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1. Introduction 

Digital video communication has evolved into an important field in the past few years. There 
have been significant advances in compression and transmission techniques, which have made 
possible to deliver high quality video to the end user. In particular, the advent of new 
technologies has allowed the creation of many new telecommunication services (e.g., direct 
broadcast satellite, digital television, high definition TV, video teleconferencing, Internet video). 
To quantify the performance of a digital video communication system, it is important to 

have a measure of video quality changes at each of the communication system stages. Since 

in the majority of these applications the transformed or processed video is destined for 

human consumption, humans will ultimately decide if the operation was successful or not. 

Therefore, human perception should be taken into account when trying to establish the 

degree to which a video can be compressed, deciding if the video transmission was 

successful, or deciding whether visual enhancements have provided an actual benefit. 

Measuring the quality of a video implies a direct or indirect comparison of the test video 
with the original video. The most accurate way to determine the quality of a video is by 
measuring it using psychophysical experiments with human subjects (ITU-R, 1998). 
Unfortunately, psychophysical experiments are very expensive, time-consuming and hard 
to incorporate into a design process or an automatic quality of service control. Therefore, the 
ability to measure video quality accurately and efficiently, without using human observers, 
is highly desirable in practical applications. Good video quality metrics can be employed to 
monitor video quality, compare the performance of video processing systems and algorithms, 
and to optimize the algorithms and parameter settings for a video processing system. 
With this in mind, fast algorithms that give a physical measure (objective metric) of the 
video quality are used to obtain an estimate of the quality of a video when being 
transmitted, received or displayed. Customarily, quality measurements have been largely 
limited to a few objective measures, such as the mean absolute error (MAE), the mean 
square error (MSE), and the peak signal-to-noise ratio (PSNR), supplemented by limited 
subjective evaluation. Although the use of such metrics is fairly standard in published 
literature, it suffers from one major weakness. The outputs of these measures do not always 
correspond well with human judgements of quality. 
In the past few years, a big effort in the scientific community has been devoted to the 
development of better video quality metrics that correlate well with the human perception 
of quality (Daly, 1993; Lubin, 1993; Watson et al., 2001; Wolf et al., 1991). Although much 

Source: Digital Video, Book edited by: Floriano De Rango,  
 ISBN 978-953-7619-70-1, pp. 500, February 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com



 Digital Video 

 

330 

has been done in the last ten years, there are still a lot of challenges to be solved since most 
of the achievements have been in the development of full-reference video quality metrics 
that evaluate compression artifacts. Much remains to be done, for example, in the area of no-
reference and reduced-reference quality metrics. Also, given the growing popularity of 
video delivery services over IP networks (e.g. internet streaming and IPTV) or wireless 
channel (e.g. mobile TV), there is a great need for metrics that estimate the quality of the 
video in these applications. 
In this chapter, we introduce several aspects of video quality. We give a brief description of 
the Human Visual System (HVS), discuss its anatomy and a number of phenomena of visual 
perception that are of particular relevance to video quality. We also describe the main 
characteristics of modern digital video systems, focusing on how visible errors (artifacts) are 
perceived in digital videos. The chapter gives a description of a representative set of video 
quality metrics. We also discuss recent developments in the area of video quality, including 
the work of the Video Quality Experts Group (VQEG). 

2. The Human Visual System (HVS) 

In the past century, the knowledge about the human visual system (HVS) has increased 
tremendously. Although much more needs to be learned before we can claim to understand 
it, the current state of the art of visual information-processing mechanisms is sufficient to 
provide important information that can be used in the design of video quality metrics. In 
fact, results in the literature show that video quality metrics that use models based on the 
characteristics of the HVS have better performance, i.e., give predictions that are better 
correlated with the values given by human observers (VQEG, 2003). 
In this section, we introduce basic aspects of the anatomy and psychophysical features of the 
HVS that are considered relevant to video processing algorithms and, more specifically, to 
the design of video quality metrics. 

2.1 Anatomy of the HVS 
The eyes are far more than a simple camera. A more accurate description would be a self-
focusing, self-adjusting for light intensity, and self-cleaning camera that provides a real-time 
output to a very advanced computer. The main components of the eye are the cornea, the 
pupil, the lens, and the fluids that fill the eye. A transverse section of the human eye is 
shown in Fig. 1. 
The optics of the eye is composed by three major elements: the cornea, the pupil, and the lens. 
The light (visual stimulus) comes in through the optics and it is projected on the retina – the 
membrane located on the back of the eye. The optics works just like camera lens and their 
function is to project a clear and focused image on the retina – the retinal image. Given the 
physical limitation of the optics, the retinal image is only an approximation of the original 
image (the visual stimulus). As a result, the retinal image main contain some distortions, 
among which the most noticeable one is blurring. Since the response of optics is roughly 
linear, shift-invariant, and low-pass, the resulting retinal image can be approximated by 
convolving the input visual image with a blurring point spread function (PSF) (Marr, 1982). 
The retina has the main function of translating the incoming light into nerve signals that can 
be understood by the brain. It has the shape of a plate and it is composed of many layers of 
neurons, as depicted in Fig. 2. The light projected on the retina has to pass through several 
layers before it reaches the photoreceptors cells and is absorbed by the pigment layer. 
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Fig. 1. Transverse section of the human eye (Wikimedia Commons, 2007). 

 

 

Fig. 2. Plan of retinal neurons. The retina is a stack of several neuronal layers. Light has to 
pass these layers (from top to bottom) to hit the photoreceptors (layer of rods and cones). 
The signal propagates through the bipolar and horizontal cells (middle layers) and, then, to 
the amacrine and ganglion cells. (Adapted from H. Grey (Grey, 1918)) 
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The photoreceptor cells are specialized neurons that convert light energy into signals which 
can then be understood by the brain. There are two types of photoreceptors cells: cones and 
rods. Observe from Fig. 2 that the names are inspired by the shape of the cells. The rods are 
responsible for vision in low-light conditions. Cones are responsible for vision in normal 
high-light conditions, color vision, and have the ability to see fine details. 
There are three types of cones, which are classified according to the spectral sensitivity of 
their photochemicals. The tree types are known as L-cones, M-cones, and S-cones, which stand 
for long, medium, and short wavelengths cones, respectively. Each of them has peak 
sensitivities around 570nm, 540nm, and 440nm, respectively. These differences are what 
makes color perception possible. The incoming light from the retina is split among the three 
types of cones, according to its spectral content. This generates three visual streams that 
roughly correspond to the three primary colors red, green, and blue. 
There are roughly 5 million cones and 100 million rods in a human eye. But their 

distribution varies largely across the surface of the retina. The center of the retina has the 

highest density of cones and ganglion cells (neurons that carry the electrical signal from the 

eye to the brain through the optic nerve). This central area is called fovea and is only about 

half a millimeter in diameter. As we move away from it, the density of both cones and 

ganglion cells falls off rapidly. Therefore, the fovea is responsible for our fine-detail vision 

and, as a consequence, we cannot perceive the entire visual stimulus at uniform resolution. 

The majority of cones in the retina are L- and M-cones, with S-cones accounting for less than 

10% of the total number of cones. Rods, on the other hand, dominate outside the fovea. As a 

consequence, it is much easier to see dim objects when they are located in the peripheral 

field of vision. Looking at Fig. 1, we can see that there is a hole or blind spot, where the optic 

nerve is. In this region there are no photoreceptors. 

The signal collected from the photoreceptors has to pass through several layers of neurons 
in the retina (retinal neurons) before being carried off to the brain by the optic nerve. As 
depicted in Fig. 2, different types of neurons can be found in the retina: 

• Horizontal cells link receptors and bipolar cells by relatively long connections that run 
parallel to the retinal layers. 

• Bipolar cells receive input from the receptors, many of them feeding directly into the 
retinal ganglion cells. 

• Amacrine cells link bipolar cells and retinal ganglion cells. 

• Ganglion cells collect information from bipolar and amacrine cells. Their axons form the 
optic nerve that leaves the eye through the optic disc and carries the output signal from 
the retina to other processing centers in the brain. 

The signal leaves the eye through the optic nerve, formed by the axons of the ganglion cells. 
A scheme showing central connections of the optic nerves to the brain is depicted in Fig. 3. 
Observe that the optic nerves from the left and right eye meet at the optic chiasm, where the 
fibers are rearranged. About half of these fibers cross to the opposite side of the brain and 
the other half stay on the same side. In fact, the corresponding halves of the field of view 
(right and left) are sent to the left and right halves of the brain. Considering that the retinal 
images are reversed by the optics of the eye, the right side of the brain processes the left half 
(of the field of view) of both eyes, while the left side processes the right half of both eyes. 
This is illustrated by the red and blue lines in Fig. 3. 
From the optic chiasm, the fibers are taken to several parts of the brain. Around 90% of them 
finish at the two lateral geniculate body. Besides serving as a relay station for signals from the 
 

www.intechopen.com



Video Quality Metrics  

 

333 

 

Fig. 3. Scheme showing central connections of the optic nerves and optic tracts. (Adapted 
from H. Grey (Grey, 1918)) 

retina to the visual cortex, the lateral geniculate body controls how much information is 
allowed to pass. From there, the fibers are taken to the visual cortex. 
The virtual cortex is the region of the brain responsible for processing the visual information. 
It is located on the back of the cerebral hemispheres. The region that receives the 
information from the lateral geniculate body is called the primary visual cortex (also known as 
V1). In addition to V1, more than 20 other areas receiving visual input have been 
discovered, but little is known about their functionalities. 
V1 is a region specialized on processing information about static and moving objects and 
recognizing patterns. There is a big variety of cells in V1 that have selective sensitivity to 
certain types of information. In other words, one particular cell may respond strongly to 
patterns of a certain orientation or to motion in a certain direction. Others are tuned to 
particular frequencies, color, velocities, etc. An interesting characteristic of these neurons is 
the fact that their outputs saturates as the input contrast increases. 
The selectivity of the neurons in V1 is the heart of the multichannel organization 
characteristic of the human vision system. In fact, the neurons in V1 can be modeled as an 
octave-band Gabor filter bank, where the spatial frequency spectrum (in polar 
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representation) is sampled at octave intervals in the radial frequency dimension and at 
uniform intervals in the orientation dimension (Marr, 1982). This model is used by several 
algorithms in image processing and video quality assessment. 

2.2 Perceptual features 
A number of visual perception phenomena are a consequence of the characteristics of the 
optics of the human eye. The phenomena described in this section are of particular interest 
to the area of image processing and, more specifically to video quality. 

2.2.1 Foveal and peripheral vision 
The densities of the photoreceptors and ganglion cells in the retina are not uniform, 
increasing towards the center of the retina (fovea) and decreasing on the contrary direction. 
As a consequence, the resolution of objects in the visual field is also not uniform. The point 
where the observer fixates is projected on the fovea and, consequently, resolved with the 
highest resolution. The objects in the peripheral area are resolved with progressively lower 
resolution (peripheral vision). 

2.2.2 Light adaptation 
In the real world, the amount of light intensity varies tremendously, from dim (night) to 
high intensity (sun day). The HVS adapts to this large range by controlling the amount of 
light that enters the eye. This is done by increasing/decreasing the diameter of the pupils 
and, at the same time, adjusting the gain of post-receptor neurons in the retina. As a result, 
instead of coding absolute light intensities, the retina encodes the contrast of the visual 
stimulus. 
The phenomenon that keeps the contrast sensitivity over a wide range of light intensity is 
known as Weber’s law: 

 

where I is the background luminance, ΔI is the just noticeable incremental luminance over 
the background, and K is a constant called the Weber fraction. 

2.2.3 Contrast Sensitivity Functions (CSF) 
CSF models the sensitivity of the HVS as a function of the spatial frequency of the visual 
stimuli. A typical CSF is shown in Fig. 4(a). Spatial contrast sensitivity peaks at 3 cycles per 
degree (cpd), and declines more rapidly at higher than at lower spatial frequencies. 
Frequencies higher than 40 cpd (8 cpd scotopic) are undetectable even at maximum contrast. 
For illustration purposes, consider the image in Fig. 4(b) that corresponds to the intensities 
of a sinusoidal luminance grating. In this image, the spatial frequency (number of luminance 
cycles the grating repeats in one degree of visual angle) increases from left to right, while 
contrast (difference between the maximum and minimum luminance) increases from top to 
bottom. The shape of the visible lower part of the image gives an indication of our relative 
sensitivity to different spatial frequencies. If the perception of contrast were determined 
solely by the image contrast, then the alternating bright and dark bars should appear to 
have equal height across any horizontal line across the image. However, the bars are 
observed to be significantly higher at the middle of the image, following the shape of the 
CSF (see Fig. 4(a)). 
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                                             (a)                                                                         (b) 
Fig. 4. (a) Contrast sensitivity functions for the three channels YCbCr (after Moore, 2002 
(Moore, 2002)). (b) Pelli-Robson Chart, where spatial frequency increases from left to right, 
while contrast increases from top to bottom. 

2.2.4 Masking and facilitation 
Masking and facilitation are important aspects of the HVS in modeling the interactions 
between different image components present at the same spatial location. Specifically, these 
two effects refer to the fact that the presence of one image component (the mask) will 
decrease/ increase the visibility of another image component (test signal). The mask 
generally reduces the visibility of the test signal in comparison with the case where the mask 
is absent. However, the mask may sometimes facilitate detection as well. Usually, the 
masking effect is the strongest when the mask and the test signal have similar frequency 
content and orientations. Most quality metrics incorporate a model for masking and/or 
facilitation. 

2.2.5 Pooling 
Pooling refers to the task of arriving at a single measurement of quality from the outputs of 
the visual streams. It is not quite understood how the HVS performs pooling. But, it is clear 
that a perceptible distortion may be more annoying in some areas of the scene (such as 
human faces) than in others. Most quality metrics use the Minkowski metric to pool the error 
signals from the streams with different frequency and orientation selective and arrive at a 
fidelity measurement (de Ridder, 1992; 2001). The Minkowski metric is also used to combine 
information across spatial and temporal coordinates. 

3. Digital video systems 

In this section, we give a brief overview of the available video compression and 
transmission techniques and their impact on the quality of a digital video. 

3.1 Video compression 
Video compression (or video coding) is the process of converting a video signal into a 
format that takes up less storage space or transmission bandwidth. Given the video 
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transmission and storage requirements (up to 270 Mbits/s for Standard Definition and 1.5 
Gbit/s for High Definition), video compression is an essential technology for applications 
such as digital television (terrestrial, cable or satellite transmission), optical 
storage/reproduction, mobile TV, videoconferencing and Internet video streaming 
(Poynton, 2003). 
There are two types of compression: lossy and lossless compression (Bosi & Goldberg, 2002). 
Lossless compression algorithms have the characteristic of assuring perfect reconstruction of 
the original data. Unfortunately, this type of compression only allows around 2:1 
compression ratios, which is not sufficient for video applications. Lossy compression is the 
type of compression most commonly used for video because it provides much bigger 
compression ratios. There is, of course, a trade-off: the higher the compression ratio, the 
lower the quality of the compressed video. 
Compression is achieved by removing the redundant information from the video. There are 
four main types of redundancies that are typically explored by compression algorithms: 

• Perceptual redundancy: Information of the video that cannot be easily perceived by the 
human observer and, therefore, can be discarded without significantly altering the 
quality of the video. 

• Temporal redundancy: Pixels in successive video frames have great similarity. So, even 
though motion tend to change the position of blocks of pixels, it does not change their 
values and therefore their correlation. 

• Spatial redundancy: There is a significant correlation among pixels around the same 
neighborhood in a frame. 

• Statistical redundancy: This type of redundancy is related to the statistical relationship 
within the video data (bits and bytes). 

Each stage of a video compression algorithm is responsible for mainly reducing one type of 
redundancy. Fig. 5 depicts the functional components in a typical video compression 
algorithm. Different algorithms differ in what tools are used in each stage. But, most of them 
share the same principles: motion compensation and block-based transform with 
subsequent quantization. Currently, there are several standards for video compression, 
which standardize the decoding process. The encoding process is not fixed, what leaves 
room for innovation. 
 

 

Fig. 5. Functional components in a typical video compression algorithm. 

The most popular compression standards were produced by the Motion Picture Experts 

Group (MPEG) (ITU, 1998) and the Video Coding Experts (VCEG). The MPEG is a working 

group of the International Organization for Standardization (ISO) and of the International 

Electrotechnical Commission (IEC), formally known as ISO/IEC – JTC1/SC29/WG11. 

Among the standards developed by MPEG areMPEG-1,MPEG-2, andMPEG-4. The MPEG-2 
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is a very popular standard used not only for broadcasting, but also in DVDs (Haskell et al., 

1997; ITU, 1998). The main advantage of MPEG-2 is its low cost, given its popularity and the 

large scale of production. MPEG-2 is also undoubtedly a very mature technology. 

The VCEG is a working group of the Telecommunication Standardization Sector of the 

International Telecommunication Union (ITU-T). Among the standards developed by VCEG 

are the H.261 and H.263. A joint collaboration between MPEG and VCEG resulted in the 

development of the H.264, also known as MPEG-4 Part 10 or AVC (Advanced Video 

Coding) (Richardson, 2003; ITU, 2003). The H.264 represents a major advance in the 

technology of video compression, providing a considerable reduction of bitrate when 

compared to previous standards (Lambert et al., Jan. 2006). For the same quality level, H.264 

provides a bitrate of about half the bitrate provided by MPEG-2. 

3.2 Digital video transmission 
Compressed video streams are mainly intended for transmission over communication 

networks. But, there are different types of video communication and streaming applications. 

Each one has particular operating conditions and properties. The channels used for video 

communication may be static or dynamic, packet-switched or circuit-switched. Also, the 

channels may support a constant or variable bit rate transmission, and may support some 

form of Quality of Service (QoS) or may only provide best effort support. Finally, the 

transmission may be point-to-point, multicast, and broadcast. 

In most cases, after the video has been digitally compressed, the resulting bitstream is 

segmented into fixed or variable packets and multiplexed with other data types, such as 

audio. The next stage is the channel encoder, which will add error protection to the data. 

The characteristics of the specific video communication application will, of course, have a 

great impact on the quality of the video displayed at the receiver. 

3.3 Common artifacts in digital video systems 
An impairment is a property of the video that is perceived as undesirable, whether it is in 

the original or not. Impairments can be introduced during capture, transmission, storage, 

and/or display, as well as by any image processing algorithm (e.g. compression) that may 

be applied along the way (Yuen & Wu, 1998). They can be very complex in their physical 

descriptions and also in their perceptual descriptions. Most of them have more than one 

perceptual feature, but it is possible to have impairments that are relatively pure. To 

differentiate impairments from their perceptual features, we will use the term artifact to refer 

to the perceptual features of impairments and artifact signal to refer to the physical signal 

that produces the artifact. 

The most common artifacts present in digital video are: 

• Blockiness or blocking – A type of artifact characterized by a block pattern visible in the 

picture. It is due to the independent quantization of individual blocks (usually of 8x8 

pixels in size) in block-based DCT coding schemes, leading to discontinuities at the 

boundaries of adjacent blocks. The blocking effect is often the most visible artifact in a 

compressed video, given its periodicity and the extent of the pattern. More modern 

codecs, like the H.264, use a deblocking filter to reduce the annoyance caused by this 

artifact. 
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• Blur or blurring – It is characterized for a loss of spatial detail and a reduction of edge 
sharpness. In the in the compression stage, blurring is introduced by the suppression of 
the high-frequency coefficients by coarse quantization. 

• Color bleeding – It is characterized by the smearing of colors between areas of strongly 
differing chrominance. It results from the suppression of high-frequency coefficients of 
the chroma components. Due to chroma subsampling, color bleeding extends over an 
entire macroblock. 

• DCT basis image effect – It is characterized by the prominence of a single DCT coefficient 
in a block. At coarse quantization levels, this results in an emphasis of the dominant 
basis image and reduction of all other basis images. 

• Staircase effect – These artifacts occurs as a consequence of the fact that DCT basis are 
best suited for the representation of horizontal and vertical lines. The representation of 
lines with other orientations require higher-frequency DCT coefficients for accurate 
reconstruction. Therefore, when higher frequencies are lost, slanted lines appear. 

• Ringing – Associated with the Gibbs phenomenon. It is more evident along high 
contrast edges in otherwise smooth areas. It is a direct result of quantization leading to 
high-frequency irregularities in the reconstruction. Ringing occurs with both luminance 
and chroma components. 

• Mosquito noise – Temporal artifact that is seen mainly in smoothly textured regions as 
luminance/chrominance fluctuations around high contrast edges or moving objects. It 
is a consequence of the coding differences for the same area of a scene in consecutive 
frames of a sequence. 

• Flickering – It occurs when a scene has a high texture content. Texture blocks are 
compressed with varying quantization factors over time, which results in a visible 
flickering effect. 

• Packet loss – It occurs when parts of the video are lost in the digital transmission. As a 
consequence, parts (blocks) of video are missing for several frames. 

• Jitter – It is the result of skipping regularly video frames to reduce the amount of video 
information that the system is required to encode or transmit. This creates motion 
perceived as a series of distinct snapshots, rather than smooth and continuous motion. 

The performance of a particular digital video system can be improved if the type of artifact 
that is affecting the quality of the video is known (Klein, 1993). This type of information can 
also be used to enhance the video by reducing or eliminating the identified artifacts 
(Caviedes & Jung, 2001). In summary, this knowledge makes it possible to implement a 
complete system for detecting, estimating and correcting artifacts in video sequences. 
Unfortunately, there is not yet a good understanding of how visible/annoying these 
artifacts are, how the content influences their visibility/annoyance, and how they combine 
to produce the overall annoyance. A comprehensive subjective study of the most common 
types of artifacts is still needed. 
An effort in this direction has been done by Farias et al (Farias, Moore, Foley & Mitra, 2002; 
Farias et al., 2003a;b; Farias, Foley & Mitra, 2004; Farias, Moore, Foley & Mitra, 2004). Their 
approach makes use of synthetic artifacts that look like “real” artifacts, yet are simpler, 
purer, and easier to describe. This approach makes it possible to control the type, 
proportion, and strength of the artifacts being tested and allows to evaluate the performance 
of different combination models of the artifact metrics. The results gathered from the 
psychophysical experiments performed by Farias et al show that the synthetic artifacts, 
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besides being visually similar to the real impairments, have similar visibility and annoyance 
properties. Their results also show that there is an interaction between among different 
types of artifacts. For example, the presence of noisy artifact signals seem to decrease the 
perceived strength of the other artifacts, while the presence of blurry artifact signals seem to 
increase it. The authors also modeled annoyance by combining the artifact perceptual 
strengths (MSV) using both a Minkowski metric and a linear model (de Ridder, 1992). 

4. Subjective video quality assessment 

Subjective experiments (also called psychophysical experiments) represent the most 
accurate way of measuring the quality of a video. In subjective experiments, a number of 
subjects (observers or participants) are asked to watch a set of test sequences and give 
judgements about their quality or the annoyance of the impairments. The average of the 
values collected for each test sequence are known as Mean Observer Score (MOS). 
In general, subjective experiments are expensive and time-consuming. The design, 
execution, and data analysis consume a great amount of the experimenter’s time. Running 
an experiment requires the availability of subjects, equipment, and physical space. As a 
result, the number of experiments that can be conducted is limited and, therefore, an 
appropriate methodology should be used to get the most out of the resources. 
The International Telecommunication Union (ITU) has recommendations for subjective 
testing procedures. The two most important documents are the ITU-R Rec. BT.500-11 (ITU-
R, 1998), targeted at television applications, and the ITU-T Rec. P.910 (ITU-T, 1999), targeted 
at multimedia applications. These documents give information regarding the standard 
viewing conditions, the criteria for selections of observers and test material, assessment 
procedures, and data analysis methods. Before choosing which method to use, the 
experimenter should take into account the application in mind and the accuracy objectives. 
According to ITU, there are two classes of subjective assessments: 

• Quality assessments – The judgements given by subjects are in a quality scale, i.e., how 
good or bad is the quality of the displayed video. These assessments establish the 
performance of systems under optimum conditions; 

• Impairment assessments – The judgements given by subjects are in an impairment scale, 
i.e., how visible or imperceptible are the impairments in the displayed video. These 
assessments establish the ability of systems to retain quality under non-optimum 
conditions that relate to transmission. 

According to the type of scale, quality or impairment judgements can be classified as 
continuous or discrete. Judgements can also be categorical or non-categorical, adjectival or 
numerical. Depending on the form of presentation of the stimulus (sequences), the 
assessment method can be classified as double or single stimulus. In the single stimulus 
approach the test sequence is presented by itself, while in the double stimulus method a pair 
of sequences (test sequence and the corresponding reference) are presented together. 
The most popular assessment procedures of ITU-R Rec. BT.500-11 are: 

• Double Stimulus Continuous Quality Scale (DSCQS) – This method is specially useful 
when the test conditions exhibit the full range of quality. The observer is shown 
multiple pairs of sequences consisting of a test sequence and the corresponding 
reference. The sequences have a short duration of around 10s and are presented twice, 
alternated by each other. The observers are not told which is the reference and which is 
the test sequence. In each trial, their positions are changed randomly. The observer is 
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asked to assess the overall quality of both sequences by inserting a mark on a vertical 
scale. Fig. 6 shows a section of a typical score sheet. The continuous scales are divided 
into five equal lengths, which correspond to the normal ITU five-point quality 
continuous scale. 

 

 

Fig. 6. Continuous quality scale used in DSCQS. 

• Double Stimulus Impairment Scale (DSIS) – For this method, the reference is always 
shown before the test sequence and the pair is not repeated. Observers are asked to 
judge the amount of impairment in the test sequence using a five-level scale. The 
categories in the scale are ‘imperceptible’, ‘perceptible, but not annoying’, ‘slightly 
annoying’, ‘annoying’, and ‘very annoying’. This method is adequate for evaluating 
visible artifacts. 

• Single Stimulus Continuous Quality Evaluation (SSCQE) – In this method, observers are 
asked to watch a video (program) of around 20-30 minutes. The content is processed 
using the conditions under test and the reference is not presented. The observer uses a a 
slider to continuously rate the quality, as it changes during the presentation. The scale 
(ruler) goes from ‘bad’ to ‘excellent’. 

The most popular assessment procedures of ITU-T Rec. P.910 are: 

• Absolute Category Rating (ACR) – Also known as Single Stimulus Method (SSM), this 
method is characterized by the fact that the test sequences are presented one at a time, 
without the reference. This makes it a very efficient method, compared to DSIS or 
DSCQS, which have durations of around 2 to 4 times longer. After each presentation, 
observers are asked to judge the overall quality of the test sequence using a five-level 
scale. The categories in this scale are ‘bad’, ‘poor’, ‘fair’, ‘good’, and ‘excellent’. A nine-
level scale may be used if a higher discriminative power is desired. Also, if additional 
ratings of each test sequence are needed, repetitions of the same test conditions at 
different points in time of the test can be used. 

• Degradation Category Rating (DCR) –This method is identical to the DSIS described 
earlier. 

• Pair Comparison (PC) – In this method, all possible pair combinations of all test 
sequences are shown to viewers, i.e., if there are n test conditions, a total of n · (n − 1) 
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pairs are presented for each reference. The observers have to choose which sequence of 
the pair he/she thinks has the best quality. This methods allows a very fine distinction 
between conditions, but also requires a longer period of time when compared to other 
methods. 

Although each assessment method has its own requirements, the following 
recommendations are valid in most cases: 

• The choice of test sequences must take into account the goal of the experiment. The spatial 
and temporal content of the scenes, for example, are critical parameters. These parameters 
determine the type and severeness of the impairments present in the test sequences. 

• It is important that the set of test scenes spans the full range of quality commonly 
encountered for the specific conditions under test. 

• When a comparison among results from different laboratories is the intention, it is 
mandatory to use a set of common source sequences to eliminate further sources of 
variation. 

• The test sequences should be presented in a pseudo-random order and, preferably, the 
experimenter should avoid that sequences generated from the same reference be shown 
in a subsequent order. 

• The viewing conditions, which include the distance from the subject’s eye to the 
monitor and the ambient light, should be set according to the standards. 

• The size and the type of monitor or display used in the experiment must be appropriate 
for the application under test. Callibration of the monitor may be necessary. 

• It is best to use the whole screen for displaying the test sequences. In case this is not 
possible, the sequences must be displayed on a window of the screen, with a 50% grey 
(Y=U=V=128) background surrounding it. 

• Before the experiment starts, the subjects should be tested for visual acuity. After that, 
written and oral instructions should be given to them, describing the intended 
application of the system, the type of assessment, the opinion scale, and the 
presentation methodology. 

• At least 15 subjects should be used in the experiment. Preferably, the subjects should 
not be considered ‘experts’, i.e., have considerable knowledge in the area of image and 
video processing. 

• Before the actual experiment, indicative results can be obtained by performing a pilot 
test using only a couple (4-6) of subjects (experts or non-experts). 

• A training section with at least five conditions should be included at the beginning of the 
experimental session. These conditions should be representative of the ones used in the 
experiment, but should not be taken into account in the statistical analysis of the gathered 
data. It should be made clear to the observer that the worst quality seen in the training set 
does not necessarily corresponds to the worst or lowest grade on the scale. 

• Include at least two replications (i.e. repetitions of identical conditions) in the 
experiment. This will help to calculate individual reliability per subject and, if 
necessary, to discard unreliable results from some subjects. 

• Statistical analysis of the gathered data can be performed using standard methods 
(Snedecor & Cochran, 1989; Hays, 1981; Maxwell & Delaney, 2003; ITU-R, 1998). For 
each combination of the test variables, the mean value and the standard deviation of the 
collected assessment grades should be calculated. Subject reliability should also be 
estimated. 
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5. Objective video quality metrics 

Video quality metrics can be employed to: 

• monitor video quality; 

• compare the performance of video processing systems and algorithms; and 

• optimize the algorithms and parameter settings for a video processing system. 
The choice of which type of metric should consider the application and its the requirements 
and limitations. 
In general, video quality metrics can be divided in three different categories according to the 
availability of the original (reference) video signal: 

• Full Reference (FR) metric – Original and distorted (or test) videos are available. 

• Reduced Reference (RR) metric – Besides the distorted video, a description of the original 
and some parameters are available. 

• No-reference (NR) metric – Only the distorted video is available. 
Figs. 7, 8, and 9 depict the block diagrams corresponding to the full reference, reduced 

reference, and no-reference video quality metrics, respectively. Observe that on the FR 

approach the entire reference is available at the measurement point. On the RR approach 

only part of the reference is available through an auxiliary channel. In this case, the 

information available at the measurement point generally consists of a set of features 

extracted from the reference. For the NR approach no information concerning the reference 

is available at the measuring point. 

 

 

Fig. 7. Block diagram of a full reference video quality assessment system. 
 

 

Fig. 8. Block diagram of a reduced reference video quality assessment system. 
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Fig. 9. Block diagram of a no-reference video quality assessment system. 

These three classes of metrics are targeted at different applications. FR metrics are more 
suitable for offline quality measurements, for which a detailed and accurate measurement of 
the video quality is of higher priority than having immediate results. NR and RR metrics are 
targeted at real-time applications, where the computational complexity limitations and the 
lack of access to the reference are the main issues. Comparisons among the performances of 
several video quality metrics were done by Yubing Wang (Wang, 2006), Eskicioglu and and 
Fisher (Eskicioglu & Fisher, 1995), Sheikh et al (Sheikh et al., 2006), and Avicbas et al 
(Avcibas et al., 2002). 
The quality metrics can be classified according to the approach they take for estimating the 
amount of impairment in a video. There are basically two main approaches. The first one is 
the error sensitivity approach that tries to analyze visible differences between the test and 
reference videos. This approach is mostly used for full reference metrics, since this is the 
only type of metric where a pixel-by-pixel difference between the original and test videos 
can be generated. 
The second approach is the feature extraction approach that looks for higher-level features 
that do not belong to the original video to obtain an estimate of the quality of the video. No-
reference and reduced reference metrics frequently use the feature extraction approach 
making use of some a priori knowledge of the features of the original video. 
Finally, quality metrics can also be classified according to what type of information they 
consider when processing the video. Metrics that take into account the how the HVS works 
are typically called picture metrics or perceptual metrics. More simple metrics that only 
measure the fidelity of the signal without considering its content are called data metrics. 
In this section, a brief description of a representative set of FR, RR, and NR metrics is 
presented. Also, a description of data metrics and metrics based on data hiding is presented. 

5.1 Data FR fidelity metrics 
Data fidelity metrics measure the physical differences between two signals without 
considering its content. Two of the most popular data fidelity metrics are the mean squared 
error (MSE) and the peak signal-to-noise ratio (PSNR), which are defined as: 

 
(1) 

and 

 
(2) 

where N is the total number of pixels in the video, 255 is the maximum intensity value of the 
images, and Xi and Yi are the i-th pixels in the original and distorted video, respectively. 
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Strictly speaking, the MSE measures image differences, i.e. how different two images are. 
PSNR, on the other hand, measures image fidelity, i.e. how close two images are. In both 
cases, one of the pictures is always the reference (uncorrupted original) and the other is the 
test or distorted sequence. 
The MSE and PSNR are very popular in the image processing community because of their 
physical significance and of their simplicity, but over the years they have been widely 
criticized for not correlating well with the perceived quality measurement (Teo & Heeger, 
1994; Eskicioglu & Fisher, 1995; Eckert & Bradley, 1998; Girod, 1993; Winkler, 1999). More 
specifically, it has been shown that simple metrics like PSNR and MSE can only predict 
subjective rating with a reasonable accuracy, as long as the comparisons are made for the 
same content, the same technique or the same type of artifact (Eskicioglu & Fisher, 1995). 
One of the major reasons why these simple metrics do not perform as desired is because 
they do not incorporate any HVS features in their computation. In fact, it has been 
discovered that in the primary visual cortex of mammals, an image is not represented in the 
pixel domain, but in a rather different manner. The measurements produced by metrics like 
MSE or PSNR are simply based on a pixel to pixel comparison of the data, without 
considering what is the content. These simple metrics do not consider, for example, what are 
the relationships among pixels in an image (or frames). They also do not consider how the 
spatial and frequency content of the impairments are perceived by human observers. 

5.2 Full reference video quality metrics 
In general, full reference (FR) metrics have the best performance among the three types of 
metrics. This is mainly due to the availability of the reference video. Also, since FR are 
intended for off-line applications, they can be more computational complex and incorporate 
several aspects of the HVS. The major drawback of the full reference approach is the fact 
that a large amount of reference information has to be provided at the final comparison 
point. Also, a very precise spatial and temporal alignment of reference and impaired videos 
is needed to guarantee the accuracy of the metric. 
A large number of FR metrics are error sensitivity metrics, which attempt to analyze and 
quantify the error signal in a way that simulates the human quality judgement. Some 
examples include the works by Daly (Daly, 1993), Lubin (Lubin, 1995), Teo and Heeger (Teo 
& Heeger, 1994), Watson (Watson, 1990; 1998;Watson et al., 2001), Van den Branden 
Lambrecht and Kunt (van den Branden Lambrecht & Kunt, 1998), and Winkler (Winkler, 
1999). The group of full reference metrics that uses a feature extraction approach is much 
smaller and includes the works of Algazi and Hiwasa (Algazi & Hiwasa, 1993), Pessoa et al. 
(Pessoa et al., 1998), and Wolf and Pinson (Wolf & Pinson, 1999). In this section, we present a 
brief description of a representative set of full reference video quality metrics. 

5.2.1 Visible Differences Predictor (VDP) 
The full reference model proposed by Daly (Daly, 1993; 1992) is known as visible differences 
predictor (VDP). The general approach of the model consists of finding what limits the 
visual sensitivity and taking this into account when analysing the differences between 
distorted and reference videos. The main sensitivity limitations (or variations) considered by 
the model are light level, spatial frequency, and signal content. Each of these sensitivity 
variations corresponds to one of the stages of the model, as described below: 

• Amplitude non-linearity – It is well known that sensitivity and perception of lightness 
are non-linear functions of luminance. The amplitude non-linearity stage of the VDP 
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describes the sensitivity variations as a function of the gray scale. It is based on a model 
of the early retina network. 

• Contrast Sensitivity Function (CSF) – The CSF describes the variations in the visual 
sensitivity as a function of spatial frequency. The CSF stage changes the input as a 
function of light adaptation, noise, color, accommodation, eccentricity, and image size. 

• Multiple detection mechanism – It is modeled with four subcomponents: 

• Spatial cortex transform – It models the frequency selectivity of the visual system 
and creates the framework for multiple detection mechanisms. This is modeled by 
a hierarchy of filters modified from Watson’s cortex transform (Watson, 1987) that 
separates the image into spatial levels followed by six orientation levels. 

• Masking function – Models the magnitude of the masking effect. 

• Psychometric function – Describes the details of the threshold. 

• Probability summation – Combines the responses of all detection mechanisms into 
an unified perceptual response. 

A simplified block-diagram of the VDP is depicted in Fig. 10. The output of Daly’s metric is 
a probability-of-detection map, which indicates the areas where the reference and test 
images differ in a perceptual sense. 
 

 

Fig. 10. Block diagram of the visible differences predictor (VDP) (Daly, 1993; 1992). 

5.2.2 Sarnoff JND model 
The Sarnoff JND model is based on multi-scale spatial vision model proposed by Lubin 
(Lubin, 1993; 1995). The model takes into account color and temporal variation. Like the 
metric by Daly, it is designed to predict the probability of detection of artifacts in an image. 
But, it uses the concept of just noticeable differences (JNDs) that are visibility thresholds for 
changes in images. 
The JND unit of measure is defined such that 1 JND corresponds to a 75% chance that an 
observer viewing the two images detects the difference. JND values above 1 are calculated 
incrementally. For example, if image A is 1 JND higher than Image B, and image C is 1 JND 
higher than image A, then image C is 2 JNDs higher than image B. In terms of probability of 
detection, a 2 JND difference corresponds to 93.75% chance of discrimination, while a 3 JND 
difference corresponds to 98.44%. 
The block diagram of the Sarnoff JND model is depicted in Fig. 11. First, the picture is 
transformed to the CIE L*u*v* uniform color space (Poynton, 2003). Next, each sequence is 
filtered and down-sampled using a Gaussian pyramid operation (Burt & Adelson, 1983). 
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