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1. Introduction 

New methods for acoustic testing of large-size (>1.5 m) concrete building structures 
(foundations, walls of buildings, airfield pavements, bridge pillars, slabs, blocks, beams, 
etc.) based on the use of methods of free and forced vibrations are reviewed.  
Problems of inspection of large-size concrete building structures by the resonance and the 

impact-echo method are considered. These methods are the only possible acoustic methods 

for testing large concrete building structures, that cannot be inspected by other 

(conventional) ultrasonic testing techniques. However, the resonance and impact echo 

methods for testing large-size concrete building constructions can be used only for testing 

extended building structures (in extended building structures the inspected thickness h is 

much smaller than the other dimensions). The resonance and impact echo methods cannot 

be used in compact building structures (in which the tested dimension, e.g., the thickness h, 

is comparable with at least one of the other dimensions), because of the influence of 

geometrical effects (the noise of the article shape does not allow unambiguous 

determination of the desired maximum in the article’s spectral characteristic).  

A new multichannel acoustic method for testing large-size compact concrete building 

constructions is considered. The method is based on the use of the resonance and impact-

echo methods with the subsequent multiplication of partial spectral characteristics. The 

multichannel multiplicative method allows performance of acoustic testing of large-size 

compact concrete building constructions (blocks, beams, columns, supports, and other 

standard articles). 

The second problem of inspection of large-size compact concrete building structures 

determined the necessity of calculating the acoustic velocity in compact articles. It is 

impossible to determine the acoustic-vibration velocity Cl in a compact article because of the 

effect of geometrical dispersion of the sound velocity. The resonance and impact echo 

methods can be used only at a known value of the correlation coefficient of the velocity of 

longitudinal vibrations in a particular compact article. This can be done using the technique 

of numerical simulation of acoustic fields. A new correlation method for determining the 

velocity in a compact article with known dimensions is described. It allows monitoring of 

the strength of arbitrarily shaped large-size compact concrete building constructions.  
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2. Problems of acoustic testing of large-size concrete building structures 

Unfortunately, failures in residential and industrial buildings due to aging of concrete, 
which destroys the strength of building constructions (BCs), have occurred more frequently 
in recent years. To prevent such failures, special attention should be given to the problems 
of inspecting large-size concrete objects of BCs.  
Unfortunately, conventional ultrasonic nondestructive testing (NDT) methods allow 
inspection of concrete articles of only limited thicknesses. The most informative ultrasonic 
echo method allows one to test BCs only to a maximum depth of 1–1.5 m even if low-
frequency signals are used (f0 ≤100 kHz).  
To solve the problem of testing large-size concrete BCs by acoustic methods, inspection 
methods based on the analysis of eigenfrequencies of an article (the impact method and, less 
frequently, the resonance method) were developed in the United States approximately 20 
years ago (Carino, N.J., 2001; Sansalone, M. & Carino, N.J., 1986 ; Carino, N.J.; Sansalone, M. 
and Hsu, N.N., 1986; Sansalone, M. and Streett, W.B., 1997). The essence of the impact-echo 
(IE) method is illustrated in Fig. 1, which shows a diagram of testing of an extended concrete 
article (hereinafter, the term “extended article” is defined by the condition that the inspected 
thickness h is much smaller than the other dimensions). Using a small steel ball or a special 
impactor device, a short but strong mechanical impact is delivered to the BC surface (Fig. 1). 
This impact initiates free decaying acoustic oscillations in the tested extended article. These 
oscillations are detected by a broadband receiving PET and then by a spectrum analyzer 
(SA). The free-oscillation spectrum is the informative parameter for analyzing BCs. The form 
of the spectral characteristic allows determination of the eigenfrequency f at which a BC 
thickness resonance is observed. The frequency of the resonance peak allows calculation of 
the thickness h at a known propagation velocity Cl of a longitudinal acoustic wave: h ≈ Cl / 2f 
(Figs. 1, 2).  
 

 

Fig. 1. Schematic diagram of testing of a flaw-free concrete article (h = 0.5 m) by the acoustic 
IE method. 

 

Fig. 2. AFC of an extended flaw-free concrete article: f = 3.42 kHz and h = C / 2f = Cλ / 2. 
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The IE method, based on the excitation and measurement of natural oscillations in an article, 
qualitatively differs from conventional ultrasonic testing methods, based on location 
principles.  
First, when the IE method is applied, a resonance of the article itself arises; the resonance 
frequency f is determined by the article size (h ≈ λ/2), and, for large-size articles, this 
frequency may be within the range of tens of hertz to several kilohertz. At such frequencies, 
the attenuation of acoustic signals in concrete is negligibly low; therefore, it is possible to 
test concrete BCs with a thickness of up to 10–20 m by the IE method.  
Second, the analysis of the resonance characteristics yields only indirect information on the 
presence of flaws. The presence of a flaw in a BC (Fig. 3) can be determined in comparing 
the spectral characteristics of a flaw-free (Fig. 2) and a defective article (Fig. 4).  
Third, during testing of large-size concrete BCs, the most important task is to determine 
neither the BC dimensions nor flaws of the article’s internal structure, but the structure 
strength, which is determined mainly by the concrete strength (grade). For this purpose, in 
some cases, the problem of determining the propagation velocity of acoustic vibrations 
inside a concrete article becomes predominant because the velocity of longitudinal acoustic 
vibrations Cl in concrete is directly related to the concrete strength characteristics (Ermolov, 
I.N. & Lange, Yu.V., 2004). 
 

 

Fig. 3. Schematic diagram of testing of an extended concrete article (h = 0.5 m) with a flaw (l 
= 0.25 m) by the acoustic IE method. 

 

Fig. 4. AFC of an extended concrete article with a flaw: f = 6.84 kHz and l = 0.25 m. 

Note that, at present, the problem of measuring the velocity of acoustic vibrations in large-
size concrete BCs is far from being solved. The known methods for determining the velocity 
Cl in concrete from the surface velocity Csur of acoustic vibrations do not always yield precise 
information on the actual velocity Cl inside a large-size BC because the strength of the 
concrete surface layer often does not correspond to the strength of its deeper layers. The 
velocity Cl of an acoustic wave calculated through the surface velocity Csur is usually 10–20% 
lowers than the actual velocity in the volume of a concrete structure (Ferraro, C.C., 2003). 
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This phenomenon, which is explained by a change in the concrete properties near the 
surface due to constant contact with the atmosphere, is additionally aggravated by the 
presence of steel reinforcement bars inside reinforced-concrete constructions. The velocity of 
acoustic waves in steel is higher than that in concrete; therefore, the wave propagation 
velocity in reinforced concrete is higher than that in plain concrete.  
The velocity of ultrasonic vibrations in large BCs cannot always be measured by the echo-
pulse (shadow) method. Moreover, the velocity of longitudinal ultrasonic vibrations 
measured by the echo-pulse (shadow) testing method is not equal to the velocity of 
longitudinal acoustic vibrations deter-mined using the IE method because of the effect of 
geometrical dispersion in articles at λ~ h (Ermolov, I.N. & Lange, Yu.V., 2004; Bolotin, V.V. 
1999). In fact, the velocity Cl is measured using the ultrasonic echo-pulse (shadow) testing 
method provided that λ<< h; as a result, Cl = 2h/T. The velocity of longitudinal vibrations 
measured by the IE method is measured under the condition of λ ~ h; as a result, Cl = (2hf/k), 
where k is the velocity correction factor (k ≠ 1). For slabs and piles, k = 0.96 and 0.95, 
respectively (Carino, N.J., 2001). Hence, the BC strength can be measured by the IE method 
only in articles where the velocity correction factor k is strictly defined.  
Proceeding from the above, we can conclude that eigenfrequency methods are the only 
possible acoustic methods for testing large BCs that cannot be inspected by other 
(conventional) acoustic testing techniques. However, the IE method allows testing of only 
extended BCs (for which the factor k is known) and excludes testing of compact concrete 
BCs.  
Hereinafter, we define a compact article as an object for which the ratio of the measured 
thickness to the two other dimensions (width and length) is <1:5 or >5:1. Note that, 
according to this definition, both a large concrete article (2х3х4 m) and a small object (2х3х4 
cm) are compact.  
Figure 5 shows examples of (a) extended and (b) compact BCs; arrows indicate surfaces 
accessible to testing and determining surfaces of the impactor location. Figure 6 illustrates 
the problem of testing compact articles. The article has a limited width (a) and a thickness-
to-length ratio h/l ≈ 1 : 1.5. 
 

 

Fig. 5. Examples of (a) extended and (b) compact BCs. 

As a result, in addition to a thickness resonance, numerous supplementary resonance peaks 
caused by geometrical effects appear in the spectral characteristic. Against the background 
of numerous resonances, it is impossible to unambiguously determine the main thickness-
resonance peak at the desired frequency f ~ 1/h (Fig. 6b). In addition, the velocity Cl = (2hf/k) 
measured by the IE method in a compact article differs from the velocity Cl in an extended 
article: in a compact article, the velocity correction factor k requires special determination for 
each article. It is precisely for these reasons (ambiguity of the spectral characteristic and 
uncertainty of Cl) that, to date, compact concrete BCs are not tested by acoustic methods. 
Hence, the IE method, which is widespread abroad, is used to test only extended concrete 
BCs.  
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Fig. 6. (a) Schematic diagram of the acoustic IE method for a compact concrete article; (b) 
AFC of a compact concrete arti-cle. Parameters of the IE method in testing of compact 
articles. 

The IE method is one of the oldest NDT methods. The first paper devoted to the IE method 

(Mary Sansalone, United States) allowing determination of the thickness and the presence of 

flaws in extended BCs was published in 1986 (Sansalone, M. & Carino, N.J. 1986). In 1998, 

the American Society adopted this method for Testing and Materials (ASTM) as a standard 

(ASTM C1383. Standard Test Method for Measuring the P-Wave Speed and the Thickness of 

Concrete Plates Using the Impact-Echo Method). The simplicity of the impact method, the 

high capacity, and the relative cheapness of testing devices has made it quite widespread in 

industrially advanced countries.  

A standard IE complex consists of a computer, an amplifier, a PET, and a set of steel balls of 

different diameters used to excite free oscillations in BCs.  

In some cases, steel balls are replaced by a special device — an impactor, a mechanism for 
delivering a force- and duration-normalized impact on a surface and situated in one unit 
with the receiving PET. The latter is built as a transducer with a point contact ensuring a 
good “dry” acoustic contact with a rough concrete surface. The impactor ensures better 
stability of the exciting-signal spectrum, thereby contributing to the improvement of the 
reproducibility of the spectral-characteristic measurement results. In addition, the impactor 
solves the problem of synchronizing the onset of measurement with the moment of striking.  
The resonance method, which involves excitation of forced vibrations in an article using an 

external generator of a linearly changing voltage, is similar to the IE method based on the 

analysis of free vibrations in a tested article. In this case, a ball or an impactor is replaced by 

a broadband emitting PET and signals are received with a broadband receiving probe. The 

amplitude–frequency characteristic (AFC) of forced vibrations in an article is similar to the 

spectral characteristic obtained in the IE method. However, the resonance method has a 

number of advantages over the IE method.  
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First, a Fourier transform of the received signal is unnecessary. To obtain the resonance 
characteristic of a test object, it is sufficient to record the received-signal amplitude at each 
frequency. This allows a detailed study of the AFC in the frequency ranges of interest at as 
small a step as possible, thus increasing the measurement accuracy.  
Second, the resonance method is more sensitive because, in the IE method, excitation is 
performed by a short impact whose energy is distributed over the entire spectrum (in the 
resonance method, the signal energy can be concentrated at each individual frequency).  
Third, if there is a good acoustic contact between the PET and the article, the reproducibility 
of measurements is ensured.  
Fourth, the AFC of the electroacoustic channel can be corrected by setting the required 
amplitude of the emitted signal or selecting the gain of the input signal for each frequency.  
The resonance method has also not found practical application in the quality control of 
actual concrete BCs, but the resonance method is indispensable for laboratory studies (when 
it is necessary to carefully study the AFC of an article in some frequency range, to find the 
optimal arrangement of probes, to perform identical measurements many times, or to 
conduct other investigations). For this reason, we actively used the resonance method for 
detailed studies of the characteristics of concrete articles and the development of new testing 
techniques.  
The IE method is used mainly to determine the thickness of large-size (>1.5 m) concrete BCs. 

In this case, reliable measurement results are obtained in testing of extended slabs 

(foundations, walls, floors, etc.) whose lengths and widths exceed the tested thickness by a 

factor of 5 or more. As a rule, testing of such extended articles allows one to unambiguously 

determine the BC thickness according to the frequency of the maximum resonance peak in 

the article’s spectral characteristic.  

The value of the velocity of acoustic vibrations necessary for the subsequent determination 

of the BC thickness is determined according to the American standard ASTM C1383 through 

the surface-wave velocity despite all the aforementioned drawbacks of this method. Note 

that it is the method of eigenfrequencies that allows determination of the longitudinal-wave 

velocity in the bulk of an article. However, the field of application of these methods is 

limited by the shape of tested articles: only extended slabs (with lengths and widths far 

exceeding the thickness) and long piles (with lengths far exceeding other dimensions) may 

undergo testing. For compact articles, the value of the coefficient k is unknown; therefore, it 

is impossible to use the methods of eigenfrequencies for monitoring the wave velocity in 

such articles.  

The analysis of publications on the application of the IE and resonance methods allows us to 
draw the following conclusions.  
(1) To date, the IE method (in some cases, the resonance method) is a quite widespread 
technique for acoustic testing of concrete BCs (abroad) and is virtually the only acoustic 
method enabling testing of extended articles thicker than 1.5 m in the case of one-way 
access.  
(2) The IE method has certain limitations: the testing techniques and devices allow 
inspection by the IE method of virtually any thickness but only for extended articles 
(foundations, walls, floors, and piles) whose lengths and widths exceed their thicknesses by 
a factor of >5. The existing testing techniques are unsuitable for testing compact articles (for 
which at least one dimension differs from the thickness by a factor of <5, a feature typical of 
supports, columns, blocks, etc.).  
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2. A correlation method for determining the propagation velocity of an 
acoustic wave in large-size compact concrete articles 

A review of the methods for testing large-size concrete BCs shows that the impact echo 
method helps to inspect extended concrete BCs (in extended BCs, the tested dimension 
differs from the other dimensions by a factor of at least 5) (Carino, N.J., 2001). Thus, it 
becomes possible to measure the thickness h of (at a known velocity Cl) or the velocity Cl in 
(at a known thickness h) foundations, walls, building floors, bridge supports, piles, etc. 
However, it is shown in (Carino, N.J., 2001). that one cannot achieve an unambiguous result 
in compact articles. In fact, in compact articles (in which the tested dimension, e.g., the 
thickness h, is comparable with at least one of the other dimensions), numerous amplitude 
peaks (resonances) appear in the spectral characteristics and a shift of the resonance-peak 
frequency is observed due to the effect of geometrical dispersion of the wave velocity, which 
leads to ambiguous testing results.  
These problems determined the necessity of calculating the acoustic fields in compact 
articles appearing under the action of a driving force. As is known, either free vibrations 
(when the action of a driving force has a short-term pulsed character) or forced vibrations 
(initiated by continuous action of a driving force) arise in an elastic body (Skuchik, E., 1971). 
Analytical calculation of the vibration spectra for elastic solids of different shapes involves 
intricate mathematical calculations. It is relatively simple to obtain analytical expressions for 
the spectral characteristics of natural vibrations only for the simplest geometrical forms—
rods and extended slabs (plates) (Ermolov, I.N. & Lange, Yu.V., 2004). For more complex 
shapes, a solution leads to differential equations of the fifth and higher orders that cannot be 
solved analytically. Meanwhile, an analytical solution allows one to more deeply 
understand the essence of the processes proceeding in a tested object affected by an external 
driving force.  
The analytical solution for the simplest shape — a thin rod of finite length l — is known 
(Fig. 7). In our context, “thin” means that the thickness of the rod is many times smaller than 
the wavelength and its length l is comparable with the wavelength (l ≈λ). In the simplest 
variant, we assume that only longitudinal waves propagate in the rod; flexural and torsional 
waves are not considered here. In the case of forced vibrations, the behavior of the rod is 
analyzed under the assumption that a constant harmonic force F = F0eiωt is applied to one end 
of the rod (x = 0) and its other end (x = l) is free. As a result of this analysis, the values of the 
rod resonance frequencies are determined: f = nCr/2l, where n = 1,2,3,.. .(Korobov, A.I. 2003).  
 

 
Fig. 7. (a) Thin concrete rod and (b) spectrum of forced vibrations in the rod. 
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Hence, the rod is a distributed vibratory system with many degrees of freedom (modes), 
each of which has an eigenfrequency ω. Fig. 7b shows the calculated spectral characteristic 
of a thin rod of length l = 0.3 m. The following parameters typical of concrete were used in 
the calculation: the Young modulus E = 3.456х1010 N/m2, the viscosity E = 5000 (Ns)/m2, 
and the density ρ = 2400 kg/m3. The propagation velocity Cr of an acoustic wave in such a 
rod calculated taking into account the above values of the Young modulus and density is Cr 
= 3795 m/s. The resonance frequency f1a of the first mode of a longitudinal wave obtained 
analytically is 6325 Hz.  
In practice, we most frequently deal with concrete articles of a more complex shape than 
rods. Because it is difficult to analytically calculate the vibration spectra of such articles, it 
becomes necessary to simulate the physical processes occurring in compact BCs by 
numerical methods. Simulating physical processes is necessary for determining the 
character of the acoustic-field distribution in BCs, the optimal testing algorithm, and the 
optimal arrangement of probes on the article surface. In other words, the possibility of 
constructing a numerical model of a BC with specified dimensions, boundary conditions, 
and material properties is a necessary condition for studies.  
The finite-element method (FEM) is most frequently used for this purpose (Bolotin, V.V. 
1999). This method is based on the approximation of a continuous function by a discrete 
model, which is constructed on a set of piecewise-continuous functions defined on a finite 
number of subdomains called finite elements. The geometrical domain under study is 
partitioned into elements so that, on each of them, the unknown function is approximated 
by a trial function (as a rule, a polynomial). These trial functions must satisfy the continuity 
boundary conditions coinciding with the boundary conditions imposed by the problem 
itself. The choice of the approximating function determines the corresponding type of 
element.  
Partition of the geometrical domain into a large number of finite elements and solution of 
the main equation of motion for each element allow calculation of the spectra of free 
(transitional analysis) and forced (modal analysis) vibrations. The main equation of motion 
has the form  

 [ ]{ } [ ]{ } [ ]{ } { }aM u C u K U F+ + =$$ $ ,  (1) 

where [M] - is the mass matrix, [C] - is the damping matrix, [K] - is the elasticity matrix, {ü}- 
is the nodal acceleration vector, { u$ }- is the nodal velocity vector, {u}- is the nodal 
displacement vector, and {Fa} is the applied-force vector.  
In the modal analysis, it is considered that the displacements of all elements obey the 
harmonic law  

 { } { }max
i i tu u e eΦ Ω=  

 (2) 

where umax is the displacement amplitude, Ω is the circular frequency of forced vibrations, 
and Φ is the displacement phase shift.  
The use of complex form of representation allows reduction of expression (2) to a more 
compact form: 

{ } { }max(cos sin ) i tu u i e Ω= Φ + Φ
 

or 
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 { } { } { }1 2( ) i tu u i u e Ω= + ,  (3) 

where { } { }1 max cosФu u=  and { } { }2 max inФu u s= . 

Similarly, the force vector can be represented as  

 { } { } { }1 2( ) i tu F i F e Ω= +   (4) 

Substituting (3) and (4) into (1), we obtain 

 [ ] [ ] [ ] { } { } { } { }2
1 2 1 2( )( )K M i C u i u F i F− Ω + Ω + = +   (5) 

Note that, for forced vibrations, this equation does not include the time t (only stationary 
vibrations are considered in the modal analysis).  
The solution of Eq. (5) allows calculation of the displacement amplitude of each element of 
the model at the current frequency of the driving force. Multiple solution of this equation for 
each frequency in the range of interest makes it possible to construct the spectral 
characteristic of forced vibrations of the model in this frequency range for the element of 
interest.  
To date, several software packages allowing FEM-based computer calculations have become 

widespread. In this study, the FEM calculations were performed according to the ANSYS 

program with the Multiphysics package (Chigarev, A.V.; Kravchuk, A.S., & Smalyuk, A.F., 

2004; Kaplun, A.B.; Morozov, E.M., & Olfer’eva, M.A., 2003; Basov, K.A., 2002). The ANSYS 

graphical environment facilitates constructing a 3D model, specifying the material 

properties and the boundary conditions, and visualizing the calculation results. In this 

study, the ANSYS package was used to calculate the spectra of free and forced vibrations in 

concrete articles with different shapes. The calculation of the spectra of free and forced 

vibrations for a thin rod similar to that considered above is presented below and is intended 

for primary verification of the simulation results.  

The simulation procedure consists of several stages. A geometrical model of the rod is 
created — a cylinder with a diameter d = 0.01 m and a length l = 0.3 m (Fig. 8a). The elastic 

properties of the material are specified — the density ρ = 2400 kg/m3, the Young modulus E 

= 3.456×1010 N/m2, and the Poisson ratio σ = 0.2. A grid is imposed on the geometrical 
model. In this case, the cylinder is partitioned into 100 elements along the length.  
 

 

Fig. 8. (a) Model of a thin rod and (b) calculated spectra of free and forced vibrations in the 
rod. 
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The boundary conditions are set. An external force is applied to all nodes of the grid 
positioned at one end of the cylinder. In simulating free vibrations, a short impulse of force 

in the form of a sine-vibration half-period with a duration of 50 μs is used. A harmonic 
oscillator is used as an external force for modeling forced vibrations. Subsequently, the type 
of analysis is chosen — modal and transitional for forced and free vibrations, respectively. 
In addition, at this stage, the acoustic-wave damping in the rod material is specified.  

 (In this case, the coefficient of modal damping is 0.005, which corresponds to a damping α = 
0.04 dB/m at a frequency of 5 kHz.) The modal analysis also requires that the frequency 
range and the frequency measurement step of the oscillator used as the source of the driving 
force be specified. Finally, the analysis is performed and the results are deduced. Because 
the result of the transitional analysis is the signal shape in the time domain, it is additionally 
necessary to calculate the spectrum. 
The modal analysis results in a spectral characteristic; therefore, no additional calculations 
are required. Figure 8b shows the spectra of free and forced vibrations obtained as a result 
of the ANSYS simulation. Comparison of the spectra in Figs. 7b and 8b shows that the 
results of the numerical simulation for both types of vibration coincide with the analytical 
solution for the rod. The resonance frequency f1m of the longitudinal wave’s first mode 

resulting from the simulation is f1m = 6250 Hz, f1m ≈ f1a.  
The application of the FEM also allows calculation of the spectra of articles with more 
complex shapes (Avramenko, S.L. & Kachanov, V.K., 2007). In such articles, first, one has to 
deal with a large number of degrees of freedom and, second, it is impermissible to disregard 
the existence of other wave modes, as was done in the analytical calculation for the rod. 
Below, we present the results of calculating the spectral characteristics of a homogeneous 

concrete slab with dimensions of 300×300×30 cm (Fig. 9). This slab can be considered an 
extended article because its length and width far exceed its thickness. 
 

 

Fig. 9. Model of a slab with dimensions of 300×300×30 cm. 

Let us divide the slab’s faces into 40×40×10 elements. The elastic properties of concrete in 
this and all subsequent calculations are the same as those used in the calculation of the rod 
spectrum. Let us place the source of the external force at the center of the slab and the 
receiver (the element in which the spectral characteristic is calculated) at a distance of 7.5 cm 
from it. Figure 10 shows the spectra of free and forced vibrations in the slab obtained with 
the FEM. A resonance peak at a frequency f = 6400 Hz is clearly pronounced in both spectral 
characteristics. This resonance peak corresponds to the first mode of a longitudinal wave. 
The impact echo method for measuring the thickness of concrete slabs implies calculation of 
the slab thickness h from the formula h = Csl/2f, where f is the frequency of the longitudinal 
wave’s first mode and Csl is the velocity of longitudinal waves in the slab. In our case, the 
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calculation of the slab thickness from this formula yields h = 0.3 m, which exactly 
corresponds to the model thickness.  
 

 

Fig. 10. Spectra of free and forced vibrations for a slab with dimensions of 300×300×30 cm. 

Note that the resonance frequency of the longitudinal wave’s first mode in the 0.3-m-thick 
concrete slab (f1sl = 6400 Hz) differs from the resonance frequency of the 0.3-m-long rod of 
the same material (f1r = 6250 Hz). This is because the velocity of a longitudinal wave Csl in an 
extended slab differs from the velocity of a longitudinal wave Cr of acoustic vibrations in a 

rod. The formula Csl = 2

1

1

E

ρ σ−  is valid for a slab. In contrast to the velocity in a rod, the 

velocity in an extended slab depends on (in addition to Е and ρ) the Poisson ratio σ. 
Calculating the velocity Csl at σ = 0.2 typical of concrete yields Csl = 3872 m/s (compare to Cr 
= 3795 m/s). 
Comparing the two characteristics in Fig. 10 shows that the spectra of free and forced 
vibrations are identical. Slight differences in the quality factors and the peak amplitudes in 
the characteristics are related to the error in calculating the spectrum of free vibrations. This 
indicates that the spectral characteristic of a BC does not depend on the technique of 
vibration excitation (both a short impulse of force and a harmonic signal with a smoothly 
increasing frequency can be used as sources of external actions).  
The fact that the simulation results obtained with the ANSYS package do not contradict the 
main formula of the impact echo method confirms the consistency of the chosen simulation 
technique. This circumstance makes it possible to apply simulation as an efficient tool for 
searching for optimal techniques for testing various concrete articles (including compact 
objects). The practical meaning of this conclusion is that spectral characteristics obtained 
using the impact echo and resonance methods will be identical. At the same time, in contrast 
to the impact echo method, the resonance method does not require calculation of the signal 
spectrum but takes a longer time. For this reason, all further calculated spectral 
characteristics were obtained as a result of modal analysis (forced vibrations).  
Two main factors can be distinguished among the reasons for which the thickness of 
compact BCs cannot be successfully tested by the eigenfrequency methods: the effects of 
“noise of form” on the amplitude–frequency characteristics (AFCs) of compact articles and 
the geometrical dispersion of the longitudinal - wave velocity.  
Let us consider the influence of the shape of a compact article. Here, it should be noted that 
a model based on the principles of geometrical acoustics is unacceptable for calculating the 
resonance characteristic of a compact article. In fact, determination of the signal profile on 
the surface of a BC from the interference of several echo signals reflected from the BC 
boundaries can be used only when the wavelength of a probing signal is many times smaller 
than the BC size. If the wavelength is of the same order of magnitude as the BC size, such an 
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interference model cannot be applied for precise determination of the article’s spectral 
characteristic. Instead of it, we should speak about the resonance properties of the article 
itself.  
The above can be explained by the following example. It is known that, upon an impact on 
the surface of an infinitely long slab of a certain thickness h, a receiver positioned at a small 
distance from the point of action registers damped harmonic vibrations at a frequency f = 
Csl/2h. It should be noted that vibrations obey exactly a harmonic law. It follows from this 
fact that the considered slab is a resonator and the frequency f its eigenfrequency. At the 
same time, being an elementary signal, a sinusoid (including a damped sinusoid) cannot be 
divided into simpler components and, consequently, cannot be obtained via any summation 
(interference) of any other simpler components. Hence, in considering free vibrations of a 
compact elastic article, the resonance nature of its spectral characteristic should not be 
explained as resulting from the reflection of wave fronts from boundaries. It is more correct 
to treat the test object as a body possessing a certain set of eigenfrequencies (Glikman A.G., 
2009).  
The infinite slab considered above is certainly an idealized example. A real extended slab 
always has borders and, as a result, can be represented in the form of a thin plate (whose 
dimensions far exceed its thickness). As shown in (Ermolov, I.N. & Lange, Yu.V., 2004; 
Bolotin, V.V., 1999), apart from a longitudinal wave, flexural and planar waves propagate in 
the plate and initiate resonances at frequencies fa(m, n) and fs(m, n), respectively. In these 
expressions, m and n indicate the numbers of wavelengths along the plate length and width, 
respectively.  
Figure 11 shows several modes of flexural and planar vibrations of the plate. Note that the 
frequencies of the lowest modes of flexural and planar vibrations in extended concrete 
plates are much lower than the frequency of the first mode of a longitudinal wave because 
the BC length and width, determining the vibration frequency, are many times larger than 
the thickness. For the same reason, owing to the high acoustic damping in concrete, the 
amplitudes of both low and high modes of these vibrations are insignificant. However, in 
compact articles, whose dimensions are comparable with their thickness, the frequencies of 
flexural and planar vibrations lie within the same range as the frequency of the longitudinal 
wave’s first mode. In addition, their amplitudes are substantially higher. Thus, a large 
number of resonance peaks with comparable amplitudes are present in the resonance 
characteristic.  
 

 

Fig. 11. Some forms of flexural and planar vibrations in a plate. 

Let us demonstrate this by an example. To adequately characterize the compactness of a 

tested article, let us introduce the compactness factor m, equal to the ratio of one of its 

overall dimensions to its thickness. Figure 12 shows the spectral characteristics of concrete 

parallelepipeds with dimensions of 150×150×30, 120×120×30, 90×90×30, and 60×60×30 cm 

resulting from the simulation at an arbitrarily specified velocity of acoustic vibrations in the 

slab. The compactness factors m of these blocks are equal to 5, 4, 3, and 2, respectively.  
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Figure 12 shows that, as m decreases, the spectral characteristic becomes more complex. At 
m = 4, it is rather difficult to unambiguously determine the frequency of the first mode of the 
longitudinal wave, from which the thickness of the compact article should be determined.  
 

 

Fig. 12. Spectral characteristics of a compact slab with a thickness of 30 cm at different 
values of the compactness m. 

As a rule, an unambiguous interpretation of the spectrum becomes absolutely impossible at 
m < 3. Thus, as m decreases, interpreting the spectrum on the basis of the feature that the 
“amplitude of the longitudinal wave’s first mode is maximal”, becomes problematic. The 
error in finding the frequency of the longitudinal wave’s first mode increases, thereby 
reducing the reliability of the measurement results because the desired peak cannot be 
distinguished against a background of numerous other resonances forming a sort of noise 
disguising the useful signal. This noise can be called “noise of form” (in terms of 
noiseimmune ultrasonic testing of articles) (Kachanov, V.K. and Sokolov, I.V., 2007) because, 
on the one hand, it is the shape of a compact article that determines its AFC and, on the 
other hand, such an AFC with many peaks hinders determination of the sought resonance, 
i.e., is a sort of interference (noise) disguising the required article thickness. As follows from 
(Carino, N.J., 2001), the geometrical effects leading to the appearance of noise of form of a 
compact article do not allow reliable thickness measurements of compact articles with m < 5, 
as was confirmed by the simulation results 
Let us now consider the effect of geometrical dispersion of the longitudinal-wave velocity 
during testing of compact BCs. As was mentioned above, the propagation velocity Cl of a 
longitudinal wave in an elastic body depends on the geometrical shape and dimensions of 
this body with respect to the wavelength. The table 1 presents the known analytical 
formulas for calculating the longitudinal-wave velocity for some very simple geometrical 
shapes.  
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The velocity Cl in compact articles can also be determined by the shadow or echo-pulse 

method, but this is possible only under the obligatory condition that the wavelength λ of the 
probing signal is much smaller than the size of the article. However, in controlling large-size 
concrete articles, these methods cannot always be used because of relatively high damping 
of ultrasonic signals at the testing frequency.  
 

Geometric form Condition 
Formula for velocity 

calculation 

Infinite space λ << medium dimensions 
(1 )

(1 )(1 2 )
l

E
C

σ
ρ σ σ

−= + −  

Thin rod of length l and 
diameter d 

 
λ ≈ l, λ >> d r

E
C ρ=  

Extended slab of length a, 
width b and thickness h 

 
λ ≈ h, λ << a, λ << b 2

1

1
r

E
C ρ σ= −  

Table 1. Propagation velocity of acoustic waves in bodies of different geometric forms  

The testing methods based on the use of the eigenfrequencies of inspected articles do not 
allow direct determination of Cl. The value of Cl is calculated using the velocity correction 
coefficient k = C/Cl, where C is the velocity of a longitudinal wave in an article of a certain 
shape determined by one of the eigenfrequency methods. For example, if the tested article is 
an extended slab, C = Csl. In this case,  

k = Csl/Cl = 
2

1 2

(1 )

σ
σ

−
− . 

Hence, the coefficient k for an extended slab depends only on the Poisson ratio; i.e., k = f(σ). 

At σ = 0.2, we obtain the known velocity correction coefficient k = 0.96. This value of the 

velocity correction coefficient is used in the calculation of Cl in an extended slab at a known 

thickness h: Cl = 2fh/k, or in the calculation of h at a known velocity Cl: h = kCl/2f.  

If the tested article has the shape of a thin rod, C = Cr. In this case, the velocity correction 
coefficient is determined by the formula:  

k = Cr/Cl = 
(1 )(1 2 )

1

σ σ
σ

+ −
− . 

At σ = 0.2 this coefficient in the rod is k = 0.95.  
A general approach to the problem of determining the velocity of a longitudinal wave in 
compact articles can be found in studies by I.N.Ermolov (Ermolov, I.N. & Lange, Yu.V., 
2004). In addition, according to (Bolotin, V.V., 1999), the propagation velocity of 

longitudinal waves in a rod generally (when the condition λ >> d is not satisfied) depends 

on the ratio d/λ; consequently, k = C/Cl = f(σ, d/λ). This phenomenon is called the 

geometrical dispersion of the velocity. For thin rods with d/λ<< 1 the dispersion is 

insignificant and k = Cr/Cl = f(σ). Similarly, the velocity of a longitudinal wave in a compact 

slab for which the conditions λ<<a and λ<<b are not satisfied, depends on the ratios a/λ and 

www.intechopen.com



A Multiplicative Method and A Correlation Method for Acoustic Testing  
of Large-Size Compact Concrete Building Constructions  

 

321 

b/λ. In this case k = C/Cl = f(σ, a/λ). Attempts to obtain an analytical expression for the 

function f(σ, a/λ) at least for some ranges of the ratios d/λ and a/λ yield a result with an 
error that may exceed 15% relative to experimental results.  

Hence, in a general case, the form of the function f(σ, a/λ) for a compact article of an 
arbitrary shape is completely unknown. This impedes determination of the velocity Cl by 
the eigenfrequency methods. The above is confirmed by the simulation results (Fig. 12) 
showing that, in some cases, it is impossible to unambiguously determine the thickness of a 
compact article by the impact echo method from the spectral characteristic because of its 
ambiguous character even if the velocity of acoustic vibrations in the compact article is 
known. It should be noted that, despite a constant article thickness, the frequency of the 
resonance peak corresponding to the longitudinal wave’s first mode (diagrams in Fig. 12) 
increases with a decrease in m. Note that, for m < 4, the frequency increases so significantly 
that the geometrical-dispersion effect cannot be disregarded.  
So, the problem of determining the wave velocity in compact concrete BCs is very 

important. It is obvious that the velocity of acoustic vibrations in a compact article 

determined by the shadow and echo-pulse ultrasonic methods or by measurement of the 

surface-wave velocity (in view of all limitations of such velocity measurements) is not equal 

to the true value of the velocity Cl observed in an actual compact concrete article.  

Hence, one of the tasks of testing large-size compact concrete BCs by the impact echo 
method (thickness-measurement problem) remains unrealized because of the unknown 
velocity Cl in a particular compact article.  
In addition, there exists another problem in testing large-size compact concrete BCs—

determining the velocity Cl in a large-size compact article all of whose dimensions are 

known. This problem is aimed at the subsequent determination of the concrete strength and 

the strength of a concrete BC and the prediction of the failure-free service life of BCs. A 

similar problem of measuring the propagation velocity of acoustic vibrations in BCs with 

known dimensions is also necessary for determining the quality of concrete during 

construction of calibration characteristics for concrete specimens, in which the time-

dependent velocity in a particular solidifying concrete block is measured. Thus, such a 

problem of determining the wave velocity in compact concrete BCs with known dimensions 

is independent and very important.  

To test the propagation velocity of an acoustic wave in arbitrarily shaped compact BCs 
whose dimensions are known, a new correlation method based on the use of the spectral 
characteristics of BCs is proposed.  
This method consists of the following stages.  
I. The experimental spectral characteristic of an arbitrarily shaped compact article is 

measured, but it does not allow unambiguous determination of the desired resonance 
frequency.  

II. The spectral characteristic of an article similar to a real tested object is calculated by 
simulation; the velocity Cl is selected arbitrarily.  

III. Then, the value of the velocity Cl at which the calculated and experimental 
characteristics are maximally alike is selected.  

IV. The cross-correlation function (CCF) of both characteristics is calculated; the degree of 
similarity of these characteristics is determined from the CCF maximum.  

V. The desired value of Cl is determined from the characteristic at which the CCF 
maximum is observed.  
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Note that, when the velocity is selected, it is unnecessary to perform simulation for each 
new velocity value — as Cl increases, the characteristic proportionally and linearly stretches 
along the frequency axis, i.e., the frequencies of all resonance peaks proportionally increase. 
It follows from the above that it is sufficient to perform only one simulation at the minimum 
selected velocity of a longitudinal wave.  
An example of determining Cl according to the proposed method is considered below for a 

compact concrete block with dimensions of 80×50×30 cm.  
First, we preliminarily calculate (simulate) the spectral characteristic of the model of this 
compact block in the frequency range 1–10 kHz. The initial “base” value of the longitudinal-
wave velocity was selected equal to the minimum possible value of Cl for concrete articles: 
Cl = 3000 m/s.  
Figure 13 shows the spectral characteristic of the block resulting from simulation and 
experiments on an actual block. In calculating the spectral characteristic, we used a velocity 
different from the velocity in the actual block (which is unknown); therefore, the spectral 
characteristics do not coincide. The problem is how to select a velocity at which the spectral 
characteristics coincide, thereby maximizing the value of their CCF. For this purpose, it is 
necessary to calculate the CCF of the experimental spectral characteristic with a set of 
calculated characteristics, each of which must correspond to a certain value of Cl.  
 

 

Fig. 13. Experimental and calculated spectral characteristics for a block with dimensions of 

80 × 50 × 30 cm (simulation at Cl = 3000 m/s). 

The calculated spectral characteristics are obtained by stretching the base characteristic 

along the frequency axis, i.e., via multiplication of the frequency axis by a coefficient equal 

to the ratio of the desired velocity to the base velocity (3000 m/s). For example, to obtain the 

characteristics corresponding to velocities of 3000, 3010, 3020, 3030, m/s, etc., the frequency 

axis of the initial characteristic should be multiplied by factors of 1, 1.0033, 1.0066, 1.0100, 

etc. As a result of calculating the CCF of the experimental characteristic with 150 calculated 

characteristics corresponding to the velocity range 3000–4500 m/s with a step of 10 m/s, we 

obtain the CCF depicted in Fig. 14a. Figure 14b shows the experimental characteristic and 

the calculated characteristic corresponding to a velocity of 3765 m/s, which coincide quite 

well. In this case, the obvious CCF maximum determines the velocity of acoustic vibrations 

in this compact object: Cl = 3765 m/s.  

Hence, the proposed method allows measurements of the longitudinal-wave velocity in 
compact large-size arbitrarily shaped concrete articles all dimensions of which are known. 
The velocity is measured in the entire BC volume and not in some region or, especially, on 
the surface. In this case, the velocity is measured only using a preliminarily measured 
spectral characteristic of the compact article, which, owing to its compactness, has no clearly 
pronounced resonance peak.  
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Fig. 14. (a) Dependence of the CCF on the velocity and (b) coincidence of the experimental 
and calculated spectral characteristics. 

Another advantage of the proposed method is that it is less sensitive to the reinforcing 
structure and large-grained filler than ultrasonic methods because the wavelength of elastic 
vibrations is of the same order of magnitude as the BC dimensions. In addition, this method 
has no fundamental limitations on the maximum testing depth — as the BC dimensions 
increase, the frequency band of the spectral characteristic proportionally shifts toward lower 
frequencies and the vibration amplitude decreases, but the shape of the characteristic 
remains constant. Thus, this method is much more sensitive than the methods based on the 
use of the shadow or echo-pulse methods, in which the dimensions of an article limit the 
sensitivity. For this reason, the proposed correlation method allows measurements of the 
velocity of acoustic vibrations in large-size concrete BCs paneled with boards, tiles, etc., that 
cannot be accessed for measurements and selection of an optimal contact point. An 
analogous situation arises when the velocity is measured in such concrete BCs with known 
dimensions as supporting elements of bridges, foundations, piles driven into the ground, 
etc. Regular measurements of the velocity of acoustic vibrations aimed at the monitoring of 
strength characteristics of concrete constructions are of fundamental importance for such 
BCs, parts of which may be submerged, buried in the ground, etc.  
One of the limitations of the proposed method for determining the velocity of acoustic 
vibrations is that the velocity measurement requires knowledge of all dimensions of a tested 
article and preliminary simulation of the spectral characteristic for each particular article.  

3. A multichannel multiplicative method for acoustic testing of large-size 
compact concrete building constructions  

In previous parts it was shown that the IE method for acoustic testing of large-size concrete 
BCs allows thickness measurements of only extended articles. It is impossible to measure 
the thicknesses of large-size compact concrete BCs by the IE or resonance methods because 
of the influence of geometrical effects (the noise of the article shape does not allow 
unambiguous determination of the desired maximum in the article’s spectral characteristic) 
and the effect of geometrical dispersion of the sound velocity in a compact article (it is 
impossible to determine the acoustic-vibration velocity Cl).  
The correlation method for determining the longitudinal-wave velocity Cl in compact 
articles with known dimensions requires preliminary simulation of the spectral 
characteristic of a BC, thereby limiting to a certain degree the acoustic velocity 
measurements in compact concrete BCs by this method. These problems can be solved by 
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