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1. Introduction

With the increasing number of automobiles and complication of traffic network, the traffic
flow control becomes one of significant economic and social issues in urban life. Many re-
searchers have been involved in related researches in order to alleviate traffic congestion.
From viewpoint of modeling, the existing scenarios can be categorized into the following two
approaches:

(A1) Microscopic approach; and

(A2) Macroscopic approach.

The basic idea of Microscopic approach (A1) (2)is that the behavior of each vehicle is affected
by neighboring vehicles, and the entire traffic flow is represented as statistical occurrences.
The Cellular Automaton (CA) based model (3) (4) and (11) is widely known idea to represent
the behavior of each vehicle. In the CA model, the road is discretized into many small cells.
Each cell can be either empty or occupied by only one vehicle. The behavior of each vehicle in
each cell is specified by the geometrical relationship with other vehicles together with some
stochastic parameters. Although many simulation results based on these microscopic models
showed high similarity to the measured real data, these approaches are not suitable for the
large-scale traffic network modeling and its traffic light controller design. This is because
they require enormous computational efforts to find all vehicles’ behavior. Furthermore, the
precise information on initial positions and speeds of all vehicles are usually not available in
advance.
On the other hand, it has been a common strategy in the macroscopic approach (A2) (9) that
the designer uses a fluid approximation model where the behavior of traffic flow is regarded
as a continuous fluid with density k(x, t) and volume q(x, t) at location x and time t. In this
case, k(x, t) and q(x, t) must satisfy the following law of mass conservation;

∂k(x, t)

∂t
+

∂q(x, t)

∂x
= 0. (1)

Also, some relationship among q, k and v, which are usually described by

q(x, t) = k(x, t)v(x, t), (2)

is introduced together with the appropriate model of the v(x, t), where v(x, t) denotes the ve-
locity of the traffic flow. By incorporating these two equations, the macroscopic behavior of
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the traffic flow is uniquely decided. This model, however, is applicable only when the density
of the traffic flow k(x, t) is continuous. Although this model expresses well the behavior of the
flow on the freeway, it is unlikely that this model can be applied to the urban traffic network
which involves many discontinuities of the density coming from the existence of intersections
controlled by traffic signals. In order to treat the discontinuity of the density in the macro-
scopic model, the idea of ‘shock wave’, which represents the progress of the boundary of two
neighboring different density area, has been introduced in literature (6) (5) (7) (8). Although
these approaches included judicious use of theoretical ideas for the flow dynamics, it is not
straightforward to exploit them for the design of real-time traffic signal control since the flow
model results in complicated nonlinear dynamics.
This paper presents a new method for the real-time traffic network control based on an inte-
grated Hybrid Dynamical System (HDS) framework. The proposed method characterizes its
synthetic modeling description. The information on geometrical traffic network is modeled
by using Hybrid Petri Net (HPN), whereas the information on the behavior of traffic flow
is modeled by means of Mixed Logical Dynamical Systems (MLDS) description. The former
allows us to easily apply our method to complicated and wide range of traffic network due
to its graphical understanding and algebraic manipulability. The latter allows us to represent
physical features governing the dynamics of traffic flow and control mechanism for traffic
congestion control employing the model predictive control policy (13).
Note that current traffic flow away from the signaler affects future traffic flow behavior.
Through the model predictive control policy, we can construct the decentralized controller
in a manner that each traffic outflow from the intersection or crosswalk is controlled and the
information is shared with neighboring traffic controllers. A large-scale centralized traffic
network controller is not appropriate because of the increased computational effort, synchro-
nization in information processes and so on. In this case, the decentralized controller with
model predictive control policy could be a realistic method.
In order to control large-scale traffic network with nonlinear dynamics, we formulate the traf-
fic network control system based on the Mixed Integer NonLinear Programming (MINLP)
problem. Generally, it is difficult to find the global optimal solution to the nonlinear program-
ming problem. However, if the problem can be recast to the convex programming problem,
the global optimal solution is easily found by applying an efficient method such as Steepest
Descent Method (SDM). We use in this paper general performance criteria for traffic network
control and show that although the problem contains non-convex constraint functions as a
whole, the generated sub-problems are always included in the class of convex programming
problem. In order to achieve high control performance of the traffic network with dynami-
cally changing traffic flow, we adopt Model Predictive Control (MPC) policy. Note that MLDS
formulation often encounters multiplication of two decision variables, and that without mod-
ification, it cannot be directly applied to MPC scheme. One way to avoid the multiplication
is to introduce a new auxiliary variable to represent it. And then it becomes a linear system
formally. However, as we described before, the introduction of discrete variables causes sub-
stantial computational amounts. A new method for this type of control problem is proposed.
Although the system representation is nonlinear, MPC policy is successfully applied by means
of the proposed Branch and Bound strategy.
After verification of the solution optimality, PWARX classifier is applied which describes a
nonlinear feedback control law of the traffic control system. This implies we don’t need a
time-consuming searching process of a solver such as a Branch-and-Bound algorithm to solve
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Fig. 1. Example of Hybrid Petri Net model

a mixed integer nonlinear programming (MINLP) problem, and furthermore the exactly same
solutions are obtained in a very short time.
The problem we address in this paper is a special classification problem where the output y is a
0-1 binary variable, and very good classification performance is desirable even with very large
number of the introduced clusters. If we plot the observational data in a same cluster in the x-y
space, it will show always zero inclination, since we have a binary output, i.e., all components
of θ, a and b except for f will be zeros. This implies we need consideration for a binary output.
A new performance criterion is presented in this paper to consider not only a covariance of
θ, but also a covariance of y. The proposed method is a hierarchical classification procedure,
where the cluster splitting process is introduced to the cluster with the worst classification
performance (which includes 0-1 mixed values of y). The cluster splitting process is follows
by the piecewise fitting process to compute the cluster guard and dynamics, and the cluster
updating process to find new center points of the clusters. The usefulness of the proposed
method is verified through some numerical experiments.

2. Modeling of Traffic Flow Control System (TFCS) based on HPN

The Traffic Flow Control System (TFCS) is the collective entity of traffic network, traffic flow
and traffic signals. Although some of them have been fully considered by the previous studies,
most of the previous studies did not simultaneously consider all of them. In this section, the
HPN model is developed, which provides both graphical and algebraic descriptions for the
TFCS.

2.1 Representation of TFCS as HPN

HPN is one of the useful tools to model and visualize the system behavior with both contin-
uous and discrete variables. HPN is a structure of N = (P, T, I+, I−, C, D). The set of places
P is partitioned into a subset of discrete places Pd and a subset of continuous places Pc. The
set of transition T is partitioned into a subset of discrete transitions Td and a subset of contin-
uous transitions Tc. The incidence matrix of the net is defined as I(p, t) = I−(p, t)− I+(p, t),
where I+(p, t) and I−(p, t) are the forward and backward incidence relationships between the
transition t and the place p which follows and precedes the transition. We denote the preset

(postset) of transition t as • t (t •) and its restriction to continuous or discrete places as (d) t =
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Fig. 2. Phase diagram of Hybrid Petri Net model
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Fig. 3. Behavior of Hybrid Petri Net model

• t ∩ Pd or (c) t = • t ∩ Pc. Similar notation may be used for presets and postsets of places. The
function C and D specify the firing speeds associated to the continuous transitions and the
timing associated to the (timed) discrete transitions. For any continuous transition ti, we let
C(ti) = (vi, Vi), where vi and Vi represent the minimum and maximum firing speed of tran-
sition ti. We associate to the timed discrete transition its firing delay, where the firing delay is
short enough and the state is preserved until next sampling instant. The acquisition of firing
sequence of the discrete transition at every sampling instant is applied to a variety of schedul-
ing and control problems. The marking M = [MC|MD] has both continuous (m dimension)
and discrete (n dimension) parts.
Consider a simple example of First-Order Hybrid Petri Net model, Fig.1, where the control
switch is represented with two discrete transitions and two discrete places connected to the
continuous transition. In Fig.1, p1 is the continuous place with the initial marking mc(τ0) =
mp1 = c0, and p2, p3, p4 and p5 are the discrete places with the initial marking md(τ0) = [mp2,
mp3, mp4, mp5] = [1, 0, 1, 0]. We assume V1a < V2b, where V1 and V2 are firing speed of t1 and
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Fig. 4. Traffic network
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Fig. 5. Hybrid Petri Net model of traffic network

t2 respectively, a and b are the arc weights given by the incidence relationship. The behavior
is illustrated in Fig.2 and Fig.3.
Figure 5 shows the HPN model for the road of Fig.4. In Fig.5, each section i of li-meters
long constitutes the straight road, and two traffic lights are installed at the point of crosswalk.
pc ∈ Pc represents each section of the road, and has maximum capacity (maximum number
of vehicles). Also, pd ∈ Pd represents the traffic signal where green signal is indicated by an
existence of a token. Note that each signal is supposed to have only two states ‘go (green)’ or
‘stop (red)’ for simplicity.T is the set of continuous transitions which represent the boundary
of two successive sections. qj(τ) is the firing speeds assigned to transition tj ∈ T at time τ.
qj(τ) represents the number of vehicles passing through the boundary per time unit of two
successive sections(measuring position) at time τ. The sensors to capture the number of the
vehicles are supposed to be installed at every boundary of the section as show in Fig.4. The
element of I(p, t) is always 0 or αij. αij is the number of traffic lanes in each section. Finally, M0

is specified as the initial marking of the place p ∈ P. The net dynamics of HPN is represented
by a simple first order differential equation for each continuous place pci ∈ Pc as follows:

if pd,k = •tj is not null,

dmC,i(τ)

dt
= ∑

tj∈pci
•∪•pci

I(pci , tj) · qj(τ) · mD,k(τ), (3)

otherwise,

dmC,i(τ)

dt
= ∑

tj∈pci
•∪•pci

I(pci , tj) · qj(τ), (4)

where mC,i(τ) is the marking for the place pci (∈ Pc) at time τ, and mD,k(τ) is the marking for
the place pdk

(∈ Pd). The equation (3) is transformed to its discrete-time version supposing
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that qj(τ) is constant during two successive sampling instants as follows:

mC,i((κ + 1)Ts) = mC,i(κTs)

+ ∑
tj∈pci

•∪•pci

I(pci , tj) · qj(κTs) · mD,j(κTs) · Ts. (5)

where κ is sampling index, and Ts is sampling period.
Note that the transition t is enabled at the sampling instant κTs if the marking of its preced-
ing discrete place pdj

∈ Pd satisfies mD,j(κ) ≥ I+(pdj
, t). Also if t does not have any input

(discrete) place, t is always enabled.

2.2 Definition of flow qi

In order to derive the flow behavior, the relationship among qi(τ), ki(τ) and vi(τ) must be
specified. One of the simple ideas is to use the well-known model

qi(τ) =
(ki(τ) + ki+1(τ))

2

vi(τ) + vi+1(τ)

2
(6)

supposing that the density ki(τ) and ki+1(τ), and average velocity vi(τ) and vi+1(τ) of the
flow in i and (i + 1)th sections are almost identical. Then, by incorporating the velocity model

vi(τ) = v fi
·

(

1 −
ki(τ)

kjam

)

, (7)

with (6), the flow dynamics can be uniquely defined. Here, kjam is the density in which the
vehicles on the roadway are spaced at minimum intervals (traffic-jammed), and v fi

is the
maximum speed, that is, the velocity of the vehicle when no other vehicle exists in the same
section.
If there exists no abrupt change in the density on the road, this model is expected to work
well. However, in the urban traffic network, this is not the case due to the existence of the
intersections controlled by the traffic signals. In order to treat the discontinuities of the density
among neighboring sections (i.e. neighboring continuous places), the idea of ‘shock wave’(10)
is introduced as follows. We consider the case as shown in Fig.6 where the traffic density of
ith section is lower than that of (i + 1)th section in which the boundary of density difference
designated by the dotted line is moving forward. Here, the movement of this boundary is
called shock wave and the moving velocity of the shock wave ci(τ) depends on the densities
and average velocities of ith and (i + 1)th sections as follows:

ci(τ) =
vi(τ)ki(τ)− vi+1(τ)ki+1(τ)

ki(τ)− ki+1(τ)
. (8)

The traffic situation can be categorized into the following four types taking into account the
density and shock wave.

(C1) ki(τ) < ki+1(τ), and ci(τ) > 0,

(C2) ki(τ) < ki+1(τ), and ci(τ) ≤ 0,

(C3) ki(τ) > ki+1(τ),
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Fig. 6. Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) > 0

(C4) ki(τ) = ki+1(τ) (no shock wave).

Firstly, in both cases of (C1) and (C2) where ki(τ) is smaller than ki+1(τ), the vehicles passing
through the density boundary (dotted line) reduce their speeds. The movement of the shock
wave is illustrated in Fig.6 (ci(τ) > 0) and Fig.7 (ci(τ) ≤ 0). In Fig.6 and Fig.7, the ‘measur-
ing position’ implies the position where transition ti is assigned. Since the traffic flow qi(τ)
represents the numbers of vehicles passing through the measuring position per unit time, in
the case of (C1), it can be represented by n + m in Fig.6, where n and m represent the area of
the corresponding rectangular, i.e. the product of the vi(τ) and ki(τ). Similarly, in the case of
(C2), qi(τ) can be represented by m in Fig.7.
These considerations lead to the following models:

in the case of (C1)
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qi(τ) = vi(τ)ki(τ) (9)

= v fi

(

1 −
ki(τ)

kjam

)

ki(τ), (10)

in the case of (C2)

qi(τ) = vi+1(τ)ki+1(τ) (11)

= v fi+1

(

1 −
ki+1(τ)

kjam

)

ki+1(τ). (12)

In the cases of (C3) and (C4) where ki(τ) is greater than ki+1(τ), the vehicles passing through
the density boundary come to accelerate. In this case, the flow can be well approximated
by taking into account the average density of neighboring two sections. This is intuitively
because the difference of the traffic density is going down. Then in the cases of (C3) and (C4),
the traffic flow can be formulated as follows:

in the cases of (C3) and (C4),

qi(τ) =

(

ki(τ) + ki+1(τ)

2

)

v f (τ)

(

1 −
ki(τ) + ki+1(τ)

2k jam

)

. (13)

As the results, the flow model (9) ∼ (13) taking into account the discontinuity of the density
can be summarized as follows:

qi(τ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(

ki(τ)+ki+1(τ)
2

)

v f

(

1 − ki(τ)+ki+1(τ)
2k jam

)

i f ki(τ) ≥ ki+1(τ)

v fi

(

1 − ki(τ)
k jam

)

ki(τ)

i f ki(τ) < ki+1(τ) and c(τ) > 0

v fi+1

(

1 − ki+1(τ)
k jam

)

ki+1(τ)

i f ki(τ) < ki+1(τ) and c(τ) ≤ 0

. (14)

Figure 8 shows the HPN model of the ith intersection, where the notation for other than south-
wardly entrance lane is omitted. In Fig.8, lj,E, lj,W , lj,S and lj,N are the length of the corre-
sponding districts, and the numbers of the vehicles in the districts are obtained as for example
pc,jIS

(τ) = kjIS
(τ) · lj,S. The vehicles in pc,jIS

are assumed to have the probability ζ j,SW , ζ j,SN ,
and ζ j,SE to proceed into the district corresponding to pc,jOW

, pc,jON
, and pc,jOE

as follows,

kjSW
(τ) = kjIS

(τ)ζ j,SW(τ), (15)

kjSN
(τ) = kjIS

(τ)ζ j,SN(τ), (16)

kjSE
(τ) = kjIS

(τ)ζ j,SE(τ). (17)
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Fig. 7. Movement of shock wave in the case of ki(τ) < ki+1(τ) and ci(τ) ≤ 0

Note that these probabilities are determined by the traffic network structure, and satisfy at τ,

0 ≤ ζ j,SW(τ) ≤ 1, (18)

0 ≤ ζ j,SN(τ) ≤ 1, (19)

0 ≤ ζ j,SE(τ) ≤ 1, (20)

ζ j,SW(τ) + ζ j,SN(τ) + ζ j,SE(τ) = 1. (21)

Therefore, the traffic flows of the three directions are represented with

q
(

kjSN
(τ), kjON

(τ)
)

, (22)

q
(

kjSW
(τ), kjOW

(τ)
)

, (23)

q
(

kjSE
(τ), kjOS

(τ)
)

. (24)

Note that the mutual exclusion of the same traffic light with the intersecting road is repre-
sented in the Fig.8.
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2.3 Derived flow model

In this subsection, we confirm the effectiveness of the proposed traffic flow model developed
in the previous subsection by comparing it with the microscopic model. The usefulness of
Cellular Automaton (CA) in representing the traffic flow behavior was investigated in (3).
Some of well-known traffic flow simulators such as TRANSIMS and MICROSIM are based on
CA model.
The essential property of CA is characterized by its lattice structure where each cell represents
a small section on the road. Each cell may include one vehicle or not. The evolution of CA is
described by some rules which describe the evolution of the state of each cell depending on
the states of its adjacent cells.
The evolution of the state of each cell in CA model can be expressed by

nj(τ + 1) = nin
j (τ)(1 − nj(τ))− nout

j (τ), (25)

where nj(τ) is the state of cell j which represents the occupation by the vehicle (nj(τ) = 0
implies that the jth cell is empty, and nj(τ) = 1 implies that a vehicle is present in the jth

cell at τ). nin
j (τ) represents the state of the cell from which the vehicle moves to the jth cell,

and nout
j (τ) indicates the state of the destination cell leaving from the jth cell. In order to find

nin
j (τ) and nout

j (τ), some rules are adopted as follows:

Step 1, Acceleration rule: All vehicles, that have not reached at the speed of maximum speed
v f , accelerate its speed v〈j〉(τ) by one unit velocity vunit as follows:

v〈j〉(τ + Δτ) ≡ v〈j〉(τ) + vunit. (26)

www.intechopen.com



�������	
��������������
���������������
����
���� ���

Step 2, Safety distance rule: If a vehicle has e empty cells in front of it, then the velocity at the
next time instant v〈j〉(τ + Δτ) is restricted as follows:

v〈j〉(τ + Δτ) ≡ min{e, v〈j〉(τ + Δτ)}. (27)

Step 3, Randomization rule: With probability p, the velocity is reduced by one unit velocity
as follows:

v〈j〉(τ + Δτ) ≡ v〈j〉(τ + Δτ)− p · vunit. (28)

Figure 9 shows the behavior of traffic flow obtained by applying the CA model to the two suc-
cessive sections which is 450[m] long. The parameters used in the simulation are as follows:
computational interval Δτ is 1 [sec], each cell in the CA is assigned to 4.5 [m]-long interval on
the road, maximum speed v f is 5 (cells/Δτ), which is equivalent to 81 [Km/h] (=4.5[m/cell] ·
5 [cells/Δτ] · 3600[sec]/1000). The left figure of Fig.9 shows the obtained relationship among
normalized flow qi(τ) and densities ki(τ) and ki+1(τ). The right small figure is the abstracted
illustration of the real behavior.
First of all, we look at the behavior along the edge a in the right figure which implies the case
that the traffic signal is changed from red to green. At the point of ki(τ) = 0 and ki+1(τ) = 0,
the traffic flow qi(τ) becomes zero since there is no vehicle in both ith and (i + 1)th section.
Then, qi(τ) is proportionally increased as ki(τ) increases, and reaches the saturation point
(ki(τ) = 0.9). Next, we look at the behavior along the edge b which implies that the ith section
is fully occupied. In this case, the maximum flow is measured until the density of the (i + 1)th
section is reduced by 50% (i.e. ki+1(τ) = 0.5), and after that the flow goes down according to
the increase of ki+1(τ). Although CA model consists of quite simple procedures, it can show
quite natural traffic flow behavior.
On the other hand, Fig.10 shows the behavior in case of using HPN where the proposed flow
model given by (14) is embedded. We can see that Fig.10 shows the similar characteristics to
Fig.9, especially, the saturation characteristic is well represented despite of the use of macro-
scopic model. As another simple modeling strategy, we consider the case that the average of
two ki(τ) and ki+1(τ) are used to decide the flow qi(τ) (i.e. use (13) ) for all cases. Figure 11
shows the behavior in case of using HPN where the flow model is supposed to be given by (13)
for all cases. Although the qi(τ) shows similar characteristics in the region of ki(τ) ≥ ki+1(τ),
at the point of ki(τ) = 0 and ki+1(τ) = kjam, qi(τ) takes its maximum value. This obviously
contradicts to the natural flow behavior.
Before concluding this subsection, it is worthwhile to compare the computational amount. In
case of using CA, it took 140 seconds to construct the traffic flow dynamics using Athlon XP
2400 and Windows 2000, while only 0.06 seconds in case of using HPN and (14).

3. Model Predictive Control of Traffic Network Control based on MLDS description

The Receding Horizon Control (RHC) or Model Predictive Control (MPC) is one of well -
known paradigms for optimizing the systems with constraints and uncertainties. In RHC
paradigms, the solutions are elements of finite dimensional vector spaces, and finite-horizon
optimization is carried out in order to provide stability or performance analysis. However, the
application of RHC has been mainly restricted to the system with sufficiently long sampling
interval, since finite-horizon optimization is computationally demanding.
This chapter firstly formulate the traffic flow model developed in chapter 2 in the form of
MLDS description coupled with RHC strategy, where wide range of traffic flow is considered.
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Fig. 9. Traffic flow behavior obtained from CA model

This formulation is recast to the canonical form of 0-1 Mixed Integer Linear Programming
(MILP) problem to optimize its behavior and a new Branch and Bound (B&B) based algorithm
is presented in order to abate computational cost of MILP problem.

3.1 MLDS representation of TCCS based on Piece-Wise Affine (PWA) linearization of traffic

flow

Since TCCS is the hybrid dynamical system including both continuous traffic flow dynamics
and discrete aspects for traffic light signal control, some algebraic formulation, which handles
both continuous and discrete behaviors, must be introduced. The MLDS description has been
developed to describe such class of systems considering some constraints shown in the form
of inequalities and can be combined with powerful search engine such as Mixed Integer Linear
Programming (MILP).
The MLDS (12) description can be formalized as following.

x(τ + 1) = Aτ x(τ) + B1τu(τ)

+B2τδ(τ) + B3τz(τ) (29)

y(τ) = Cτ x(τ) + D1τu(τ)

+D2τδ(t) + D3τ(τ) (30)

E2τδ(τ) + E3τz(τ) ≤

E1τu(τ) + E4τ x(τ) + E5τ (31)

In MLDS formulation, (29), (30) and (31) are state equation, output equation and constraint
inequality, respectively, where x, y and u are the state, output and input variable, whose com-
ponents are constituted by continuous and/or 0-1 binary variables, δ(τ) ∈ {0, 1} and z(τ) ∈ ℜ
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Fig. 10. Traffic flow behavior obtained from the proposed traffic flow model

represent auxiliary logical and continuous variables. By introducing the constraint inequal-
ity of (31), non-linear constraints as (14) can be transformed to the computationally tractable
Piece-Wise Affine (PWA) forms.
The traffic flow of Fig. 9 can be approximated as the right figure of Fig. 9 which consists of
three planes as follows,

Plane A: The traffic flow qi is saturated (ki(τ) ≤ a and ki+1(τ) < (kjam − a))

Plane B: The traffic flow qi is mainly affected by the quantity of traffic density ki(τ) (ki(τ) <
a and ki(τ) + ki+1 < kjam)

Plane C: The traffic flow qi is mainly affected by the quantity of traffic density ki+1(τ)
(ki+1(τ) ≤ kjam − a and ki(τ) + ki+1 ≤ kjam)

where a is the threshold value to describe saturation characteristic of traffic flow that if ki(τ) >
a and/or ki+1(τ) < kjam − a, the value of qi(τ) hovers at its maximum value qmax.
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Fig. 11. Traffic flow behavior obtained by averaging ki and ki+1

Fig.12 shows three planes partitioned by introducing three auxiliary variables δP,i,1(τ),
δP,i,2(τ) and δP,i,3(τ) which are defined as follows,

[δP,i,1(τ) = 1]

↔

{

ki(τ) ≥ a
ki+1(τ) ≤ kjam − a

(32)

[δP,i,2(τ) = 1]

↔

{

ki(τ) ≤ a − ε
ki(τ) + ki+1(τ) ≤ kjam

(33)

[δP,i,3(τ) = 1]

↔

{

ki+1(τ) ≥ kjam − a + ε

ki(τ) + ki+1(τ) ≥ kjam + ε
(34)

δP,i,1(τ) + δP,i,2(τ) + δP,i,3(τ) = 1 (35)

where ε is small tolerance to consider equality sign.
Therefore, the traffic flow qi(τ) can be rewritten in a compact form as follows

qi(τ) = qmaxδP,i,1(τ) +
qmaxki(τ)

a
δP,i,2(τ)

+
qmax(1 − ki+1(τ))

a
δP,i,3(τ) (36)

3

∑
i=1

δP,i,j(τ) = 1
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Fig. 12. Assignation of planes by introducing auxiliary variables

where 0 ≤ ki(τ) ≤ kjam, 0 ≤ ki+1 ≤ kjam (= 1), qmax is the maximum value of traffic flow.
Figure xxx shows the piece-wise affine (PWA) dynamics of the traffic flow model developed
in the previous chapter where a = 0.3 and qmax = 1.
The equations (32) to (34) can be generalized as (37) and (38), and transformed to inequality
as (39) The equations (32) and (34) can be generalized as (37) and (38), and transformed to
inequality as (39)

[δP,i,j(τ) = 1] ↔

[[

ki

ki+1

]

∈ �j

]

(37)

�j =

{[

ki

ki+1

]

: Sjki(τ) ≤ Tj

}

(38)

where ki(τ) = [ki(τ)ki+1(τ)]
T and Sj and Tj are the matrices with suitable dimensions which

satisfy

Sjki(τ) − Tj ≤ Mj
∗[1 − δP,i,j(τ)], (39)

M∗
j

△
= max

ki∈�j

Sjki(τ)− Tj. (40)

The traffic flow qi(τ) of (37) is the relationship between ki(τ) and δP,i(τ) =
[δP,i,1(τ) δP,i,2(τ) δP,i,3(τ)] which can be rewritten as follows,

qi(τ) = f (δP,i(τ), ki+1(τ)) (41)

=
3

∑
j=1

(F
j
i (τ)ki(τ) + H

j
i )δP,i,j(τ) (42)
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where δP,i = [δP,i,1, δP,i,2, δP,i,3]
′
. In these equations, each pair of F

j
i and H

j
i represents the

corresponding domain of Fig. 12 as follows,

F1
i = [ 0 0 ] (43)

H1
i = qmax (44)

F2
i = [ qmax

a 0 ] (45)

H2
i = 0 (46)

F3
i = [ 0 −

qmax

a ] (47)

H3
i =

qmax

a
(48)

The traffic flow zi(τ) = [zi,1(τ) zi,2(τ) zi,3(τ)] in consideration of the binary input ui(τ) ∈
{0, 1} for traffic light control can be represented by

zi,j(τ) ≤ Miui(τ)δP,i,j(τ), (49)

zi,j(τ) ≥ miui(τ)δP,i,j(τ), (50)

zi,j(τ) ≤ F
j
i ki(τ) + H

j
i

−mi(1 − ui(τ)δP,i,j(τ)), (51)

zi,j(τ) ≥ F
j
i ki(τ) + H

j
i

−Mi(1 − ui(τ)δP,i,j(τ)). (52)

where Mi and mi are respectively

Mi = max
ki(τ)∈�j

{

F
j
i ki(τ) + Hj

}

, (53)

mi = min
ki(τ)∈�j

{

F
j
i ki(τ) + Hj

}

. (54)

The product ui(τ) δP,i,j(τ) can be replaced by an auxiliary logical variable δM,i,j(τ) = ui(τ)
δP,i,j(τ) in order to make it tractable to deal with MILP problem. Then this relationship can be
equivalently represented as follows,

− ui(τ) + δM,i,j(τ) ≤ 0, (55)

−δP,i,j(τ) + δM,i,j(τ) ≤ 0, (56)

ui(τ) + δP,i,j(τ) + δM,i,j(τ) ≤ 1. (57)

Therefore, the MLDS description for the proposed system can be formalized as follows,

x(κ + 1) = Ax(κ) + Bz(κ), (58)

z(κ) = C1diag(u(κ))C2δ(κ), (59)

E2δ(κ) + E3z(κ)

≤ E1u(κ) + E4x(κ) + E5 (60)

where the element xi(κ) of x(κ) ∈ ℜ|P|, is marking of the place pci at the sampling instance κ,

the element ui(κ)(∈ {0, 1}) of u(κ) ∈ Z|T|, is the signal of traffic light installed at ith district
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and δ(κ)=[δP(κ), δM (κ)]
′
. Note that if there is no traffic light installed at ith district, ui(κ) is

always set to 1. And A, B, C1, C2, E1, E2, E3, E4 and E5 are the matrices with appropriate
dimensions.

3.2 Model predictive control policy for traffic network control

The traffic system is large-scale dynamical system with uncertainty in the behavior of each car.
In order to develop efficient traffic light control system, a wide range of traffic flow should be
fully considered. In this subchapter, model predictive control policy for traffic light control is
applied to the traffic flow model developed in the previous chapter. In RHC scheme, an input
for next sampling period is decided based on the prediction for next several periods called
the prediction horizon. This allows for the fact that the spatially changing dynamics of traffic
flow are represented by temporal behavior over prediction horizon, since traffic flow can be
considered as probabilistic time-series behavior.
The equation (58) can be modified, enumerating the state and input variables for the future
periods as follows,

x(κ + λ|κ) = Aκx(κ)

+
λ−1

∑
η=0

{Aη(BC1(diag(u(κ + λ − 1 − η|κ)))

·C2δ(κ + λ − 1 − η|κ))} (61)

where x(κ + λ|κ) denotes the predicted state vector at time κ + λ, obtained by applying the
input sequence u(λ|κ) = u(κ), · · · , u(κ + λ) to (58) starting from the state x(λ|κ) = x(κ).
Now we consider following requirements that usually appear in the traffic light control prob-
lems.

(R1) Maximizes traffic flow over entire traffic network.

(R2) Avoid frequent change of traffic signal.

(R3) Avoid concentration of traffic flow in a certain district.

These requirements can be realized by minimizing the following objective function.

J(u(λ|κ), · · · , u(λ + NI |κ)

, x(λ|κ), · · · , x(λ + NI |κ)

, δ(λ|κ), · · · , δ(λ + NI |κ))

=
N

∑
λ=1

{

− ∑
i

w1,i

{(

Θi

[

xi(λ|κ)/li
xi+1(λ|κ)/li+1

]

+Φ

)
′

δM,i(λ|κ)

}

−∑
i

w2,i

{

1 −
∣

∣ui(λ|κ)− ui(λ + 1|κ)
∣

∣

}

+∑
i

w3,i

{ ∣

∣

∣

∣

xi(λ|κ)

li
−

xi+1(λ|κ)

li+1

∣

∣

∣

∣

}

}

(62)
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