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1. Introduction

Remote sensing of terrain and ocean surfaces is circumscribed in the physical domain of elec-
tromagnetic scattering by rough surfaces. The development of accurate models has gathered
a great deal of efforts since the 80’s. Until that moment there were two classical approaches
to be applied to two different asymptotic cases: the surfaces with small roughness and those
having long correlation length. The first situation was dealt successfully via the small pertur-
bation method (SPM)) whereas the second one was the target of the Kirchhoff approximation
(KA). In effect, the abundance of models in the last two decades has made it very difficult for
the Earth Observation practitioner to properly classify them and choose between them. The
most important effort to that purpose was made by Tanos Elfouhaily in Elfouhaily & Guerin
(2004), and we refer to his work for those interested in having a comprehensive account of the
available methods for the problem. We focus here on the model that has arguably awakened
the largest share of interest within the remote sensing community, that is, the Integral Equa-
tion Model (IEM) presented by Fung and Pan in Fung & Pan (1986) and later corrected in a
long series of amendments by the same authors Fung (1994); Hsieh et al. (1997); Chen et al.
(2000); Fung et al. (2002); Chen et al. (2003); Fung & Chen (2004); Wu & Chen (2004); Wu et al.
(2008). In effect, there has been a number of issues that made the model theoretically incon-
sistent, even if each amendment was accompanied by properly suiting numerically simulated
results. In 2001 the author of this chapter carried out a complete revision of Fung’s work and
proposed a corrected IEM that successfully achieved one of the objectives of the rough surface
scattering models developed so far: to unify in a single equation both the SPM and the KA in
the most general case of bistatic scattering. This corrected IEM was named IEM with proper
inclusion of multiple scattering at second order or IEM2M.

This chapter aim is twofold: on the one had a quick summary of the IEM2M is given and on
the other an extension of it is proposed to include those surfaces comprising both a zero-mean
height, random component and a deterministic component that we call here “topographical”.

2. Summary of the IEM2M for surfaces with zero height mean

The rationale of the IEM and therefore of the IEM2M is to perform a second iteration in the
integral equations describing the rough surface electromagnetic scattering problem, as given
in Poggio and Miller Poggio & Miller (1973). The first iteration corresponds to the KA, where
each point on the surface is locally surrounded by neighbouring points lying on a flat surface,
which is equivalent to the assumption of a low curvature. As a matter of fact, the proper in-
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clusion of this second or complementary term coming from a second iteration bridges the gap
between SPM and KA since it includes the local effects due to these neighbouring points to
the extent which is necessary to meet the SPM limit. Second order effects describe the inter-
action of points on the surface, considered in pairs, just like third order effects would include
interactions among sets of points taken in triads. This second-order contribution happens to
contribute to the first-order, KA term with a non-zero addend when the limit of two points
approaching to each other is taken. Even if full detail of IEM2M is given in Alvarez-Perez
(2001), we summarize here the results regarding the complete first-order model that includes
the KA term plus aforementioned correction coming from the limit of the second-order where
pairs of point approach to one another. Unlike in Alvarez-Perez (2001), this first-order [EM2M
is spelled out in a completely explicit form that easies its direct implementation in a computer
code. Thus, we have for the first-order scattering coefficient the following formula, which
contains new terms over the KA owing to the limit phenomena explained above
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The symbols in equation (1) are: K= (kx,ky,kz) represents the incident wave vector upon the
scattering surface, k= (ksx,ksy,ksz) is the scattering wave vector, k; is the wave number of
the incident medium (above the surface), k; is the wave number of the scattering medium
(below the surface), o is the standard deviation of the surface height and p is the correlation
function of the surface height. The F;, coefficients are given in Alvarez-Perez (2001). They, in

turn, depend on some coefficients named as C; (%i,%s p T(mr ) );i=1,...,4, where 7,517) represents the
effective interaction vector of a second-order scattering event, with r representing its upwards
(+1) or downwards (-1) character and m the medium through which the second-order interac-

tion takes place. For the first-order reduction IEM2M this vector Tf,,” reduces to a few possible
values, as explained in Alvarez-Perez (2001). These C coefficients are provided in Alvarez-
Perez (2001) in a very formal way that may pose a difficulty for those not familiar with surface
geometry. Therefore, a more user-friendly version is given in Appendix A at the end of this
chapter. Also some remarks on its implementation by other authors are given.

3. IE2M Scattering Coefficient for Topographical Surfaces

3.1 Average Coherent Power
The average coherent power density over an ensemble of statistically equivalent surfaces is
the modulus of the Poynting vector for the coherently scattered field

Cc 1 £s ES*
qu = ERe{1/771}<quﬂ><E'ﬂ!’> ©

where 71 is the impedance of the incident medium. It is common to assume far-zone fields to
have a plane wave front. Although this is a valid approximation for incoherent scattering, it
is now more convenient to replace the usual approximation

ejkl |7—?/ ejklr

e*jk] 7.7 (7)

by

ejkl‘?_?/l ejkli’

jlapF e

- = e /M el 8
|7 — 7| r ®)
in the derivation of the Stratton-Chu-Silver integral. The reason to include the second order
term in 7'2 in the phase of the spherical wave function is the higher sensitivity of a coherent
interference to the wave front shape. Likewise, it is appropriate to assume a spherical incident
front from the source of the incident field

jkl‘?577" jklrs Qs o 2
¢ S ©)

[7s —=7/| = s

where 75 is the position vector of the source. We will assume that the incident field is Gaussian
modulated along the direction given by 7;, according to the window

we (x,y) = e $(x*cos?0-+y2)
1
80= rBo (10)
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where B is the one-sided beamwidth of the transmitter. By placing the origin of coordinates
on the plane to which the average rough surface belongs but far from the illuminated area, the
following approximation can be made both in (8) and (9)

7’/2 _ x/2 +y/2 +h/2(xl’y/) ~ x/2 +yl2 (11)

With the inclusion of these changes plus the introduction of a shadowing function (see next
section) and assuming rs = r, the Kirchhoff far-zone scattered field can be written as

: ikir 242 , , T Tiy o
(E;p)k:]%’fo L’r S /5 fpel T e g (e 0y®) IR E) T gy gy (12)

where we have “dressed” the factor fj,, to include the shadowing function

fqp = S(’A‘i/fcs)fqﬁ (13)

Then, the coherently scattered power takes the form

s 2
1 klEofqp
Sqp = 3 Re{l/m} (47‘[r2

/. efki (x"2+y'%) /2r efg%(x’zcosZGer'z) efj[(ksx7kx)x’+(ksy7ky)y’]
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2
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To calculate the averages comprised in the integrand of (14), we compute
<g‘j(ksz_k2)z/> — g_j(ksz_kﬁf(x//}//) e—(ksz—kZ)Z(UZ/Z) (15)

Hence,

Ao\ 2
1 k1E f k1 \242 2
S;p _ ERe{l/Ul} < HZqu> o (ka—kz)?c ’WO(ksx — ke ky _ky)’ (16)
where

WO(ksx —kx, ksy - ky)

— /e_fz[(ksx_kx)x/""(ksy_ky)y’] ex’z(jkl/Zr—gﬁ C0529>+1//2(jk1 /27’_85)

eij(k“*kz}i(x/’y/)dx/dy' (17)

Integral Wy has the shape of a Gabor transform, that is, of a Fourier transform with a Gaussian
window included in the integrand.
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3.2 Average Incoherent Power
The average incoherent power density over an ensemble of statistically equivalent surfaces is
the modulus of the Poynting vector for the diffuse field

1 7s ps* s s *
Sgp = ERe{l/W} (<E;p E2p> - <Eqp><Eqp>) (18)

where Re{1/#} is the real part of the inverse of the magnetic permeability in the incidence
medium and * is the symbol for complex conjugate. Separating the scattered field into the
Kirchhoff and complementary terms, we obtain

1 % *

Sap =5 Re{1/m}y {(ESFESK") — (E3k)(Es™)
+2Re{(ESSES") — (Eso) (Exk*)} (19)
+ (EspEss") — (Esp)(Esp™) }

The analysis of (19) will be carried out by considering separately three terms, namely, the
Kirchhoff term, the complementary term and the “interference” term between both, which
will be named the cross term.

To perform the averages in (19), we need to know the statistics of the ensemble of surfaces.
We select the ensemble of surfaces such that it follows a joint Gaussian distribution with a
constant variance across the surface. This assumption greatly simplifies the computation of
the averaging. However, the random surfaces included in the aforementioned ensemble will
be allowed to have nonzero means at each point.

3.2.1 Kirchhoff Incoherent Power

Once the shadowing effects are included, the Kirchhoff diffuse power density can be written
as

1 ¥ *
i = 5 Rel1/m} {(ERRER") — (B3 (B3 ) |
212
KE (T 7 =212
_ ‘ 0sz]}’| Re{l/m}<</se—](ks—ki)~(r —F )dx'dy’dx”dy”> (20)

[( fereomaa)f)

The averages in (20) are readily evaluated

(e7IP==y = e IP:2() o P2(@?/2) (21a)
<E—J'Pz(z’—2”)> — i) =2(x"y")) p= PR 1—p(x =x" ' —y")] (21b)
pz = ksz — k-

Substituting now (21a) and (21b) into (20) and using the integration variables ¢ = x’ — x" and
7 =1y —y" instead of x’ and i/, we have

o2
KE .
53}; _ %Re{l/nl}e—pftﬂ //dédfy (epfvzp(é‘,v) —1) Dy (& 7;p) e 1 PEtP) (22)
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where py = ksy — kx, py = ksy — ky and D1 (¢, 1, pz) is
Di(Eps) = [[ dxdy"e IO e b)) (23)
and represents the autocorrelation of the phase e 77:2(*"/¥") over the surface.

3.2.2 Cross Incoherent Power
The incoherently scattered power for the cross term is given by

s = Re{1 /b Re{ (ESSESEF) — (Exg ) (ESE) )

KE,

=5 Re{1/m} Z Re{ﬁ;‘p /]R2 dudv/s3 dx'dy'dx" dy" dx"" dy'"

eI =x") oy’ —y" ]e ][ s (¥ =2 ) Fkoy (v =y'")] g jllx (X" =x") ey (v —y™)]

(24)
. [<e*1’ksz(Z’*Z’”)ejkz(z/’*z/”)equ\Z’*Z”lﬁq"; (Ei,k'slgm)>
— (e ol o B R R, ) )
)
where factors Fy;, have been “dressed” to include the shadowing function
B (KK, Gm) = S (K, G, k) Eyly (KK, ) (25)

On the other hand, factors ﬁq’% have been included within the averages since they depend

on (z' —z")/|z' — 2"|. To compute these averages we will make use of the invariance of the
formahsm under the change

G (?/I?//) — G:ﬁturd@d (7//7//) . G;;z (?1/1—;//) — andvanced (?//1—;//) (26)

The Weyl representation of the retarded Green’s function is given by

Gretarded 77" //26][“ (—x")+o(y —ym) €I E —jqm|z' —2"] dudo
R
(3 w2 )12 lfkizuz_'_v -
fim = —j W2+ 0? — k2?2 ik, <u? 402
Therefore, the invariance under the change (26) is equivalent to
m — { g ifqu el (28)

or, more formally, g, — —g;,. However, the damped cylindrical waves given by imaginary
values of g;; have been neglected and therefore the invariance holds under the transformation

dm — —qm
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This symmetry permits the calculation of (24) by using

(ptam)) = 5 ((ptam)) + (p(=qm))

where ¢ is any of the functions in (24) to be averaged. Thus, there are two averages to be
computed, namely,

<87]'k52(zrizm)ejkz(zr/izw)ﬁ;;(Ei,Es’g,m)e]-qmlz/iz//|>
. ! " ; " /// 1
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and
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. ;oo 1A - = . I
_ <e*]kszz elk:z 3 [F‘;'; (kl,ks/urvl’:bz’z” qm)e]qm\z —z"|
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There are two types of addends in these averages: terms dependent on &/, g;; and terms
dependent on g2, or completely independent of gy,,. Only the former are functions of the space
coordinates through ®,/,». Therefore, we have to compute the following quantities

/I/)] equlzliz/l‘ >
= (e el cos g2’ — 2"))

1 (<e ] :Z(Z 72///> ks (Z”*Z’”)] e]‘ﬂm(z/*zl/)>

<87]A[ksz (z’fz”’) 7kz (ZU*Z

+ (e e 2" ke (2" =2")] e—qu(z’—z”)>) (31a)
and similarly

(e ) gl 1y = 2 (g flh k) glanl =)

1
2
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(310)
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<efj(kszz/*kzzl/> equ ‘ZI*Z”‘ (DZ/Z// qm> = <eij(kszz/7kzz”) @zlzu ]qm sin(qm |Z/ — Z” |)>

— (e ) (=)

(31d)
Hence, we compute again the averages
(e el =2") kel =" gl =21y — % (gfwl ¢ T 4 2 e—m@) (32a)
<e*f(ksz2’*kzz”) e]"im|2/*z”\> = % (ejw3 ¢~ 4 pJis 370’%4) (32b)
<eij[k“<Z/7Z///)7kz(z//7zm>] efinlZ =", Gm) = %" (ejwl e T _ 2 37‘772“2> (32¢)
<efj(kszz’szz”) equ|z’7z”\ D, Qm> _ q?m (ejws e*”zzug, _ pltwa e*”z%q) (32d)
where
=wq (ksmkz/Qm)
Wy = w1 (ksz/er _Qm)
w3 = WZ(ksz/kzﬂm)
wy = Z(ksz/kz/*Qm)
w1 (ksz:kz/%n) = _(ksz - QM)Z + (k Qm)z_// + (ksz kz) "
Wz(ksz/kz/Qm) = *(ksz - Qm)z + ( Qm) " (33)
and

Ow, = Ow, (ksz/kz/ Qm)
Ow, = Ow, (ksz/kz/*Qm)
= 0w, (Ksz/kz,qm)
Uw4 = Ow, (ksmkz/—f/]m)
Oy (ksz Kz, qm) = 0kZ, + K2 + a3y — (Ksz + kz2) g — kzksz
—(ksz — qm) (kz — qm)p(z’, "2")
+(ksz = qm) (k= — ksz)p(2',2"")
—(kz = qu) (k= — ksz)p(",2")]
T, (ksz ez, qm) = OTkZ, + K2 + 243, — 2(ksz + k2)4m
—2(ksz — qm) (kz — qm)p(2,2")]/2 (34)

Putting all these results together and defining new spatial coordinates { = x' — x", 5 =1’ —
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y", & =x"—x""and ' =y" —y""', we can rewrite (24) as follows

2
KE R
Sk = %Re{l/m} Y X Re{f,;‘,, /RZ dudv/dg’,drydg’dq’

m=12r=-1,1
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with
Dz(@ﬂ;é’;’?,}ksz,kz/”}m) — /dx”/dy/” e_j[(ksz_rqmﬁ,_(kz_rqm)i/’—(ksz—kz)fw] (36)
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Z=z("+&y" + 1) p2=p(E -8 -1
=2+ Ty ) P13 =p(Sm)
Z/// — Z(x///,y///) ‘023 — p(é,,nl)

3.2.3 Complementary Incoherent Power
Finally, the diffuse scattered power for the complementary term is

1
de _
sjp =5 Re{1/m} {(Ess ") — (Esp)(Ess™) }
‘KE0|2 !/ / / / " 1 " 1" v n
= S Re{l/m} ) /H{4dudvdu dv /S4dx dy'dx"dy"dx"dy" dx"" dy

mmn=1,2
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Applying the same arguments used to calculate the averages relevant for the cross term power,
we obtain the following relations

() b =) g0l = I (@ ) (@ 1P

w B ) . .
_ qm4‘7n (e]wl e~ 4 (—1)“(31‘02 O (_1)56]&73 e~y 4 (_1)zx+ﬁe]w4 67%4) (38)
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where &, f = 0,1 and the other coefficients are compactly given by

ksz/kz:_er‘?n)

ksz, k2, qm, — Qn)

ksz/kz:—er_qn)

0o, U'n(ksz/erqm/qn)

0w, = 0 (ksz, kz, —Gm, q)

Ows = O (Ksz, Kz, Gm, — %)

0y = e (ksz Kz, =G, — () (39)

by including the general functions 7t and ¢ in the form

7 (ksz Kz, G, @) = — (Ksz — )2 + (kz — qu) 2" + (ksz — q3,)2" — (kz — 43,)2"
7t (Ksz ke, G, 4y) = 02 [k, + K2 + @y + a7 — (ksz +k2) (4 + )
— (ksz = qm) (kz — qm)p(2',2") = (ksz — qm) (ksz — g3, )0(2",2"")
+ (ksz = qm) (kz — q3,)p(2',2") + (kz — qm) (ksz — qp)p(2",2"")
= (kz = qm) (k= = qu)p(2",2") = (ksz — q,) (kz — qp)p (2", 2")] (40)
Upon substituting (38) into (37) we find that

KE,|?
sie — |29;J1 Re{(1/m} Y. Y {/wdudvdu’dv’/dijd;yd@”d;y’drd;c

mn=12ryr=-1,1

elu(@+T=8") —u'tHo(y+r—n")—0'x] y=j(ksxltksyn) pj(kel’+ky1')
D3(&,1,& 7', T 06Kz, ke, P, 7' )

B (K, I B (k1 T

o~ AR a5 407 — (ksthe) (r u+7 )

e~ [(kz =) (r =z ) pra - (koz =1 1) (v 4, —kz ) paa]

(6_ 2[(ksz_rqm)(r/ Ty —ksz)p13+(ksz—7qm ) (kz =1 4;,)p14]

=Pl b ) () -] 1) } 1)

where = X — x///, n= y/ 7 y//// [:/ =¥ — xn/, ]7/ _ y// 7 y/l// T=+" — " and k¥ = y/// 7 yn/,
the function D3

D5(&,1,8 1, T, % ksz, ke, 1 qm, ¥ )
_/dx”/dy“/ — [( sz*ﬂm)fI*(kz*qm)f/lf(ksz*qln)f///+(kz*qln>fw] (42)
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and
Z=z(x" + i+ Ty +n+x) p=p@+t-¢nt+rx—1n)
2 =z2(x" + ¢y + 1) 13=p(&7)
"=z (2" +Ty ' +x) 1u=pE+ T, +x)
2V =z2(x",y") pzs:p( —7,1 —«)
=0(&" ")
= p(T,x)

3.3 Bistatic Scattering Coefficient for the Scattered Field

The radar cross section of a particle producing isotropic scattering is defined as the ratio be-

tween the scattered and incident power densities, $°°* and S** multiplied by the area of the

spherical surface centred at the particle and with a radius R equal to the distance between the

particle and the observation point

477 R2 gscat
ginc

Next, we define the radar scattering cross section of a finite scatterer in a given direction as the

cross section of a particle which would scatter isotropically the same power density in any

direction, should it be illuminated by the same incident power density.

For the case of a scattering surface, it is adequate to define the differential scattering coefficient

as the average value of the scattering cross section per unit area, namely,

ag

(43)

47‘ER2 Sscat
ASinc

0:

(44)

where A denotes the area of the surface. Usually, the term “radar scattering cross section” is
shortened to “radar cross section”, whereas “differential scattering coefficient” is referred to
as “scattering coefficient”.

Both radar cross section and scattering coefficient can be either monostatic or bistatic, when
the observation point is located at the site from where the incident field is transmitted or
elsewhere, respectively. Thus, the bistatic scattering coefficient associated to the coherent and
diffuse fields scattered by a random rough surface are given by

87R?
o), = ——"—=55; 45
) = ARe(1/myE3 " (452)
87R?
oyd _ dk dkc de
()ap = ARe(1/ 1] E2 (Sgp + Sop° +S55) (45b)
where the power densities 57, Sg’;,, Sdkc and Sdc have been calculated in previous sections.

4. Formulation of the IEM2M Model for Topographical Surfaces

dk
qv’ S'ﬂ"
Sg’;f and Sg;. The coherently scattered power calculated in (3.1) is the final form proposed
here. However, the integrals corresponding to the diffuse power can be manipulated further.
A distinction is drawn then between surfaces with small or moderate rms height normalized

The scattering coefficient in (45) is described in terms of the integrals included in S
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to wave number, ko, and surfaces with larger values for ko. Thus, a forward scattering model
is defined by Taylor expansion of the exponentials in the corresponding integrands. This is
done for each scattering coefficient term in the next subsections.

4.1 Scattering Model for Surfaces with Small or Moderate Heights

When the product of the rms height of the surface by the wave number has a small or mod-
erate value, the argument of the exponential functions in (22), (35) and (41) will also have a
small value. It is then useful to write the exponential functions in the form of a Taylor series.

4.1.1 Kirchhoff Term
The exponential function in (22) involving the correlation between the heights of the two scat-
tering centres 7/ and 7"/ can be expanded as

(o]

eP2p(E) — Z [? PzP C ’7)}” (46)

Consequently, the Kirchhoff term (22) of the scattering coefficient takes on the form

B Ry k k n
(0 = 1 ootk §° (e R e kg k) )
n=1 n!

where

W1(n>(ksx —kx,ksy —ky)
1 o B
=57 /dé’dnp”(é,;y)e jl(ksy =k )&+ (ksy—ky ) 7] D1 (&1, ksz —kz)  (48)

4.1.2 Cross Term
The exponential functions in (24) can be expanded in the form

EUZ[(kSZ—rq,,,)(kz—rq,,,)p(z’,z”)] <€ [(ku_"‘%n)(k ks')P( 2',z")]

2
. eg- [(k277‘7m><k kiz W 1

S~—

!/

ksz qm) (kz —rqm)p(z Z")]i
il

[_Uz(ksz —rqm) (kz — ksz)p(2,2")]"
n!

Mg

e &

0

Uz(kz —1qm)(kz — kSZ)P(ZH/ZW)}l
Al

02 =

1 (49)

0

The interactions of second order can be described as specular reflections and Snell’s refrac-
tions. Second-order scattering events can occur connecting points within the correlation
length or distant from each other. When the interacting point sources are within the corre-
lation length, we will have either ks; >~ g, for r =1, or k; >~ —qy;, for r = —1, and the first
exponential function in (49) will have a negligible argument, provided that ¢ is not large.
When those points are distant, the correlation function p will be very small. Thus, the first
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summation in (49) can be approximated by unity for surfaces with small or moderate rms
height
72[("52*“7"1)(kz*rqm)P(Z’rZ”)] ~1 (50)

and hence

2 [(ksz=7 ) (kz=7qm)p(2, Z”)]( [ (ksz =7 qm) (ks —ksz )p (2 ,2")]

e M= qu) (ke —ksz)p (2" 2")] _ 1)
[_Uz(ksz —rqm) (k2 — ksz)p(',2")]"

o0
:Z n!

[Uz(kz —rqm) (kz — ksz)p (2", ZW)]I

+ ) I

*U'Z(ksz*VQm)(kz ksz)p(2',2")]"

i

2 (ks — m) (kz — ksz)p(2",2 )}l
- I : (1)

e =
SH

This yields
(Uo)dkc:ﬁ Z Z Re{ * —y (K2, 4+-k2 —ks: k-
e P
[ o By R ) o
_ n o o
|:Z [ 0’ ksz 711]17:1)( z ksz)] Wg'o(l:n;ks,kl)
) _ _ 1 o
s [0?(k; rq,;,|)(kz ksz)] Wg’l(l;;ks,kl)
1=1 :
4 i [*Uz(ksz - 7’5]m)(kz - ksz)}n
= n!
[eS) 2 _ _ l o o s
Z [(7 (kz rqﬂl’l')(kz ksz)} W;’l(l:n}ks,kl):| } (52)
where

Wé“’ﬂ)(u,v,w;fc's,fc"‘) =
; d "dn’ (e —ksx)E+(0—ksy)yp— (u—kx) &' —(0—ky)1']
(27T)2A / gdﬂ dé e ! !

Do (81,8 1 ksz ez, 0) 0% (8,m)pP (8,1')  (53)
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4.1.3 Complementary Term
The complementary term of the scattering coefficient involves the evaluation of an integral
containing the following expression

e~ 2[(ksz_rqrrx)(rqrrx_k2)912+<ksz_7/ 4, (7' @, —kz) p34] (6—02[(1(5;—711,,1)(7’ 9y —ksz)p13]

3*0'2[(’(52*”]"1)(’(277’/ @) ora (ke =1 qm) (ksz =1 q,,) p23 4 (ke =1 g ) (' @}, —k2) p2a] _ 1)

= i [ (ksz = 7qm) (rqm — kz)p1o]’ i 0% (ksz — 1" ) (r' g}, — k2 )paal/
= il L i
= j=0
i =4 ? (ksz — rqm)(r' g5 — ksz)p13] h o [~ o2 (ksz — rqm) (kz — r/q;«)PM]I
h! Al
h=0 1=0
i [_0-2(k — "qm)(ksz — 7’ ‘771 923 n i 0 — rqm)(r/q;’l — kz)p24]t -1 (54)
= n! = t!

As explained in the previous subsection, the correlation between points producing effective
second-order scattering is negligible. These points are represented in the summation above
by the pairs 1 and 2 on the one hand and by 3 and 4 on the other. Thus, the first two summa-
tions containing p1 and p34 can be approximated by unity. Further, all the products between
summations of the form ) ° containing p13 and p14 are negligible. This is so because signifi-
cant correlation between points 1 and both points 3 and 4 would generally imply a significant
correlation between 3 and 4. The same reasoning applies to products with p13 and p23, p23 and
024 Or p14 and pp4. Thereby,

3*0'2[(’(52*”7"1)(”7"17k2)912+(k5277/ 9, (7' @, —k2) p34] (67‘7'2[<k5277‘7r'1)(7/ 9y —ksz)p13]
o~ Mk qn) (k=1 ) prat(ka—7 ) (ks =7 ) p2s+(ka—7 ) (r' @), —kz)p2a] _ 1)

[_Uz(ksz —1qm)(kz =1’ %)PM]]

+ I

~ i [—o? (ksz — V‘imil(r g — ksz)o13]"

agh

=
Il
-
Il

1

+ i [—‘7 (kz — qu)(ksz — 7' q3)p2]" [—Uz(kz —rqm)(r' g5 — kZ)P24}t

e

+

n=1 ! t=1 t!
+ i [_az(ksz - T‘M)(”/ Ty — ksz)Pl3]h i [_Uz(kz — 1 qm) ("' gy — kz)924]t
P h! = t!
2 [—0? (ks — rqm) (kz — 7' q)p1a]' > [=02 (ke — rqm) (ksz — 7' q)p23]"
Jr Z SZ ml' Z n Z Z m n' SZ n (55)

Il
—_
)
Il
=
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Introducing this approximation, (41) becomes

k2 2002 112y [
(UO)Z; = ﬁ Yy {67‘7 (kfz+k2)/ dudvdu’ dv'
2’ mn=12rr=-1,1 R
Em (kK I, B (keI
e_az[q%ﬁ"?;?_(ksz+k2>(7’1m+"’q;)]

co [ 2 _ . h o s o
[ 4 (kSZ WZ')(V In kSZ)] W:;l,O,O,O(l;%Il?/lr ,'ks,kl)
h=1 :

co [ 2 . YV o o
[ o (ksz qu)(kz r qn)} Wé),m,O,O(l;rwl’;r ,’ks,kl)

+ ) I

N
Il
=

2 - VAN o
[ o (kz 1’5]7;11)!(](52 7’6]”)] Wg'o’"’o(l,’n,l,f;ks,k’)

+
ngk

3
Il
-

2 _ ! t ) o o
[ 4 (kZ rq,:!)(r qn kZ)] Wg'O'O't(l;,l,’l’;ks,kl)

+
e

t=1

& [_Uz(ksz — 1 qm) (Y @, — kSZ)]h
+h§1 !
o [ 2 o !l t o) o
Zl[ 4 (kz rqftﬂ')(r In kz)} W?'O'O't(l,’n,l,ﬁr ;ks,kl)
= !

- [—Uz(ksz —1qm)(kz —7'q; )}l
+) It ’

I
—_

e _

2 o N\ o) o o
[ (% (kz rq’”:l/l)!(ksz T’qn)] W;),m,n,O(l;'n’lrllr;kS,kz)}}

3
Il
—

where

hlnt s Ti
W3< " )(u,v,w,u',v',w’;ks,k’)

~ G A T kI ke

ej[(u—u’)T+(v—v’)K] DS (é/ ’71 C// U’/T/ K;kSZ/kZ/w/ w,) Ph (é/rl)
plE+Tn+r)p"(E — Ty =) ()

4.2 Scattering Model for Surfaces with Large Heights

(56)

(57)

Although a series of the type given in (47) is convergent for any value of the argument, it is
only practical to compute it when the argument is not large. Thus, the summations describ-
ing the scattering coefficient for the diffuse field in the previous section are not practical for
large rms height. Besides, it was assumed that, on the whole, the correlation between points
producing second-order scattering was negligible and, as will be shown below, this is not the

case for surfaces with large rms height.
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4.2.1 Kirchhoff Term
Let us reconsider first the Kirchhoff term in the form given in Subsection 3.2.1

Sg;c] 7k2ft]p //déd;//e ] kw_k )5+(k51/_k )77]
(e (ke kP (p(em) — o= (kamk)’e®y Dy (&, ks — ko) (58)

Large values for kyo give rise to very negative arguments in the exponentials of (58). As
a matter of fact the coherent term subtracted in this equation is negligible and the additive
exponential is significant only when the correlation function is near unity. It is then possible
to perform a Taylor expansion of the correlation function about the origin to obtain

(&) = 3oz )& + 3oy (017 + lpgy ()| .

1 1
= 5 loge 12 + S lofy 1% + logy 1En
were the subscripts in p denote partial derivatives and the superscript o denotes that the cor-

relation function is evaluated at the origin. Likewise, we expand the function D1 (&, #;k) about
the origin

D1 (&,m;k) =~ D1(0,0;k) + D1,£(0,0;k)¢ + D1, (0,0; k)7

1 1
+ §D1,§,§(0/0;k)§2 + EDLr],r](OfO;k)ﬂz + D1,,£(0,0;k)n¢

60
= D(k) + D3 £ (k)2 + D, (K ©0
1 1
+ 5Dk )&+ 5 5 D1 (K )n* + D, (k)
Upon replacing (59) and (60) in (58), we arrive at
(UD)Z;; 47-[A fqp/ dCdU@ Jl(kox—kx )&+ (ksy —ky )1y]

exp {*(ksz - kz)zvz(f\pégléz + 7|p217|772 +0%,181)

2 2 ’7 (61)

[Dg(ksz —kz) + Dg,g(ksz — k)& + Dg,y](ksz —k2)n
1
+5 Dl elksz —kz) &+ EDﬁ),q,q(ksz —ko)n* + Dg,q,g(ksz —kz)n¢]

where the subtraction of the coherent term has been disregarded.
The following integral identity will be used

/ 0o dxdye_(ax2+by2+2cxy) (A+Bx+ cx? + Dy + Ey2 + Fxy) o~ J(kxx+kyy)
_ p epd k3b — 2ckyky + kja
4(ab — ¢2)(5/2) 4(ab — c2)
[Awa(a,b,c) + Bag(a,b,c,ky,ky) + Cac(a,b,c ks, ky)
+Dap(a,b,c,ky,ky) +Eag(a,b,c ky,ky) + Fap(a,b,c ki ky)] (62)
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where
wa(a,b,c) =4(ab—c?)?
ap(a,b,c kyky) = —2j(ab— ) (bky — cky)
ac(a,b,c ky ky) =2b(ab— ?) — (bky — cky)2
ap(a,b,c,kyky) = —2j(ab— cz)(aky — cky)
ag(a,b,c kyky) =2a(ab— ) — (aky — cky)?
wp(a,b,¢,ky, ky) = —2c(ab — ) + (ckyx — aky) (bkyx — cky) (63)

Therefore, (61) results in

(0°)k = 216 fap T (P) y _F’i‘f’%ﬂ‘ —2pxpyleg,, | + pileg | } 64)
" pa10]p2 10 ] - log, P72 A 29202 (0% ¢ 105,41 — 102 ,17)

where

- _ - 1 -
T¥(p) =Df(p=) &a + D ¢ (p=) 5 + 5 D3 2 (p2) ic

1 (65)
+ D1, (pz)dp + ED({,M(PZV‘E + D7, e (p)ar
with j=k* — K, and
&g = aa(kilog gl xaloy | xilog,l)
ag =ag(alpgglaleyyl-xlog,l pvpy)  C=B,CDEF
K1 = piot/2 -

The expression obtained in (61) is the result obtained from classic geometric optics, multiplied
by a factor of correction due to the deterministic component of the surface.

4.2.2 Cross Term
From Subsection 3.2.2 we get

k3 .
dke *
(0")gp = 7257_(1314 Y )y Re{fqp/mzdudv/d@’dﬁd@’d;y’

m=12r=-1,1
el (E=8)+0(=1")] p=ilksxG+ksyn] o jlkxl’+hy']
: Dz(gl 77/ 6// U,}ksz/kz/7Qm)pq";; (_k'l,ES,T;Tn)

. 3*0'2[(’(52*”‘7"1)(](27”%) (1—=p12)] [67(72[(’(527”%1)("52 —kz)(1—p13)]

e 2[(7%—kz)(ksz_kz)(l_PB)] — e_vz(kfz_kz)z] } (67)

Some simplifications are applicable but, before introducing them, some remarks are in order.
As in Paragraph4.1.2, the approach is seeing the interactions of second order as specular re-
flections and Snell’s refractionsAlso, surface integration is taken over two regions for each
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