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A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

T
HE recent development of various methods of modulation such as PCM and PPM which exchange
bandwidth for signal-to-noise ratio has intensified the interest in a general theory of communication. A

basis for such a theory is contained in the important papers of Nyquist1 and Hartley2 on this subject. In the
present paper we will extend the theory to include a number of new factors, in particular the effect of noise
in the channel, and the savings possible due to the statistical structure of the original message and due to the
nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. Frequently the messages havemeaning; that is they refer
to or are correlated according to some system with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering problem. The significant aspect is that the actual
message is oneselected from a setof possible messages. The system must be designed to operate for each
possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any monotonic function of this number
can be regarded as a measure of the information produced when one message is chosen from the set, all
choices being equally likely. As was pointed out by Hartley the most natural choice is the logarithmic
function. Although this definition must be generalized considerably when we consider the influence of the
statistics of the message and when we have a continuous range of messages, we will in all cases use an
essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance such as time, bandwidth, number
of relays, etc., tend to vary linearly with the logarithm of the number of possibilities. For example,
adding one relay to a group doubles the number of possible states of the relays. It adds 1 to the base 2
logarithm of this number. Doubling the time roughly squares the number of possible messages, or
doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is closely related to (1) since we in-
tuitively measures entities by linear comparison with common standards. One feels, for example, that
two punched cards should have twice the capacity of one for information storage, and two identical
channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations are simple in terms of the loga-
rithm but would require clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for measuring information. If the
base 2 is used the resulting units may be called binary digits, or more brieflybits, a word suggested by
J. W. Tukey. A device with two stable positions, such as a relay or a flip-flop circuit, can store one bit of
information.N such devices can storeN bits, since the total number of possible states is 2N and log22N = N.
If the base 10 is used the units may be called decimal digits. Since

log2M = log10M= log102

= 3:32log10M;

1Nyquist, H., “Certain Factors Affecting Telegraph Speed,”Bell System Technical Journal,April 1924, p. 324; “Certain Topics in
Telegraph Transmission Theory,”A.I.E.E. Trans.,v. 47, April 1928, p. 617.

2Hartley, R. V. L., “Transmission of Information,”Bell System Technical Journal,July 1928, p. 535.
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Fig. 1—Schematic diagram of a general communication system.

a decimal digit is about 313 bits. A digit wheel on a desk computing machine has ten stable positions and
therefore has a storage capacity of one decimal digit. In analytical work where integration and differentiation
are involved the basee is sometimes useful. The resulting units of information will be called natural units.
Change from the basea to baseb merely requires multiplication by logba.

By a communication system we will mean a system of the type indicated schematically in Fig. 1. It
consists of essentially five parts:

1. An information sourcewhich produces a message or sequence of messages to be communicated to the
receiving terminal. The message may be of various types: (a) A sequence of letters as in a telegraph
of teletype system; (b) A single function of timef (t) as in radio or telephony; (c) A function of
time and other variables as in black and white television — here the message may be thought of as a
function f (x;y; t) of two space coordinates and time, the light intensity at point(x;y) and timet on a
pickup tube plate; (d) Two or more functions of time, sayf (t), g(t), h(t) — this is the case in “three-
dimensional” sound transmission or if the system is intended to service several individual channels in
multiplex; (e) Several functions of several variables — in color television the message consists of three
functionsf (x;y; t), g(x;y; t), h(x;y; t) defined in a three-dimensional continuum — we may also think
of these three functions as components of a vector field defined in the region — similarly, several
black and white television sources would produce “messages” consisting of a number of functions
of three variables; (f) Various combinations also occur, for example in television with an associated
audio channel.

2. A transmitterwhich operates on the message in some way to produce a signal suitable for trans-
mission over the channel. In telephony this operation consists merely of changing sound pressure
into a proportional electrical current. In telegraphy we have an encoding operation which produces
a sequence of dots, dashes and spaces on the channel corresponding to the message. In a multiplex
PCM system the different speech functions must be sampled, compressed, quantized and encoded,
and finally interleaved properly to construct the signal. Vocoder systems, television and frequency
modulation are other examples of complex operations applied to the message to obtain the signal.

3. Thechannelis merely the medium used to transmit the signal from transmitter to receiver. It may be
a pair of wires, a coaxial cable, a band of radio frequencies, a beam of light, etc.

4. Thereceiverordinarily performs the inverse operation of that done by the transmitter, reconstructing
the message from the signal.

5. Thedestinationis the person (or thing) for whom the message is intended.

We wish to consider certain general problems involving communication systems. To do this it is first
necessary to represent the various elements involved as mathematical entities, suitably idealized from their
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physical counterparts. We may roughly classify communication systems into three main categories: discrete,
continuous and mixed. By a discrete system we will mean one in which both the message and the signal
are a sequence of discrete symbols. A typical case is telegraphy where the message is a sequence of letters
and the signal a sequence of dots, dashes and spaces. A continuous system is one in which the message and
signal are both treated as continuous functions, e.g., radio or television. A mixed system is one in which
both discrete and continuous variables appear, e.g., PCM transmission of speech.

We first consider the discrete case. This case has applications not only in communication theory, but
also in the theory of computing machines, the design of telephone exchanges and other fields. In addition
the discrete case forms a foundation for the continuous and mixed cases which will be treated in the second
half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. THE DISCRETENOISELESSCHANNEL

Teletype and telegraphy are two simple examples of a discrete channel for transmitting information. Gen-
erally, a discrete channel will mean a system whereby a sequence of choices from a finite set of elementary
symbolsS1; : : : ;Sn can be transmitted from one point to another. Each of the symbolsSi is assumed to have
a certain duration in timeti seconds (not necessarily the same for differentSi , for example the dots and
dashes in telegraphy). It is not required that all possible sequences of theSi be capable of transmission on
the system; certain sequences only may be allowed. These will be possible signals for the channel. Thus
in telegraphy suppose the symbols are: (1) A dot, consisting of line closure for a unit of time and then line
open for a unit of time; (2) A dash, consisting of three time units of closure and one unit open; (3) A letter
space consisting of, say, three units of line open; (4) A word space of six units of line open. We might place
the restriction on allowable sequences that no spaces follow each other (for if two letter spaces are adjacent,
it is identical with a word space). The question we now consider is how one can measure the capacity of
such a channel to transmit information.

In the teletype case where all symbols are of the same duration, and any sequence of the 32 symbols
is allowed the answer is easy. Each symbol represents five bits of information. If the system transmitsn
symbols per second it is natural to say that the channel has a capacity of 5n bits per second. This does not
mean that the teletype channel will always be transmitting information at this rate — this is the maximum
possible rate and whether or not the actual rate reaches this maximum depends on the source of information
which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and constraints on the allowed sequences, we
make the following definition:
Definition: The capacityC of a discrete channel is given by

C = Lim
T!∞

logN(T)

T

whereN(T) is the number of allowed signals of durationT.
It is easily seen that in the teletype case this reduces to the previous result. It can be shown that the limit

in question will exist as a finite number in most cases of interest. Suppose all sequences of the symbols
S1; : : : ;Sn are allowed and these symbols have durationst1; : : : ; tn. What is the channel capacity? IfN(t)
represents the number of sequences of durationt we have

N(t) = N(t� t1)+N(t� t2)+ � � �+N(t� tn):

The total number is equal to the sum of the numbers of sequences ending inS1;S2; : : : ;Sn and these are
N(t� t1);N(t� t2); : : : ;N(t� tn), respectively. According to a well-known result in finite differences,N(t)
is then asymptotic for larget to Xt

0 whereX0 is the largest real solution of the characteristic equation:

X�t1 +X�t2 + � � �+X�tn = 1
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and therefore
C= logX0:

In case there are restrictions on allowed sequences we may still often obtain a difference equation of this
type and findC from the characteristic equation. In the telegraphy case mentioned above

N(t) = N(t�2)+N(t�4)+N(t�5)+N(t�7)+N(t�8)+N(t�10)

as we see by counting sequences of symbols according to the last or next to the last symbol occurring.
HenceC is� log�0 where�0 is the positive root of 1= �2+�4+�5+�7+�8+�10. Solving this we find
C = 0:539.

A very general type of restriction which may be placed on allowed sequences is the following: We
imagine a number of possible statesa1;a2; : : : ;am. For each state only certain symbols from the setS1; : : : ;Sn

can be transmitted (different subsets for the different states). When one of these has been transmitted the
state changes to a new state depending both on the old state and the particular symbol transmitted. The
telegraph case is a simple example of this. There are two states depending on whether or not a space was
the last symbol transmitted. If so, then only a dot or a dash can be sent next and the state always changes.
If not, any symbol can be transmitted and the state changes if a space is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as shown in Fig. 2. The junction points correspond to the

DASH

DOT

DASH

DOT

LETTER SPACE

WORD SPACE

Fig. 2—Graphical representation of the constraints on telegraph symbols.

states and the lines indicate the symbols possible in a state and the resulting state. In Appendix 1 it is shown
that if the conditions on allowed sequences can be described in this formC will exist and can be calculated
in accordance with the following result:

Theorem 1:Let b(s)i j be the duration of thesth symbol which is allowable in statei and leads to statej.
Then the channel capacityC is equal tologW whereW is the largest real root of the determinant equation:���∑

s
W�b

(s)
i j � �i j

���= 0

where�i j = 1 if i = j and is zero otherwise.

For example, in the telegraph case (Fig. 2) the determinant is:���� �1 (W�2+W�4)
(W�3+W�6) (W�2+W�4�1)

����= 0:

On expansion this leads to the equation given above for this case.

2. THE DISCRETESOURCE OFINFORMATION

We have seen that under very general conditions the logarithm of the number of possible signals in a discrete
channel increases linearly with time. The capacity to transmit information can be specified by giving this
rate of increase, the number of bits per second required to specify the particular signal used.

We now consider the information source. How is an information source to be described mathematically,
and how much information in bits per second is produced in a given source? The main point at issue is the
effect of statistical knowledge about the source in reducing the required capacity of the channel, by the use
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of proper encoding of the information. In telegraphy, for example, the messages to be transmitted consist of
sequences of letters. These sequences, however, are not completely random. In general, they form sentences
and have the statistical structure of, say, English. The letter E occurs more frequently than Q, the sequence
TH more frequently than XP, etc. The existence of this structure allows one to make a saving in time (or
channel capacity) by properly encoding the message sequences into signal sequences. This is already done
to a limited extent in telegraphy by using the shortest channel symbol, a dot, for the most common English
letter E; while the infrequent letters, Q, X, Z are represented by longer sequences of dots and dashes. This
idea is carried still further in certain commercial codes where common words and phrases are represented
by four- or five-letter code groups with a considerable saving in average time. The standardized greeting
and anniversary telegrams now in use extend this to the point of encoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message, symbol by symbol. It will choose succes-
sive symbols according to certain probabilities depending, in general, on preceding choices as well as the
particular symbols in question. A physical system, or a mathematical model of a system which produces
such a sequence of symbols governed by a set of probabilities, is known as a stochastic process.3 We may
consider a discrete source, therefore, to be represented by a stochastic process. Conversely, any stochastic
process which produces a discrete sequence of symbols chosen from a finite set may be considered a discrete
source. This will include such cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discrete by some quantizing process. For
example, the quantized speech from a PCM transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic process which generates a se-
quence of symbols. The following are examples of this last type of source.

(A) Suppose we have five letters A, B, C, D, E which are chosen each with probability .2, successive
choices being independent. This would lead to a sequence of which the following is a typical
example.
B D C B C E C C C A D C B D D A A E C E E A
A B B D A E E C A C E E B A E E C B C E A D.
This was constructed with the use of a table of random numbers.4

(B) Using the same five letters let the probabilities be .4, .1, .2, .2, .1, respectively, with successive
choices independent. A typical message from this source is then:

A A A C D C B D C E A A D A D A C E D A
E A D C A B E D A D D C E C A A A A A D.

(C) A more complicated structure is obtained if successive symbols are not chosen independently
but their probabilities depend on preceding letters. In the simplest case of this type a choice
depends only on the preceding letter and not on ones before that. The statistical structure can
then be described by a set of transition probabilitiespi( j), the probability that letteri is followed
by letter j. The indicesi and j range over all the possible symbols. A second equivalent way of
specifying the structure is to give the “digram” probabilitiesp(i; j), i.e., the relative frequency of
the digrami j . The letter frequenciesp(i), (the probability of letteri), the transition probabilities

3See, for example, S. Chandrasekhar, “Stochastic Problems in Physics and Astronomy,”Reviews of Modern Physics, v. 15, No. 1,
January 1943, p. 1.

4Kendall and Smith,Tables of Random Sampling Numbers,Cambridge, 1939.
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pi( j) and the digram probabilitiesp(i; j) are related by the following formulas:

p(i) = ∑
j

p(i; j) = ∑
j

p( j; i) = ∑
j

p( j)pj(i)

p(i; j) = p(i)pi( j)

∑
j

pi( j) = ∑
i

p(i) = ∑
i; j

p(i; j) = 1:

As a specific example suppose there are three letters A, B, C with the probability tables:

pi( j) j

A B C

A 0 4
5

1
5

i B 1
2

1
2 0

C 1
2

2
5

1
10

i p(i)

A 9
27

B 16
27

C 2
27

p(i; j) j

A B C

A 0 4
15

1
15

i B 8
27

8
27 0

C 1
27

4
135

1
135

A typical message from this source is the following:

A B B A B A B A B A B A B A B B B A B B B B B A B A B A B A B A B B B A C A C A B
B A B B B B A B B A B A C B B B A B A.
The next increase in complexity would involve trigram frequencies but no more. The choice of
a letter would depend on the preceding two letters but not on the message before that point. A
set of trigram frequenciesp(i; j;k) or equivalently a set of transition probabilitiespi j (k) would
be required. Continuing in this way one obtains successively more complicated stochastic pro-
cesses. In the generaln-gram case a set ofn-gram probabilitiesp(i1; i2; : : : ; in) or of transition
probabilitiespi1;i2;:::;in�1(in) is required to specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text consisting of a sequence of
“words.” Suppose there are five letters A, B, C, D, E and 16 “words” in the language with
associated probabilities:

.10 A .16 BEBE .11 CABED .04 DEB

.04 ADEB .04 BED .05 CEED .15 DEED

.05 ADEE .02 BEED .08 DAB .01 EAB

.01 BADD .05 CA .04 DAD .05 EE

Suppose successive “words” are chosen independently and are separated by a space. A typical
message might be:
DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE BEBE BEBE ADEE BED DEED
DEED CEED ADEE A DEED DEED BEBE CABED BEBE BED DAB DEED ADEB.

If all the words are of finite length this process is equivalent to one of the preceding type, but
the description may be simpler in terms of the word structure and probabilities. We may also
generalize here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and examples to illustrate vari-
ous possibilities. We can also approximate to a natural language by means of a series of simple artificial
languages. The zero-order approximation is obtained by choosing all letters with the same probability and
independently. The first-order approximation is obtained by choosing successive letters independently but
each letter having the same probability that it has in the natural language.5 Thus, in the first-order ap-
proximation to English, E is chosen with probability .12 (its frequency in normal English) and W with
probability .02, but there is no influence between adjacent letters and no tendency to form the preferred

5Letter, digram and trigram frequencies are given inSecret and Urgentby Fletcher Pratt, Blue Ribbon Books, 1939. Word frequen-
cies are tabulated inRelative Frequency of English Speech Sounds,G. Dewey, Harvard University Press, 1923.

6



digrams such as TH, ED, etc. In the second-order approximation, digram structure is introduced. After a
letter is chosen, the next one is chosen in accordance with the frequencies with which the various letters
follow the first one. This requires a table of digram frequenciespi( j). In the third-order approximation,
trigram structure is introduced. Each letter is chosen with probabilities which depend on the preceding two
letters.

3. THE SERIES OFAPPROXIMATIONS TOENGLISH

To give a visual idea of how this series of processes approaches a language, typical sequences in the approx-
imations to English have been constructed and are given below. In all cases we have assumed a 27-symbol
“alphabet,” the 26 letters and a space.

1. Zero-order approximation (symbols independent and equiprobable).

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD QPAAMKBZAACIBZL-
HJQD.

2. First-order approximation (symbols independent but with frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI ALHENHTTPA OOBTTVA
NAH BRL.

3. Second-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D ILONASIVE TU-
COOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE CTISBE.

4. Third-order approximation (trigram structure as in English).

IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID PONDENOME OF DEMONS-
TURES OF THE REPTAGIN IS REGOACTIONA OF CRE.

5. First-order word approximation. Rather than continue with tetragram,: : : , n-gram structure it is easier
and better to jump at this point to word units. Here words are chosen independently but with their
appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR COME CAN DIFFERENT NAT-
URAL HERE HE THE A IN CAME THE TO OF TO EXPERT GRAY COME TO FURNISHES
THE LINE MESSAGE HAD BE THESE.

6. Second-order word approximation. The word transition probabilities are correct but no further struc-
ture is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE CHAR-
ACTER OF THIS POINT IS THEREFORE ANOTHER METHOD FOR THE LETTERS THAT
THE TIME OF WHO EVER TOLD THE PROBLEM FOR AN UNEXPECTED.

The resemblance to ordinary English text increases quite noticeably at each of the above steps. Note that
these samples have reasonably good structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text for two-letter sequences, but four-
letter sequences from the sample can usually be fitted into good sentences. In (6) sequences of four or more
words can easily be placed in sentences without unusual or strained constructions. The particular sequence
of ten words “attack on an English writer that the character of this” is not at all unreasonable. It appears then
that a sufficiently complex stochastic process will give a satisfactory representation of a discrete source.

The first two samples were constructed by the use of a book of random numbers in conjunction with
(for example 2) a table of letter frequencies. This method might have been continued for (3), (4) and (5),
since digram, trigram and word frequency tables are available, but a simpler equivalent method was used.
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To construct (3) for example, one opens a book at random and selects a letter at random on the page. This
letter is recorded. The book is then opened to another page and one reads until this letter is encountered.
The succeeding letter is then recorded. Turning to another page this second letter is searched for and the
succeeding letter recorded, etc. A similar process was used for (4), (5) and (6). It would be interesting if
further approximations could be constructed, but the labor involved becomes enormous at the next stage.

4. GRAPHICAL REPRESENTATION OF AMARKOFF PROCESS

Stochastic processes of the type described above are known mathematically as discrete Markoff processes
and have been extensively studied in the literature.6 The general case can be described as follows: There
exist a finite number of possible “states” of a system;S1;S2; : : : ;Sn. In addition there is a set of transition
probabilities;pi( j) the probability that if the system is in stateSi it will next go to stateSj . To make this
Markoff process into an information source we need only assume that a letter is produced for each transition
from one state to another. The states will correspond to the “residue of influence” from preceding letters.

The situation can be represented graphically as shown in Figs. 3, 4 and 5. The “states” are the junction

A
B

C

D

E

.1

.1

.2

.2

.4

Fig. 3—A graph corresponding to the source in example B.

points in the graph and the probabilities and letters produced for a transition are given beside the correspond-
ing line. Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the example C. In Fig. 3

A
A

B

B

BC

C

.1

.5 .5

.5

.2
.8

.4

Fig. 4—A graph corresponding to the source in example C.

there is only one state since successive letters are independent. In Fig. 4 there are as many states as letters.
If a trigram example were constructed there would be at mostn2 states corresponding to the possible pairs
of letters preceding the one being chosen. Figure 5 is a graph for the case of word structure in example D.
Here S corresponds to the “space” symbol.

5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be considered to be represented by a
Markoff process. Among the possible discrete Markoff processes there is a group with special properties
of significance in communication theory. This special class consists of the “ergodic” processes and we
shall call the corresponding sources ergodic sources. Although a rigorous definition of an ergodic process is
somewhat involved, the general idea is simple. In an ergodic process every sequence produced by the process

6For a detailed treatment see M. Fr´echet,Méthode des fonctions arbitraires. Th´eorie des ´evénements en chaˆıne dans le cas d’un
nombre fini d’états possibles. Paris, Gauthier-Villars, 1938.

8



is the same in statistical properties. Thus the letter frequencies, digram frequencies, etc., obtained from
particular sequences, will, as the lengths of the sequences increase, approach definite limits independent
of the particular sequence. Actually this is not true of every sequence but the set for which it is false has
probability zero. Roughly the ergodic property means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This property is related to the structure
of the corresponding graph. If the graph has the following two properties7 the corresponding process will
be ergodic:

1. The graph does not consist of two isolated parts A and B such that it is impossible to go from junction
points in part A to junction points in part B along lines of the graph in the direction of arrows and also
impossible to go from junctions in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing in the same orientation will
be called a “circuit.” The “length” of a circuit is the number of lines in it. Thus in Fig. 5 series BEBES
is a circuit of length 5. The second property required is that the greatest common divisor of the lengths
of all circuits in the graph be one.

S
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B

B
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D
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E
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E

E

E

E

E

E

E

E

Fig. 5—A graph corresponding to the source in example D.

If the first condition is satisfied but the second one violated by having the greatest common divisor equal
to d > 1, the sequences have a certain type of periodic structure. The various sequences fall intod different
classes which are statistically the same apart from a shift of the origin (i.e., which letter in the sequence is
called letter 1). By a shift of from 0 up tod�1 any sequence can be made statistically equivalent to any
other. A simple example withd = 2 is the following: There are three possible lettersa;b;c. Letter a is
followed with eitherb or c with probabilities1

3 and 2
3 respectively. Eitherb or c is always followed by letter

a. Thus a typical sequence is
a b a c a c a c a b a c a b a b a c a c:

This type of situation is not of much importance for our work.
If the first condition is violated the graph may be separated into a set of subgraphs each of which satisfies

the first condition. We will assume that the second condition is also satisfied for each subgraph. We have in
this case what may be called a “mixed” source made up of a number of pure components. The components
correspond to the various subgraphs. IfL1, L2, L3; : : : are the component sources we may write

L = p1L1+ p2L2+ p3L3+ � � �
7These are restatements in terms of the graph of conditions given in Fr´echet.
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wherepi is the probability of the component sourceLi .
Physically the situation represented is this: There are several different sourcesL1, L2, L3; : : : which are

each of homogeneous statistical structure (i.e., they are ergodic). We do not knowa priori which is to be
used, but once the sequence starts in a given pure componentLi , it continues indefinitely according to the
statistical structure of that component.

As an example one may take two of the processes defined above and assumep1 = :2 andp2 = :8. A
sequence from the mixed source

L = :2L1+ :8L2

would be obtained by choosing firstL1 or L2 with probabilities .2 and .8 and after this choice generating a
sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic. This assumption enables one
to identify averages along a sequence with averages over the ensemble of possible sequences (the probability
of a discrepancy being zero). For example the relative frequency of the letter A in a particular infinite
sequence will be, with probability one, equal to its relative frequency in the ensemble of sequences.

If Pi is the probability of statei andpi( j) the transition probability to statej, then for the process to be
stationary it is clear that thePi must satisfy equilibrium conditions:

Pj = ∑
i

Pi pi( j):

In the ergodic case it can be shown that with any starting conditions the probabilitiesPj(N) of being in state
j afterN symbols, approach the equilibrium values asN! ∞.

6. CHOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process. Can we define a quantity which
will measure, in some sense, how much information is “produced” by such a process, or better, at what rate
information is produced?

Suppose we have a set of possible events whose probabilities of occurrence arep1; p2; : : : ; pn. These
probabilities are known but that is all we know concerning which event will occur. Can we find a measure
of how much “choice” is involved in the selection of the event or of how uncertain we are of the outcome?

If there is such a measure, sayH(p1; p2; : : : ; pn), it is reasonable to require of it the following properties:

1. H should be continuous in thepi .

2. If all the pi are equal,pi =
1
n, thenH should be a monotonic increasing function ofn. With equally

likely events there is more choice, or uncertainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the originalH should be the weighted sum
of the individual values ofH. The meaning of this is illustrated in Fig. 6. At the left we have three

1/2

1/3

1/6

1/2

1/2
2/3

1/3

1/2

1/3

1/6

Fig. 6—Decomposition of a choice from three possibilities.

possibilitiesp1 =
1
2, p2 =

1
3, p3 =

1
6. On the right we first choose between two possibilities each with

probability 1
2, and if the second occurs make another choice with probabilities2

3, 1
3. The final results

have the same probabilities as before. We require, in this special case, that

H(1
2;

1
3;

1
6) = H(1

2;
1
2)+

1
2H(2

3;
1
3):

The coefficient12 is because this second choice only occurs half the time.
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In Appendix 2, the following result is established:

Theorem 2:The onlyH satisfying the three above assumptions is of the form:

H =�K
n

∑
i=1

pi logpi

whereK is a positive constant.

This theorem, and the assumptions required for its proof, are in no way necessary for the present theory.
It is given chiefly to lend a certain plausibility to some of our later definitions. The real justification of these
definitions, however, will reside in their implications.

Quantities of the formH=�∑ pi logpi (the constantK merely amounts to a choice of a unit of measure)
play a central role in information theory as measures of information, choice and uncertainty. The form ofH
will be recognized as that of entropy as defined in certain formulations of statistical mechanics8 wherepi is
the probability of a system being in celli of its phase space.H is then, for example, theH in Boltzmann’s
famousH theorem. We shall callH =�∑ pi logpi the entropy of the set of probabilitiesp1; : : : ; pn. If x is a
chance variable we will writeH(x) for its entropy; thusx is not an argument of a function but a label for a
number, to differentiate it fromH(y) say, the entropy of the chance variabley.

The entropy in the case of two possibilities with probabilitiesp andq= 1� p, namely

H =�(plogp+qlogq)

is plotted in Fig. 7 as a function ofp.

H
BITS

p

0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Fig. 7—Entropy in the case of two possibilities with probabilitiesp and(1� p).

The quantityH has a number of interesting properties which further substantiate it as a reasonable
measure of choice or information.

1. H = 0 if and only if all thepi but one are zero, this one having the value unity. Thus only when we
are certain of the outcome doesH vanish. OtherwiseH is positive.

2. For a givenn, H is a maximum and equal to logn when all thepi are equal (i.e.,1n). This is also
intuitively the most uncertain situation.

8See, for example, R. C. Tolman,Principles of Statistical Mechanics,Oxford, Clarendon, 1938.
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3. Suppose there are two events,x andy, in question withmpossibilities for the first andn for the second.
Let p(i; j) be the probability of the joint occurrence ofi for the first andj for the second. The entropy of the
joint event is

H(x;y) =�∑
i; j

p(i; j) log p(i; j)

while

H(x) =�∑
i; j

p(i; j) log∑
j

p(i; j)

H(y) =�∑
i; j

p(i; j) log∑
i

p(i; j):

It is easily shown that
H(x;y)�H(x)+H(y)

with equality only if the events are independent (i.e.,p(i; j) = p(i)p( j)). The uncertainty of a joint event is
less than or equal to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilitiesp1; p2; : : : ; pn increasesH. Thus if p1 < p2 and
we increasep1, decreasingp2 an equal amount so thatp1 andp2 are more nearly equal, thenH increases.
More generally, if we perform any “averaging” operation on thepi of the form

p0i = ∑
j

ai j pj

where∑i ai j = ∑ j ai j = 1, and allai j � 0, thenH increases (except in the special case where this transfor-
mation amounts to no more than a permutation of thepj with H of course remaining the same).

5. Suppose there are two chance eventsx andy as in 3, not necessarily independent. For any particular
valuei thatx can assume there is a conditional probabilitypi( j) thaty has the valuej. This is given by

pi( j) =
p(i; j)

∑ j p(i; j)
:

We define theconditional entropyof y, Hx(y) as the average of the entropy ofy for each value ofx, weighted
according to the probability of getting that particularx. That is

Hx(y) =�∑
i; j

p(i; j) logpi( j) :

This quantity measures how uncertain we are ofy on the average when we knowx. Substituting the value of
pi( j) we obtain

Hx(y) =�∑
i; j

p(i; j) log p(i; j)+∑
i; j

p(i; j) log∑
j

p(i; j)

= H(x;y)�H(x)

or
H(x;y) = H(x)+Hx(y):

The uncertainty (or entropy) of the joint eventx;y is the uncertainty ofx plus the uncertainty ofy whenx is
known.

6. From 3 and 5 we have
H(x)+H(y)�H(x;y) = H(x)+Hx(y):

Hence
H(y)�Hx(y):

The uncertainty ofy is never increased by knowledge ofx. It will be decreased unlessxandyare independent
events, in which case it is not changed.

12



7. THE ENTROPY OF ANINFORMATION SOURCE

Consider a discrete source of the finite state type considered above. For each possible statei there will be a
set of probabilitiespi( j) of producing the various possible symbolsj. Thus there is an entropyHi for each
state. The entropy of the source will be defined as the average of theseHi weighted in accordance with the
probability of occurrence of the states in question:

H = ∑
i

PiHi

=�∑
i; j

Pi pi( j) log pi( j) :

This is the entropy of the source per symbol of text. If the Markoff process is proceeding at a definite time
rate there is also an entropy per second

H 0 = ∑
i

fiHi

where fi is the average frequency (occurrences per second) of statei. Clearly

H 0 = mH

wherem is the average number of symbols produced per second.H or H 0 measures the amount of informa-
tion generated by the source per symbol or per second. If the logarithmic base is 2, they will represent bits
per symbol or per second.

If successive symbols are independent thenH is simply�∑ pi logpi wherepi is the probability of sym-
bol i. Suppose in this case we consider a long message ofN symbols. It will contain with high probability
aboutp1N occurrences of the first symbol,p2N occurrences of the second, etc. Hence the probability of this
particular message will be roughly

p= pp1N
1 pp2N

2 � � � ppnN
n

or

logp
:
= N∑

i

pi logpi

logp
:
=�NH

H
:
=

log1=p
N

:

H is thus approximately the logarithm of the reciprocal probability of a typical long sequence divided by the
number of symbols in the sequence. The same result holds for any source. Stated more precisely we have
(see Appendix 3):

Theorem 3:Given any� > 0 and� > 0, we can find anN0 such that the sequences of any lengthN�N0

fall into two classes:

1. A set whose total probability is less than�.

2. The remainder, all of whose members have probabilities satisfying the inequality���� logp�1

N
�H

����< �:

In other words we are almost certain to have
logp�1

N
very close toH whenN is large.

A closely related result deals with the number of sequences of various probabilities. Consider again the
sequences of lengthN and let them be arranged in order of decreasing probability. We definen(q) to be
the number we must take from this set starting with the most probable one in order to accumulate a total
probabilityq for those taken.

13



Theorem 4:

Lim
N!∞

logn(q)
N

= H

whenq does not equal0 or 1.

We may interpret logn(q) as the number of bits required to specify the sequence when we consider only

the most probable sequences with a total probabilityq. Then
logn(q)

N
is the number of bits per symbol for

the specification. The theorem says that for largeN this will be independent ofq and equal toH. The rate
of growth of the logarithm of the number of reasonably probable sequences is given byH, regardless of our
interpretation of “reasonably probable.” Due to these results, which are proved in Appendix 3, it is possible
for most purposes to treat the long sequences as though there were just 2HN of them, each with a probability
2�HN.

The next two theorems show thatH and H 0 can be determined by limiting operations directly from
the statistics of the message sequences, without reference to the states and transition probabilities between
states.

Theorem 5:Let p(Bi) be the probability of a sequenceBi of symbols from the source. Let

GN =� 1
N ∑

i
p(Bi) logp(Bi)

where the sum is over all sequencesBi containingN symbols. ThenGN is a monotonic decreasing function
of N and

Lim
N!∞

GN = H:

Theorem 6:Let p(Bi ;Sj) be the probability of sequenceBi followed by symbolSj and pBi (Sj) =
p(Bi ;Sj)=p(Bi) be the conditional probability ofSj afterBi . Let

FN =�∑
i; j

p(Bi ;Sj) logpBi (Sj)

where the sum is over all blocksBi of N� 1 symbols and over all symbolsSj . ThenFN is a monotonic
decreasing function ofN,

FN = NGN� (N�1)GN�1;

GN =
1
N

N

∑
n=1

Fn;

FN �GN;

andLimN!∞ FN = H.

These results are derived in Appendix 3. They show that a series of approximations toH can be obtained
by considering only the statistical structure of the sequences extending over 1;2; : : : ;N symbols.FN is the
better approximation. In factFN is the entropy of theNth order approximation to the source of the type
discussed above. If there are no statistical influences extending over more thanN symbols, that is if the
conditional probability of the next symbol knowing the preceding(N�1) is not changed by a knowledge of
any before that, thenFN = H. FN of course is the conditional entropy of the next symbol when the(N�1)
preceding ones are known, whileGN is the entropy per symbol of blocks ofN symbols.

The ratio of the entropy of a source to the maximum value it could have while still restricted to the same
symbols will be called itsrelative entropy. This is the maximum compression possible when we encode into
the same alphabet. One minus the relative entropy is theredundancy. The redundancy of ordinary English,
not considering statistical structure over greater distances than about eight letters, is roughly 50%. This
means that when we write English half of what we write is determined by the structure of the language and
half is chosen freely. The figure 50% was found by several independent methods which all gave results in
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this neighborhood. One is by calculation of the entropy of the approximations to English. A second method
is to delete a certain fraction of the letters from a sample of English text and then let someone attempt to
restore them. If they can be restored when 50% are deleted the redundancy must be greater than 50%. A
third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic English and by James Joyce’s
book “Finnegans Wake”. The Basic English vocabulary is limited to 850 words and the redundancy is very
high. This is reflected in the expansion that occurs when a passage is translated into Basic English. Joyce
on the other hand enlarges the vocabulary and is alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword puzzles. If the redundancy is
zero any sequence of letters is a reasonable text in the language and any two-dimensional array of letters
forms a crossword puzzle. If the redundancy is too high the language imposes too many constraints for large
crossword puzzles to be possible. A more detailed analysis shows that if we assume the constraints imposed
by the language are of a rather chaotic and random nature, large crossword puzzles are just possible when
the redundancy is 50%. If the redundancy is 33%, three-dimensional crossword puzzles should be possible,
etc.

8. REPRESENTATION OF THEENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by the transmitter and receiver in en-
coding and decoding the information. Either of these will be called a discrete transducer. The input to the
transducer is a sequence of input symbols and its output a sequence of output symbols. The transducer may
have an internal memory so that its output depends not only on the present input symbol but also on the past
history. We assume that the internal memory is finite, i.e., there exist a finite numbermof possible states of
the transducer and that its output is a function of the present state and the present input symbol. The next
state will be a second function of these two quantities. Thus a transducer can be described by two functions:

yn = f (xn;�n)

�n+1 = g(xn;�n)

where

xn is thenth input symbol,

�n is the state of the transducer when thenth input symbol is introduced,

yn is the output symbol (or sequence of output symbols) produced whenxn is introduced if the state is�n.

If the output symbols of one transducer can be identified with the input symbols of a second, they can be
connected in tandem and the result is also a transducer. If there exists a second transducer which operates
on the output of the first and recovers the original input, the first transducer will be called non-singular and
the second will be called its inverse.

Theorem 7:The output of a finite state transducer driven by a finite state statistical source is a finite
state statistical source, with entropy (per unit time) less than or equal to that of the input. If the transducer
is non-singular they are equal.

Let� represent the state of the source, which produces a sequence of symbolsxi ; and let� be the state of
the transducer, which produces, in its output, blocks of symbolsyj . The combined system can be represented
by the “product state space” of pairs(�;�). Two points in the space(�1;�1) and(�2;�2), are connected by
a line if �1 can produce anx which changes�1 to �2, and this line is given the probability of thatx in this
case. The line is labeled with the block ofyj symbols produced by the transducer. The entropy of the output
can be calculated as the weighted sum over the states. If we sum first on� each resulting term is less than or
equal to the corresponding term for�, hence the entropy is not increased. If the transducer is non-singular
let its output be connected to the inverse transducer. IfH 0

1, H 0

2 andH 0

3 are the output entropies of the source,
the first and second transducers respectively, thenH 0

1�H 0

2�H 0

3 = H 0

1 and thereforeH 0

1 = H 0

2.
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Suppose we have a system of constraints on possible sequences of the type which can be represented by

a linear graph as in Fig. 2. If probabilitiesp(s)i j were assigned to the various lines connecting statei to statej
this would become a source. There is one particular assignment which maximizes the resulting entropy (see
Appendix 4).

Theorem 8:Let the system of constraints considered as a channel have a capacityC = logW. If we
assign

p(s)i j =
Bj

Bi
W�`

(s)
i j

where`(s)i j is the duration of thesth symbol leading from statei to statej and theBi satisfy

Bi = ∑
s; j

BjW
�`

(s)
i j

thenH is maximized and equal toC.

By proper assignment of the transition probabilities the entropy of symbols on a channel can be maxi-
mized at the channel capacity.

9. THE FUNDAMENTAL THEOREM FOR ANOISELESSCHANNEL

We will now justify our interpretation ofH as the rate of generating information by proving thatH deter-
mines the channel capacity required with most efficient coding.

Theorem 9:Let a source have entropyH (bits per symbol) and a channel have a capacityC (bits per
second). Then it is possible to encode the output of the source in such a way as to transmit at the average

rate
C
H
� � symbols per second over the channel where� is arbitrarily small. It is not possible to transmit at

an average rate greater than
C
H

.

The converse part of the theorem, that
C
H

cannot be exceeded, may be proved by noting that the entropy

of the channel input per second is equal to that of the source, since the transmitter must be non-singular, and
also this entropy cannot exceed the channel capacity. HenceH 0 �C and the number of symbols per second
= H 0=H �C=H.

The first part of the theorem will be proved in two different ways. The first method is to consider the
set of all sequences ofN symbols produced by the source. ForN large we can divide these into two groups,
one containing less than 2(H+�)N members and the second containing less than 2RN members (whereR is
the logarithm of the number of different symbols) and having a total probability less than�. As N increases
� and� approach zero. The number of signals of durationT in the channel is greater than 2(C��)T with �
small whenT is large. if we choose

T =

�
H
C

+�

�
N

then there will be a sufficient number of sequences of channel symbols for the high probability group when
N andT are sufficiently large (however small�) and also some additional ones. The high probability group
is coded in an arbitrary one-to-one way into this set. The remaining sequences are represented by larger
sequences, starting and ending with one of the sequences not used for the high probability group. This
special sequence acts as a start and stop signal for a different code. In between a sufficient time is allowed
to give enough different sequences for all the low probability messages. This will require

T1 =

�
R
C
+'

�
N

where' is small. The mean rate of transmission in message symbols per second will then be greater than�
(1� �)

T
N

+ �
T1

N

#�1

=

�
(1� �)

�H
C

+�
�
+ �

�R
C
+'

���1

:
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As N increases�, � and' approach zero and the rate approaches
C
H

.

Another method of performing this coding and thereby proving the theorem can be described as follows:
Arrange the messages of lengthN in order of decreasing probability and suppose their probabilities are
p1� p2� p3 � � � � pn. Let Ps = ∑s�1

1 pi ; that isPs is the cumulative probability up to, but not including,ps.
We first encode into a binary system. The binary code for messages is obtained by expandingPs as a binary
number. The expansion is carried out toms places, wherems is the integer satisfying:

log2
1
ps
�ms< 1+ log2

1
ps
:

Thus the messages of high probability are represented by short codes and those of low probability by long
codes. From these inequalities we have

1
2ms

� ps<
1

2ms�1 :

The code forPs will differ from all succeeding ones in one or more of itsms places, since all the remaining
Pi are at least 1

2ms larger and their binary expansions therefore differ in the firstms places. Consequently all
the codes are different and it is possible to recover the message from its code. If the channel sequences are
not already sequences of binary digits, they can be ascribed binary numbers in an arbitrary fashion and the
binary code thus translated into signals suitable for the channel.

The average numberH 0 of binary digits used per symbol of original message is easily estimated. We
have

H 0 =
1
N ∑msps:

But,
1
N ∑

�
log2

1
ps

�
ps� 1

N ∑msps <
1
N ∑

�
1+ log2

1
ps

�
ps

and therefore,

GN �H 0 < GN +
1
N

As N increasesGN approachesH, the entropy of the source andH 0 approachesH.
We see from this that the inefficiency in coding, when only a finite delay ofN symbols is used, need

not be greater than1N plus the difference between the true entropyH and the entropyGN calculated for
sequences of lengthN. The per cent excess time needed over the ideal is therefore less than

GN

H
+

1
HN

�1:

This method of encoding is substantially the same as one found independently by R. M. Fano.9 His
method is to arrange the messages of lengthN in order of decreasing probability. Divide this series into two
groups of as nearly equal probability as possible. If the message is in the first group its first binary digit
will be 0, otherwise 1. The groups are similarly divided into subsets of nearly equal probability and the
particular subset determines the second binary digit. This process is continued until each subset contains
only one message. It is easily seen that apart from minor differences (generally in the last digit) this amounts
to the same thing as the arithmetic process described above.

10. DISCUSSION ANDEXAMPLES

In order to obtain the maximum power transfer from a generator to a load, a transformer must in general be
introduced so that the generator as seen from the load has the load resistance. The situation here is roughly
analogous. The transducer which does the encoding should match the source to the channel in a statistical
sense. The source as seen from the channel through the transducer should have the same statistical structure

9Technical Report No. 65, The Research Laboratory of Electronics, M.I.T., March 17, 1949.
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