the normalized error signals are defined as 

 

and the cone satisfies 

 

which prevents the vanishing radius problem, i.e., σ v is strictly smaller than one [15]. 

Because for each k the Lyapunov function (30) is guaranteed smaller or equal to zero, we 
have 
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Due to the specific selection of the normalization factor in (11), the normalized error signals 

guarantee that the original signals e(k) and ev(k) are bounded according to the original 

operators H
v

1 and H2 [15]. Now the operator H
v

1 represented by (31) satisfies the condition 

(i) of Theorem 2, and condition (ii) is guaranteed to hold due to H2 = 1. Thus we conclude 

that ev(k) ∈ L2. ■ 

Remark 3 According to the theoretical analysis, the three adaptive parameters αv(k), β v(k) and ρv(k) 

play important roles in the design of the RAGD. The adaptive learning rate αv(k) is based on the 

standard adaptive control system to solve the weight drift problem [10]. The normalization factor  

ρ v(k) prevents the so-called vanishing cone problem of the conic sector theorem [15], which also has a 
similar role to the local stability condition as in [8] to bound the gradient in (20). The specific 

designed hybrid adaptive learning rate β v(k) can be further interpreted as activating the recurrent 

learning fashion in case  It implies that the recurrent 
training of the RAGD will be active only if the second term of the derivative in (20) gives the negative 
gradient direction, i.e., a relatively deeper local attractor, otherwise the RAGD training procedure 
will be the same as a static BP algorithm and likely escape this undesired local attractor since it is 
unfavorable in the recurrent training. This design is especially effective for accelerating the training 
of the RNN when the iteration is near the bottom of basin of a local attractor, where the derivatives 

are changed slowly. With β v(k) = 1, the approximation of D̂ v(k) is more accurate to meet the 
convergence and stability requirements. 
Remark 4 The idea of the RAGD is similar to the existing works [16] [17] [14]. If we calculate the 

derivative in (20) exactly by unfolding the recurrent structure and force β v(k) = 0, i.e, pursuing all N 
steps back in the past, then the algorithm will recover the static BP [17] [18]. Moreover, based on the 
assumption that the model parameters do not change apparently between each iteration [16], then we 
can derive a similar approach as the N-RTRL [14]. However, the key difference between the RAGD 

and the N-RTRL is that we use the hybrid learning rate β v(k) to guarantee the weight convergence 
and system stability. 

3.3 Hidden layer analysis of SISO RNN 
This section presents the stability analysis for the hidden layer training of the RAGD. 
Apparently the analysis for the hidden layer is more di±cult than the one of the output 
layer, because the dynamics between the weight and modeling error is nonlinear. The 
derivation of error gradient must be carried out through one layer backward, which 
involves the derivative of activation function. In the following analysis, we show that the 
nonlinearity can actually be avoided by using the mean value theorem. On the other hand, 
as mentioned in section 2, the Frobenius norm is employed as weight matrix norm in the 

proof, e.g., ˆ ( )
F

W k . A direct benefit of this expression is that the proof and the training 

equation can be presented in matrix forms, while not in a manner of row by row. However 
question arises, it is difficult to derive the Jacobian in this framework. We find that it is 
feasible to extend the Jacobian into a long vector form on the row basis. Next, similar to the 
output layer analysis, the hidden layer training of the RAGD of SISO RNN can be simplified 
as follows 

 
(32)
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Expanding the modeling error around the hidden layer weight 

 

 
 
 
 
 
 
 
 
 
 

(33)

where is the vector difference 

between the ith row of \hat W(k) and the ideal weight W*, μi(k) is the mean value of the ith 

nonlinear activation function, and Ψ (k) is 

 

Defining 

 (34)

then equation (33) can be simplified as 

 (35)

Because the output layer weight is always updated before the hidden layer weight, and 

V̂ (k) of the RAGD is bounded as already proved in Section 3.2, then definitely the error 

signal ε# w(k) is also bounded for every step k. Furthermore, since H2 = 1 is inside any cone, 

thus we only need to study the operator H1 to analyze the stability of the training. 

Theorem 4 If the output layer of the RNN is trained by the adaptive normalized gradient algorithm 

(32), the weight matrix Ŵ (k) is guaranteed to be stable in the sense of Lyapunov 

 

 

with W# (k) = Ŵ (k) – W*. Also the hidden layer training of the RAGD will be L2-stable in the sense 

of e w(k) ∈ L2 if α w(k) ≠ 0 for all k ∈ Z+. 

Proof: Subtracting W* from both sides of (32) 

 
(36)

Squaring both sides of (36) 
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(37)

By the definition of Frobenius norm 

 

where Trace {�} function is defined as the sum of the entries on the main diagonal of the 
associated matrix. The following equation can be derived then 

 

     
(38)

Using the trace properties, the first term on the right side of (38) can be transformed as 

 

 
(39)

where the third equality to the last is derived by the similar perturbation method as the one 

in the output layer training (adding a small constant diagonal matrix I to to 

make it invertible, see the proof in Section 3.2). 
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Before proceeding, let's consider a RNN with scalar weight Ŵ (k). The relation of the local 

attractor basin of the instantaneous square error against the W# (k) can be presented by 

, as illustrated in Figure 3 [10]. Extend this result to the RNN with a matrix 

weight Ŵ (k), we have a similar presentation by the local attractor basin concept 

 
(40)

By the local attractor basin properties in (40) 

 

 
(41)

The right side of (39) can be enlarged as 

 

 

 
(42)

 

 

Figure 3. Illustration of a local attractor basin of the RNN against a scalar estimated weight Ŵ (k) 

Substituting (42) into (39) 
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(43)

Substituting (35) into (43) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(44)

By the definition of ρw(k) and α w(k) in (12) and (14) respectively, we can draw that 

 (45)

Again, consider the extreme case with the assumption of nonzero α w(k). Dividing both sides 

of (43) by 

 
and then summing up to N steps 

 

 
(46)

where the normalized error signals are  
and the cone is 
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(47)

and ΔW is greater than zero because for each k the Lyapunov function (45) is guaranteed 
smaller than or equal to zero, i.e. 

 

                  
(48)

Due to the specific selection of the normalization factor in (12), the original signals e(k) and 

ew(k) are guaranteed to be bounded according to the original operators 
1

H
w and H2 [11] [15]. 

Now the operator 
1

H
w

represented by (46) satisfies the condition (i) of Theorem 2. Thus we 

conclude that ew(k) ∈ L2 in case of α w(k) ≠ 0, ∀k ∈ Z+. ■ 

3.4 Robustness analysis of MIMO RNN 
In this section, we discuss the RAGD training for the RNN of Multi-Input Multi-Output 

(MIMO) types. As mentioned in the introduction, the RNN with multiple output neurons 

can be regarded as consisting of several single output RNNs. Thus the training of MIMO 

RNN can be studied by decomposition. In detail, for the output layer training, we may 

calculate the gradient of each output neuron with respect to weight parameters, and then 

obtain the total weight updating by summing these individual gradient. As for the hidden 

layer, we also use this method to take into account the influence of multi-output neurons on 

total weight updating. Following this idea, the extension of the stability analysis from SISO 

to MIMO is straight forward. 

Theorem 5 If the RNN is trained by the adaptive normalized gradient algorithm (5)-(15), then the 

weight V̂ (k) and Ŵ (k) are guaranteed to be stable in the sense of Lyapunov. 

Proof: (i) Output layer analysis: To study the stability of the RAGD, we need to establish the 

error dynamics of the training algorithm. First of all, define the estimation error 

 (49)

where V*∈R l 
× m is the ideal output layer weight, and 

 

Then we expand e(k) ∈ Rl×1 with respect to the output layer weight as 
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