

The Dummies’ Guide to Database

Systems: An Assembly of Information

An Easy to Understand Guide Even for Laypeople

Clients
Server

Clients
Server

Clients
Server

Communication Network

 Rosina S Khan

ii

 Dedicated to:
 You, the Valued Reader

Copyright © 2016 by Rosina S Khan. All Rights Reserved Worldwide. No
part(s) of this ebook may be used or reproduced in any form whatsoever,

without written permission by the author.

http://www.rosinaskhan.weebly.com

iii

Contents

Preface.. vi

C H A P T E R 1 .. 1

INTRODUCTION .. 1

1.1 View of Data .. 3
1.2 Instances and Schemas.. 6
1.3 Database Languages.. 6

1.4 Database Users .. 7
1.5 Database Administrator... 8

C H A P T E R 2 ... 9

ENTITY RELATIONSHIP MODEL ... 9

2.1 Entity, Entity set and Attributes .. 9
2.2 Types of attributes... 9

2.3 Relationship Set .. 11
2.4 Mapping Cardinalities... 11
2.5 Super key, Candidate key and Primary key .. 12

2.6 Entity-Relationship Diagram (ERD)... 13
2.7 ER-diagrams with different cardinality ratios... 14

2.8 Definition of Participation .. 19
2.9 ER-diagram Problems ... 20

C H A P T E R 3 .. 22

RELATIONAL MODEL .. 22

3.1 Converting ER diagrams to relational models .. 22
3.2 Relational model Problems ... 29
3.3 Query Languages .. 30

3.4 Relational Algebra .. 31
3.5 Outer Join .. 37

3.6 The Division Operation... 39
3.7 Modification of the Database .. 40

C H A P T E R 4 ... 42

THE QUERY LANGUAGE SQL .. 42

4.1 Introduction to SQL ... 42
4.2 SQL Expressions using functions .. 44
4.3 SQL Expressions using Grouping... 45

4.4 SQL Expressions using Sorting .. 46
4.5 Searching for partial strings .. 46

4.6 SQL Expressions concerning Input of Data.. 47
4.7 SQL Expressions concerning deletion of tuples ... 47
4.8 Update of tuples/values ... 47

4.9 Deletion of tables .. 47
4.10 Schema updates.. 48

iv

4.11 Definition of a Domain .. 48
4.12 Creation and Deletion of Views.. 49

4.13 The Rename Operation ... 49
4.14 UNION ALL ... 50

4.15 INTERSECT & INTERSECT ALL... 50
4.16 Inner and Outer Joins ... 50

C H A P T E R 5 .. 54

INTEGRITY CONSTRAINTS IN RELATIONAL SYSTEMS 54

5.1 Required Data ... 54
5.2 Domain Constraints .. 54
5.3 Entity Integrity .. 55

5.4 Referential Integrity .. 56
5.5 Modification.. 59

C H A P T E R 6 .. 60

FUNDAMENTAL DEPENDENCIES AND NORMALIZATION 60

6.1 Definition of functional dependency... 60
6.2 Definition of full functional dependencies ... 60

6.3 Normalization.. 61
6.4 Notes on Normalization .. 67
6.5 Quality Criteria for Relational Design .. 68

C HA P T E R 7 .. 69

QUERY PROCESSING ... 69
7.1 Introduction to Query Processing ... 69

C H A P T E R 8 ... 72

FILE ORGANIZATION... 72

8.1 Fixed-Length Records... 72
8.2 Variable-Length records ... 73
8.3 Byte-String Representation ... 74

8.4 Slotted-page structure ... 74
8.5 Types of Record Organizations... 76

8.6 Sequential File Organization.. 76
8.7 Multitable Clustering File Organization ... 78

C H A P T E R 9 ... 80

DATA-DICTIONARY STORAGE .. 80

C H A P T E R 10 ... 81

INDEXING ... 81

10.1 Basic Concepts .. 81
10.2 Ordered Indices ... 82

10.3 B+-Tree Index Files .. 88

C H A P T E R 11 ... 91

v

TRANSACTIONS .. 91
11.1 Syntax for Transactions ... 91

C H A P T E R 12 ... 93

RECOVERY IN TRANSACTIONS .. 93
12.1 Problem Sources ... 93
12.2 Logging and Recovery from Software Failures .. 93

C H A P T E R 13 ... 96

CONCURRENCY CONTROL .. 96
13.1 Problems Caused by Violation of Isolation .. 96
13.2 Serializability .. 97

13.3 Some Synchronization Protocols .. 99

C H A P T E R 14 ... 102

ADVANCED DATABASES.. 102
14.1 Distributed Databases ... 102

14.2 Data Warehouses... 106
14.3 Multimedia Databases... 107

14.4 Data Mining .. 108
14.5 What is a NoSQL (Not Only SQL) Database? ... 108

MISCELLANEOUS DATABASE PROJECT 112

vi

Preface

Nowadays there is a growing need to organize, store and retrieve information of any
organization real fast and convenient. Lots of paper files need manual work for updates

and throwing away paper clutter, retaining the importanrt ones. All of this can be done
smoothly and speedily by making the information computerized via databases. That is
what this book is about and it covers a fundamental approach to this topic which can be

taught and be useful for undergraduate courses in databases or any newbie who wants to
grab the concepts behind databases.

While databases are themselves actually a collection/assembly of information, the content
of this book is really an assembly of information collected from the following resources.

So the title of the book is intentionally ambiguous. I must admit many of the chapters
in this book are written in such an easy-to-understand matter that even laypeople can

grasp the concepts.

[1] Database System Concepts, 5th Edition, Abraham Silberschatz, S. Sudarshan, Mc

Graw Hill International Editions, 2006

[2] Professor Dorothee Koch‟s Lecture notes, Stuttgart University of Applied Sciences,
Germany, 2005

[3] An Introduction to Database Systems, C. J Dates, Addison Wesley, 8th Edition, 2003

[4] http://planetcassandra.org/what- is-nosql, 2014

Organization

Let me now explain the organization of this book.

Chapter 1 is an introductory chapter starting with the idea of introducing backend and

front end of database systems and covers stuff from [1] about why databases are at all
useful.

Chapter 2 contains basics of Entity Relationship model (ERM), the fundamental step in
designing databases at the backend and the resources are mainly from [1] and [2].

Chapter 3 covers how to convert ERMs to relational models (table schemas) [2], and

introduces relational algebra, a pure and procedural form of query language [1].

Chapter 4 introduces Structured Query Language (SQL), the most widely used language

used for querying relational databases and retrieving info. [mainly [2] and partly [1])

Chapter 5 covers examples of integrity constraints (conditions) that can be imposed in
relational systems while creating tables in SQL [2].

http://planetcassandra.org/what-is-nosql

vii

Chapter 6 consists of functional dependencies of one attribute (field) on another
attribute(s) in a table and based on these whether we have to split the tables or not

according to violation or not of normal forms based on the concept of normalization. [2]

Chapter 7 mainly covers query processing which is the series of activities involved in
extracting data from a database. [1]

Chapter 8 explains why the need to map databases to files may arise and how. [1]

Chapter 9 is a short explanation of a data dictionary and what info about databases it
contains. [1]

Chapter 10 includes sophisticated indexing techniques for files. Just as words or phrases
in a text book index appear in a sorted order, an index for a file in a database works in a

similar way. [1]

Chapter 11 introduces the concept of transactions which are a sequence of data access

operations that transfers the database from one consistent state to another consistent state.
[2]

Chapter 12 explains recovery in transactions and how to preserve correctness and
consistency of data over time, allowing for parallel access (transactions) of multiple users

after transaction failures. [2]

Chapter 13 covers concurrency control which rectifies the problems occurring if two or
more transactions using the same data items are executed in parallel. [2]

Chapter 14 includes advanced databases covering introductions to distributed databases
and their possible architectures, data warehouses, multimedia databases and data mining

in brief, as well as introduction to NoSQL environment. [1,2,3,4]

There is also a miscellaneous database project at the very end which students can work

on through out the whole semester in parallel with theory lectures. The project is equally
useful for even those who are not students and can work on it in their own interests.

Acknowledments

I am deeply indebted to the authors and publisher of Database System Concepts,
Professor Dorothee Koch, C.J Dates and publisher, and Planet Cassandra website for

collecting their resources, paraphrasing and combining them with mine and hence the
creation of this very book.

Last but not the least I am thankful to my mom and Dr Manzur for all their help and
support while writing out this book.

--Rosina S Khan

1

C H A P T E R 1

INTRODUCTION

A database system is defined to be a collection of interrelated data and a set of programs

to access those data.

Why interrelated data? Because some sort of relationship exists among the data. (It will

become clearer when we come to the topic Normalization of tables.) This actually occurs
in the backend. A backend is nothing but a collection of interrelated data in different

tables. A table has some fields in a row. These fields are also ca lled attributes.
Corresponding to the attributes are some data in rows. These are called records or tuples.
The entire table corresponds to an entity. We will cover more on entities and attributes in

the next chapter.

Why set of programs? Programs here refer to application programs at the front end or
interfaces connected to data at the backend. A typical layout for backend and front end is
given as an example below:

Table 1.1: Jone‟s Account Info (Backend)

Accnt _A Accnt_B

 150 200

Table 1.2: Jone‟s Updated Account Info after transaction

Accnt _A Accnt_B

100 250

\

Fig 1.1: Jone‟s Account Interface (Front end)

Accnt_A

Accnt_B

 FROM :

 TO :

TRANSFER

Transfer Amount 50

Fields/attributes

Tuple/record

2

A backend database for example, may consist of Jone‟s Account Info table. After a
transaction, Jone‟s Account Info may be updated as shown in Table 1.2. An interface to

the backend database may be depicted as shown in Fig 1.1. Given the values of source
and destination accounts as well as the transfer amount in textboxes, hitting the transfer

button will enable to make the transaction, which will in turn be updated in Jone‟s
Account Info table in the backend.

The backend may be developed using software tools such as MS SQL Server, MySQL
etc. while the front end may be developed using C#, or PHP, JavaScript and HTML, etc.

Before the advent of databases, organizations stored information using a typical file-
processing system. In this system, permanent records were stored in various files and

different application programs were written to extract records and add records to the
appropriate files.

File-processing systems have a number of disadvantages. These are outlined as follows:

 Data redundancy and inconsistency: Different programmers may write the files
and application programs over a passage of time. As a result, files may have

different structures and the programs may be written in different several
programming languages. Also, the same information may appear in different files.

Data inconsistency results when the same information is updated in one place but
not in another place in addition to higher storage and access cost.

 Difficulty in accessing data: Data retrieval may be problematic. Suppose a bank
officer needs to find out the list of customers who live in a certain postal code.

Such an application program does not exist. There is, however, an application
program to generate the list of customers. The data processing department based
on the demand of the bank officer has either to generate the list of customers and

extract the needed info manually. The other alternative is to write a new
application program to meet the demand. Both the alternatives are unsatisfactory.

After a week or so, the bank officer needs to trim down the list of customers with
bank balances more than Tk50,000. Again the data processing department is left
with two alternatives both of which are unsatisfactory. The point here is that file

processing systems do not allow data to be retrieved in a convenient and efficient
manner.

 Data Isolation: As data lie in different files and files may be in different formats,

it is difficult to retrieve the appropriate data by writing new application programs
each time.

 Integrity Problems: The data values stored in the database must satisfy certain
conditions called integrity or consistency constraints. For example, the bank

balance of a customer must never fall below Tk200. Developers impose these
constraints by writing appropriate code in the various application programs. To

enforce a new constraint such as the bank balance of customers should not exceed

3

10 crore taka, it becomes difficult for the developer to enforce the new constraint
and change the programs. The problem worsens when constraints involve several

data items from different files.

 Atomicity Problems: Atomic transactions mean they either occur completely or
none at all. For example, consider a program to transfer Tk500 from Account A to

Account B. If a system failure occurs during the transaction, it is possible Tk500
was debit from Account A but not credited to Account B, resulting in an
inconsistent database state. It is important that to maintain database consistency,

either both the debit and credit occur, or that neither occurs. It is difficult to
ensure atomicity in conventional file processing systems.

 Concurrent-access anomalies: Multiple users may update a system
simultaneously. This facilitates faster response and overall performance of the

system. Interaction of concurrent updates may result in inconsistent data.
Consider bank account A, containing Tk500. If two customers withdraw funds

say, Tk50 and Tk100, respectively from Account A at about the same time, the
result of concurrent transactions may leave the account in an inconsistent state. If
the two transactions occur concurrently, they may both read the value Tk500, and

write back Tk450 and Tk400, respectively. Depending on which one writes the
value last, the account may contain either Tk450 or Tk400, rather than the correct

value of Tk350. To prevent this from happening, the system must maintain some
form of supervision. But supervision is difficult to provide because data may be
accessed by various different application programs that have not been coordinated

previously.

 Security problems: Every user of the database system should not be able to access
all the data. For example, in a banking system, payroll personnel (tax officer)

needs to see only that part of the database that has information about the various
bank employees. They do not need to access information about customer
accounts. As another example, bank tellers see only that part of the database that

has information on customer accounts. They cannot access information about
salaries of bank employees. Enforcing such security constraints on a file-

processing system is difficult because application programs are added to the
system in an ad hoc manner.

1.1 View of Data

A major purpose of a database system is to provide users with an abstract view of the
data. That is, the system hides certain details of how the data are stored and maintained.

4

1.1.1 Data Abstraction

Since many database-system users are not handy with computers, developers hide certain
complexity details through several levels of abstraction in order to make it easier for

users‟ interaction with the system.

 Physical level: The lowest level of abstraction describes how data are actually

stored. It describes complex low-level data structures in detail.

 Logical level: The next-higher level of abstraction describes what data are stored
in the database, and what relationships exist among those data. It describes the

entire database in terms of a small number of relatively simple structures.
Database administrators use the logical level of abstraction who must decide what
information to store in the database.

 View Level: The highest level of abstraction describes only part of the entire

database. In this level users need to access only part of the entire database. The
level simplifies the interaction of users with the system. The system may provide

 many views for the entire database.

Fig 1.2: The three levels of data abstraction

Logical

Level

Physical

Level

View 1 View 2 View n

View Level

….
..

5

Distinction among levels of abstraction may be compared to the concept of data types in
programming languages. Most high- level programming languages support the notion of a

structured type. For example, in a Pascal- level language, we may declare a record as
follows:

 Code 1.1: Pascal- like definition of record structure

Code 1.1 defines a record type called customer with four fields. Each field has a name
and a type associated with it. A banking enterprise may have several such record types,

including
 account, with fields account_number and balance

 employee, with fields employee_name and salary

At the physical level, a customer, account, or employee record can be described as block

of consecutive storage locations or bytes. The compiler hides this level of detail from
programmers. Similarly, the database system hides many of the lowest- level storage

details from database programmers. Database administrator, however, may be aware of
certain details of the physical organization of the data.

At the logical level, each such record is described by a type definition as shown in Code
1.1, and the level also defines the interrelationships among the different record types.

Programmers using a programming language work at this level of abstraction. Similarly,
database administrators usually work at this level of abstraction too.

Finally at the view level, computer users see a set of application programs or front end
interfaces that hide details of the data types. At this level several views are defined and

database users see and access these views. The views also provide a kind of security
mechanism to allow users only to access certain parts of the database. This has been
explained in detail in the subsection Security problems on page 3. Some examples of

views can be:

 View1: customer_name|account_number|balance
 View2: employee_name|account_number|balance|salary

type customer = record

 customer_id: string;
 customer_name: string;

 customer_street: string;
 customer_city: string;

 end;

6

1.2 Instances and Schemas

Databases change over time as information is inserted and deleted. The collection of
information stored in the database at a particular moment is called an instance of the

database. The overall design of the database is called the database schema.

Consider the following database table:

Employee Table:

 Schema

 Instance

In the above Employee Table, schema and instance are clearly shown.

Database systems have several schemas, partitioned according to the levels of
abstraction. The physical schema describes the database design at the physical level,

while the logical schema describes the database design at the logical level. A database
may also have several schemas at the view level, sometimes called subschemas, that

describe different views of the database.

The logical schema is the most important among all the schemas since programmers

construct application programs or front end interfaces by using logical schemas. The
physical schema is hidden beneath the logical schema, and can usually be changed easily

without affecting logical level. Hence, application programs do not need to be rewritten if
physical schema changes and are said to exhibit physical data independence.

1.3 Database Languages

A database system provides a data-definition language to specify the database schema
and a data-manipulation language to express database queries and updates. In practice,
the data-definition and data-manipulation languages are not two separate languages;

instead they simply form parts of a single database language, such as the widely used
SQL (Structured Query Language).

employee_name salary

Jones 10000

Jim 20000

Jack 15000

David 25000

Henry 30000

7

a) Data-Manipulation Language

A data-manipulation language (DML) is a language that enables users to access or

manipulate data as organized by the appropriate data model. The types of access are:

 Retrieval of information stored in the database

 Insertion of new information into the database

 Deletion of information from the database

 Modification of information stored in the database

b) Data-Definition Language

We specify a database schema by a set of definitions expressed by a special language

called a data-definition language (DDL). The DDL is also used to specify additional
properties of the data. We specify the storage structure and access methods used by the
database system by a set of statements in a special type of DDL called a data storage and

definition language. These statements define the implementation details of the database
schemas, which are usually hidden from the users.

1.4 Database Users

 Application programmers are computer professionals who write

application programs or front end interfaces. They can choose tools such as
Rapid application development (RAD) to develop front end interfaces such as
forms and reports with minimal programming effort.

 Sophisticated users interact with the system without writing

programs. They form their requests to the system using a database query language
e.g, SQL.

 Specialized users are sophisticated users who write specialized

database applications such as computer-aided design (CAD), knowledge-base and
expert systems that store complex data such as graphics and audio data and
environment-modeling systems.

 Naive users are unsophisticated users who interact with the system

by invoking one of the application forms that have been written previously. An
example of an application program can be that of Jone‟s Account Interface in
Fig. 1.1 where the naïve users fill in the fields of the form and hit the button. They

may also simply read reports generated from the database

8

1.5 Database Administrator

A person who has central control over the whole database system is a database
administrator (DBA). His functions may be summarized as below

 Schema definition: The DBA creates the original database schema

or the overall design of the database.

 Storage structure and access-method definition: The DBA is

aware of certain details of physical organization of the data i.e. how records
occupy storage locations or bytes and the methods to access those data.

 Schema and physical-organization modification: The DBA can

change the schema and physical organization according to the demands of the
organization, or simply to improve performance. This can be done without
affecting application programs at logical level.

 Granting of authorization for data access: The DBA can grant

different types of authorization to different users and hence control which user has
the right to access which parts of the database. This enhances to keep the system

secure as has been explained earlier.

 Routine maintenance: Some examples of DBA‟s routine

maintenance activities are as follows:

i) Backup the database periodically to tapes or remote servers so that
they can be recovered in case of disasters such as database sabotage.

ii) Ensure enough disk space is available for normal operations and
upgrade disk space as required.

iii) Monitor jobs running in the database and ensure overall

performance is good.

9

C H A P T E R 2

ENTITY RELATIONSHIP MODEL

2.1 Entity, Entity set and Attributes

An entity is a thing or object in the real world that is distinguishable from other objects.

An entity can be concrete, such as a book or a person or it may be an abstract, such as a
loan, holiday or a concept. An entity in a database system actually represents a table.

The properties or parts of an entity are called attributes. For example, a person has the
attributes person_id, name, occupation, salary etc. A book has the attributes book_id,

author, publisher, category, number of copies etc. Attributes are actually the fields of a
database table or entity.

An entity set is a set of entities of the same type that share the sa me properties or
attributes. For example, the set of all students who take a class can represent a student

entity set in which each entity is a student sharing similar attributes with other students
such as student_id, name, contact_no, address etc.

2.2 Types of attributes

An attribute can be of the following types:

 Simple and Composite attributes: Simple attributes are those as the
name implies that is they are not divided into subparts. For example, the attribute
student_id for the entity student has no subparts and therefore, is a simple

attribute. On the other hand, an attribute name can be structured as a composite
attribute consisting of first_name, middle_name and last name. As another

example, the attribute customer_street for the entity customer can be composite
consisting of street_number, street_name and apartment_number. (Fig 2.1)

 Single-valued and mutivalued attributes: The loan_number
attribute for a specific loan refers to one loan_number. Such attributes are said to

be single valued. On the other hand there may be instances where an attribute has
a set of values for a specific entity. For example, consider the employee entity set

with the attribute phone number. An employee may have zero, one or several
phone_numbers and different employees may have different number of phone
numbers. This type of attribute is said to be multivalued. As another example, the

attribute dependent name of the employee entity set would be multivalued, since
any particular employee may have zero, one or more dependent(s).

 Upper and lower bounds may be placed on the values in a multivalued attribute as
 needed. For instance, a bank may limit storing the number of phone_numbers for

 a customer to two. Placing bounds in this way means that the phone_number
 attribute for the customer entity set may have the range 0<=phone_number<=2.

10

 Null attributes: An attribute takes a null value when that value is missing, not

applicable or unknown. For example, a person may have no middle name (not
applicable). If the name for a particular customer is null we assume that the value
is missing since every customer must have a name. A null value for an

apartment_number could mean the address does not include an apartment number
(not applicable), that an apartment number exists but we do not know what it is

(missing), or that we don‟t know whether an apartment number is part of the
customer‟s address (unknown).

 Derived attributes: The value for this type of attribute can be derived from the
values of other related attributes or entities. For example, a customer entity has

the attribute customer_age. If the customer attribute also has an attribute
date_of_birth, we can calculate his age from data_of_birth and the current date.
Therfore, customer_age is a derived attribute. As another example, the entity

employee can have employment_length as an attribute. If this entity has another
attribute start_date of his employment, then we can calculate the employee‟s

employment_length from the start_date and current_date. Hence, in this case
employment_length is a derived attribute.

 Composite name

 Attribute

 Component first_name middle_name last_name
 Attributes

 Composite customer_street

 Attribute

 Component street_number street_name apartment_number

 Attributes

 Fig. 2.1: Composite Attributes name and customer_street

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

