Systolic Petri Nets

Alexandre Abellard and Patrick Abellard
HandiBio EA4322, IUT, Toulon University
France

1. Introduction

In many research fields and applications requiring real time, such as signal, speech or image
processing, problems are often characterized by the amount of data to deal with.

However, it can happen that real time constraints are difficult to satisfy without taking into
account the intrinsic parallelism of processings to perform. Thus, diverse architectures
appeared (SIMD, MIMD...), leading to different classes of architecture. Literature showed
the advantages and drawbacks of each of them. Moreover, expensive costs limited their
applications during a long time.

Systolic architectures defined by H.T. Kung are a particular class of parallel architectures.
They constitute specialized systems characterized by a repetitive structure of identical
elementary processors locally and regularly interconnected. Synchronous data circulate
through the architecture, which interact at each encounter. Several important difficulties like
the central memory sharing, buses access conflicts... can be therefore avoided. All problems
are however not systolizable. These networks are designed for the repetitive identical
processing of a huge amount of data, which is the case, for example, in many signal and
image processing algorithms.

The conception of these networks has been the subject of many studies, the main ones are
developped in the first part of this chapter. The limited number of systolic processors
available on the market was problematic for the development of methodologies for a long
time. Now, programmable components enable to be free from this problem. To ease their
implementation, we developped a methodology based on a formal and universal tool (Petri
Nets) that is developped in the second part of the paper.

2. Definitions

2.1 Systolic architecture

This architecture is considered as an intermediate between data flow and pipeline. It has
been introduced in (Kung, 1982) and is made of a set of processors or processing cells locally
interconnected. Each cell can run a simple or complex operation and links between cells are
established so as to minimize the associated paths complexity.

www.intechopen.com

64 Petri Nets: Applications

Just like in a pipeline structure, information move in a cascade scheduling form.
Communications between outside environment and systolic network are established with
peripheral cells that constitute the network I/O ports.

2.2 Systolic networks properties

Systolic networks have interesting properties(“Quinton & Robert, 1991”) :

- Data flow coming from the environment are intensively used

- Networks association is made easier thanks to structure cascadability

- Elementary cells are not complex

- Data flow are simple and regular

- A set of elementary processings is performed synchronously on different cells

These main properties enable to simplify their implementation on VLSI once an automated
and rigorous conception method has been defined.

Several kinds of nets exist, according to different basic cells (Fig. 1) : the linear array,
orthogonal array and hexagonal array. All can be unidirectional or bidirectional. In this
paper, we will mostly focus on linear arrays since it better suits our application, Fig. 1
therefore does not show all possible propagation directions in arrays.

i -1 - - i

- * % = *
B P = B B
| L L L

£

e

— ~ —
r k. w

— » ~ —
r

— » ~ —

(€}
Fig. 1. Basic systolic architectures : (a) linear array, (b) squared array, (c) hexagonal array

www.intechopen.com

Systolic Petri Nets 65

These architectures take advantage of the massive parallelism encountered in processing
applications (Johnson & Hurson, 1993). They only need a minimum of operators (Sousa,
1998) and memory accesses (Kung, 1988) thanks to a very efficient communications system
(Lim & Swartzlander, 1996a). Their combination allows to obtain arrays (Lim &
Swartzlander, 1996a) that can be used in a wide range of applications : Discrete Fourier
Transform (Lim & Swartzlander, 1999b) (Jackson et al., 2004) (Nash, 2005), convolution (Lee
& Song, 2003), filtering (Lee & Song, 2004), matrix operations (Yang et al., 2005), dynamic
programming (Lee & Song, 2002)... The regularity of their structures facilitate their
hardware, implementation, for instance in FPGAs (Mihu et al., 2001) (Nash, 2002) (Castro-
Pareja et al., 2004).

2.3 Principles

2.3.1 Example of a linear network
Linear equation solving is done thanks to the following equation:

yikﬂ = ajk+1-Xk+1 T yik, 0<k<n-1,1<i<n (1)

Systolic network defined by Kung is established with a group of interconnected processors,
each having 3 registers : Ry for y¥, R, for ajx and Ry for x. Each register has a connection as
input and another one as output. Kung defined 2 kinds of cells : squared (Fig. 2a) and
hexagonal (Fig. 2b).

Mysq el
Vo —e] — P Xiap ri
it L Nai
¢ =g Naey
() EN (b) ¥

Fig. 2. Square (a) and hexagonal (b) cells

These two kinds of cells work in this operating cycle.

1 - the cell loads inputs y¥, xx+1 and ajx+1 in respective registers Ry, Ry and Ra..
2 - yk*1is processed using equation (1)

3 - yik*1, xi+1 and ajx+1 are transferred to the output

Example of the Matrix-Vector Product (MVP)

Y=A.X @)
Relations to implement are then :
YiF1= @y 1« X, ke + Vik 3)
yi=0;yi=yW

www.intechopen.com

66 Petri Nets: Applications

with W=dim(X), 0<k <n-1, 1<i<n

For example, with W =3:

N ay dp o dpg |l X
Vo | =Gy Gy Ay || X
V3 ay dy Ay)N

Equation (3) then gives :

y1=y1? +yil +yi2 +yi3 = y1 = an.x1 +an.x2 + as.x;
y2=y2l + yol +yo2 +y3 = yr = azn.X1 + an.x2 + an.X3
ya3=ya0 +ysl +y32 + y3¥ = y3 = az.x1 + az.X2 + a.X3

Given an elementary recurrence relation :
yi*l = aj k1 . X k1 + YiK

successive recurrence steps are performed at consecutive instants. The use of parallelism
done via several cells enable to perform a step of many different elementary recurrences at
the same time. Systolic network is therefore made of a set of (2.n-1) linearly interconnected
squared cells, each one receiving yi, xi+1 and aix+1 at each step of time t; (Fig. 3).

te as 0
an axn

ts

an an 0 as1
ta
ts an an
tZ an
t
to

y y y A y

y1 y2
— G le Cy e Cy e Cs e Cy l&e&—— 3
x3 —— > > > = —>
X2 X1

Fig. 3. Linear systolic network of matrix-vector product Y=A.X, n=3

x1 is used by Cy cell at ty, then is transmitted to C; that processes it at ¢ and so on from left to
right. A similar processing is done for y; data from right to left. Fig. 4 shows the detail of
data propagation on cells performing yi**1 = aj 1+1 . Xj, k+1 + Vi¥ .

www.intechopen.com

Systolic Petri Nets

67

to:

t:

t:

t3:

ta:

ts:

ta:

t7:

ts:

to:

Fig. 4. Linear systolic network processing for matrix-vector product Y=A.X (size 3)

www.intechopen.com

0 0 0 0 0
S R A S I
«— G |e Ci e C |e Cs |e Cy l&—
— = > > > —»
X1
0 0 0 0 0
T AR AN N
<+« C) [« C |« G, [« Cs [« Cy [—
— > > > > —
0 X1
S SR SR G
y1 y2
<« Cp [« Cy |« G |« Cs |« Cy [e—
—) N)) R D
X2 X1
0 an 0 an 0
Lo, bbb
<+ Co < C1 < C2 < C3 < C4 [—
— > > —>
0 X2 X1
ais 0 an 0 asi
l y1 l y2 l l ys
+«— () e C [C e (G Cy [&—
—) N)) R D
X3 X2 X1
0 axs 0 asn 0
S A S A
+— Co < C1 < C2 < C3 <+ C4 —
—> —>
0 X3 X2 X1
0 0 ass 0 0
«—t Cp |« C |« Cs | GCs |« Cy le—
— —>
0 X3 X2
0 0 0 0 0
y2 l l y3 l l l 0
<+ Co < C1 < C2 < C3 < C4 —
M X3 72’
D SR A SR
<« Cy |« Cy |« C, |« C; |« Cy [—
—> > > > > —>
0 X3
0 0 0 0 0
D SR SR S S
+— G G @) Cs Cy J«2—
— —>

68 Petri Nets: Applications

2.3.2 Example of a bi-dimensional network
Consider now the matrix product : C = A.B, being sizes of A (m,n), B (n,p) and C (m,p). Each
coefficient of C is processed using :

cij = Sum(ajk.bj) k=1.n , 1<i<n, 1<j<n, 1<k<n (4)

Ain

[oal o

Cin —b| = Cout

Aout

Fig. 5. Elementary cell
Aout = Ain , Cout = Cin + ain-b

This relation can be expressed via a recurrence relation like in 2.3.1. Coefficients ajx
propagate on j axis, and byj propagate on i axis. k is a recurrence axis that can be assimilated
to a temporal axis. Elementary processings given by (4) are all identical. Network is thus
made of a sole kind of cell (Fig. 5) that can be associated in square.

Fig. 6. Example of a 2x2 squared network

Data propagation is detailed on Fig. 7. Other organisation and data propagation possibilities
exist. Hexagonal cells can also be used for this processing. In these cells, data propagate in
three directions (Fig. 8) so as to be used by neighbouring ones (Fig. 9).

Conceiving systolic networks depends on the problem to be solved and the forced
constraints (minimizing number of cells, data flow...). As a consequence, there is no unique
method on conception. Several methods exist, some using mathematical equations of the
problem to solve, others using problem algorithms. This next section will deal with these
questions.

www.intechopen.com

Systolic Petri Nets 69

an 0
1 —»| b bx
0 b1z b2
an 0 0
0 —»| bn bx
2
: N

Fig. 7. Data propagation in a squared network

Caut
bi aj _
Aout = Ain
bout = bin
Aout bout Cout = Cin + Ain.bin
Cin

Fig. 8. Elementary hexagonal cell

Fig. 9. Hexagonal systolic network operating cycle

www.intechopen.com

70 Petri Nets: Applications

3. Equation-solving based methods

Among the various approaches done, the three main ones respectively use recurrent
equations, sequential algorithms transformation and fluency graphs.

3.1 Recurrent equations based method

3.1.1 Quinton method

It is based on the use of geometrical domain projection representing the processing to be
done so as to define systolic structures (Quinton, 1983). It has three steps :

- Expressing the problem by a set of uniform recurrent equations on a domain Dc Z»

- From this set of equations, defining a temporal function so as to schedule processings

- Defining one or several systolic architectures by applying processing allocation functions
to elementary cells

These functions are determined by the different processing domain projections.

3.1.1.1 Step 1 : Creating recurrent equations
Be Rn, the n-dimension real numbers space, Zr its subset with integer coordinates and DcZn»
the processing domain. On each point z from D, a set of equations E(z) is processed :

111(Z) = f(U_1(Z+e1), 112(Z+92), ey um(z+6m))
u(2) = ux(z+6) ©)

Um(z) = “u.m(z+6m)

in which vectors 8; — © called dependency vectors are independent from z. They define
which are the values where a point of the domain must take its input values. This system is
uniform since 6; does not depend on z and the couple (D, ®) represents a dependency
graph. Thus, the processing of A and B (2 nxn-matrices) is defined by :

cj = Sum(aik.bij)k=1.n , 1<i<n, 1<j<n

It can be defined by the following uniform recurrent equations system :

c(i,j,k) = a(ijk-1)+a(i,j-1k).b(-1j k)
a(ij k) = a(ij-1,k) ©6)
b(i,j k) = a(i-1,jk)

Several possibilities to propagate data on i, j and k axis exist. ai, by and cj are respectively
independent from j, i and k, the propagation of these 3 parameters can be done following the
(i,jk) trihedron. The processing domain is the cube defined by D = {(i,j k), 0<i<n, 0<j<n,
0<k<n}. Dependency vectors are 0, = (0, 1, 0) , 6, = (1, 0, 0) , 6. = (0, 0, 1). With n=3,
dependency graph can be represented by the cube on Fig. 10. Each node corresponds to a
processing cell. Links between nodes represent dependency vectors. Other possibilities for
data propagation exist.

www.intechopen.com

Systolic Petri Nets 71

0. 0 0 ay _bu 0 A

0 0 an O

0 as 0 0

Fig. 10. Dependency domain for matrix product

3.1.1.2 Step 2 : Determining temporal equations

The second step consists in determining all possible time functions for a system of uniform
recurrent equations. A time function f is from DcZn — Zn that gives the processing to
perform at every moment. It must verify the following condition :

If xeD depends on yeD, i.e. if a vector dependency ©; =W exists, then t(x)>t(y).

When D is convex, analysis enables to determine all possible quasi-affine time functions. In
this aim, following definitions are used :

- D is the subset of points with integer coordinates of a convex poyedral D from Rn.

- Sum(i.Xi)i=1..m 1S a positive combination of points (x, ..., x,) from Rnif Vi, p; >0

- Sum(ai.xj)i=1.m is a convex combination of (x1, ..., x;) if Sum(o)i=1.m = 1

- s is a summit of D if s can not be expressed as a convex combination of 2 different points of
D

-risaradius of D if VxeD, VuieR* x+puir eD

- a radius r of D is extremal if it can not be expressed as a positive convex combination of
other radii of D.

-lis aline of D if VxeD, VuieR x+p;.leD

- if D contains a line, D is called a cylinder

If we limit to convex polyedral domains that are not cylinders, then the set S of summits of
D is unique as well as the set R of D extremal radii. D can then be defined as the subset of
points x from R» with x =y + z, y being a convex combination of summits of S and z a
positive combination of radii of R.

Definition 1. T = (A, a) is a quasi-affine time function for (D, ©) if V6€0®, AT.6 > 1, VreR, AT.r
>0, VseS, AT.s>a

Thus, for the uniform recurrent equations system defining the matrix product, (A,a) time
functions meets the following characteristics :

7\,T=(7\,1, Ao, 7\.3) withM>1,0>1, A3>Tand M + X + A3 > 1.

www.intechopen.com

72 Petri Nets: Applications

A possible time function can therefore be defined by AT = (1,1,1), with the following 3 radii
(1,0,0), (0,1,0) and (0,0,1).

3.1.1.3 Step 3 : Creating systolic architecture

Last step of the method consists in applying an allocation function & of the network cells.
This function &=a(x) from D to a finite subset of Zm where m is the dimension of the
resulting systolic network, must verify the following condition (t : time function seen on
3.1.1.2) that guarantees that two processings performed on a same cell are not simultaneous :

vxeD, VyeD, a(x)=a(y) = t(x)#t(y).

Each cell has an input port I(i;) and an output port O(u;), associated to each p; , defined in
the system of uniform recurrent equations. I(w;) of cell C; is connected to O(u;) of cell Ci+a i
and O(;) of cell C; is connected to I(w) of cell Ciag . Communication time between 2
associated ports is t(0;) time units. For the matrix product previously considered, several
allocation functions can be defined. :

-&=1(0,0,1) or (0,1,0) or (1,0,0), respectively corresponding to a(i,j,k)=k, a(ijk)=j, a(i,jk)=i.
Projection of processing domain in parallel of one of the axis leads to a squared shape

- &= (011 or (1,01) or (1,1,0), respectively corresponding to a(ijk)=j-k, a(ij k)=i-k,
a(i,j,k)=i-j. Projection of processing domain in parallel of the bisector lead to a mixed shape

- & = (1,1,1). Projection of processing domain in parallel of the trihedron bisector lead to a
hexagonal shape.

Li and Wah method (Li & Wah, 1984) is very similar to Quinton, the only difference is the
use of an algorithm describing a set of uniform recurrent equations giving data spatial
distribution, data time propagation and allocation functions for network building.

3.1.2 Mongenet method

The principle of this method lies on 5 steps (Mongenet, 1985) :
- systolic characterization of the problem

— definition of the processing domain

- definition of the generator vectors

— problem representation

— definition of associated systolic nets

3.1.2.1 Systolic characterization of the problem
The statement characterizing a problem must be defined with a system of recurrent
equations in R3 :

yi = f(yi*t, al, ..., an)
yi* =v, veR3 (7)
0<k<b, iel, je]

in which a1, ..., au are data, I and J are intervals from Z, k being the recurrency index and b
the maximal size of the equations system.

www.intechopen.com

Systolic Petri Nets 73

a4 elements can belong to a simple sequence (si) or to a double sequence (s;;), I€L, I'eL', L
and L' being intervals of Z. In this case, a4 elements are characterized by their indexes which
are defined by a function /i depending on i, j and k. The result of the probem is a double
sequence (1y), i€l, je] where r; can be defined in two ways :

— the result of a recurrency r;j = y;P

-1 = g(yiP, al, ..., av)

For example, in the case of resolving a linear equation, results are a simple suite y;, , 1<i<n ,
each y; being the result of the following recurrency :

yik+l = yik + aj 1. X
yi?=0 ®)
0<k<n-1, 1<i<n

3.1.2.2 Processing domain
The second step of this method consists in determining the processing domain D associated
to a given problem. This domain is the set of points with integer coordinates corresponding
to elementary processings. It is defined from the equations system defining the problem.
Definition 2. Consider a systolizable problem which recurrent equations are similar to (7)
and defined in R3. The D domain associated to the problem is the union of two subsets D,
and Da:
- Dy is the set of indexes values defining the recurrent equations system. b being a bound
defined by the user, it is defined as D1 = { (i,j,k)cZ3, i€, je], a<k<b}
- Dy is defined as :

- if the problem result is (1) : i€, je] | 1 =yib , then Dy =&

- if the problem result is (ry) : i€, je] | rj=q(yib, a!, .., av),

then Do={ (i,j,k)cZ3, i€l, je], k=b+1 }

In the case of the MVP defined in (8), D1={ (ik)eZ2 | , 0<k<n-1, 1<i<n} and D, is empty,
since an elementary result y; is equal to a recurrency result..
Definition 3. Systolic specification of a defined problem in R3 from p data families implies
that DcZ? defines the coordinates of elementary processings in the canonical base (b, bj, by).
For example, concerning the MVP previously defined, D={ (ik)eZ2 | , 0<k<n-1, 1<i<n}.

3.1.2.3 Generating vectors

Definition 4. Let's consider a problem defined in R3 from p data families, and d a data
family which associated function 1, is defined in the problem systolic specification.

yq is called a generating vector associated to the d family, when it is a vector of Z3 which
coordinates are (y;i ,yj, k) in the canonical base BC of the problem, such as :

- for a point (i, j, k) of the D domain, hqa(i, j, k) = ha(i+wyi, j*v;, k+yx)

- highest common factor (HCF) is : HCF(y; ,yj,yx) = +1 or -1

This definition of generating vectors is linked to the fact that (i, j, k) and (i+vyi, j+y; k+yy)
points of the domain, use the same occurrence of the d data family.

The choice of yq with coordinates being prime between them enables to limit possible
choices for yq and to obtain all points (i+nxy;, j+yj, k+yy), neZ, from any (i, j, k) point of D.
In the case of the matrix-vector product, generating vectors Wy=W.=¥.=(yy , ya, V) are
associated to results hy, h, and hy. Generating vectors are as following :

www.intechopen.com

74 Petri Nets: Applications

hy(i,k)=hy(i+y;, k+y) < 1 = ity; < y; = 0. Moreover, HCF(y;, yix)=%1, thus yi=+1.
Generating vector yy can therefore be (0, 1) or (0, -1).

hy(i,k) = i+k. Generating vector W, must verify h,(i,k)=hy(i+y;, k+yi) < itk=i+tk+yi+yi

< i = -yr. Moreover, HCF(y;,yi)=+1 or -1, thus ¥,=(1,-1) or (-1,1)

Similar development leads to ¥.=(1,0)

3.1.2.4 Problem representation

A representation set is associated to a problem defined in R3. Each representation defines a
scheduling of elementary processings. The temporal order relation between the processing
requires the introduction of a time parameter that evolves in parallel to the recurrency, since
this relation is a total order on every recurrency processings associated to an elementary
processing. We thus call spacetime, the space ET R3. with orthonormal basis (i, j, t), where
t represents the time axis.

Definition 5. A problem representation in ET is given by :

- the transformation matrix P from the processing domain canonical base to the spacetime
basis -

- the transformation vector V such as V=0'O, where O is the origin of the frame associated
to the canonical basis and O' is the origin of the spacetime frame

Point coordinates in spacetime can there for be expressed from coordinates in the canonical

basis :
[x] [T}
'_r) =F \.J‘ +F
V= (g k| pi
) s}
i J, =P |y| PTF
& (5 = fer
This representation is given by the example of the Matrix Vector Product of Fig. 11.
OI
(y1l, a11, x1) (Y12 a1z, x2) (y13, als, x3)
(y2!, a1, x1) (y22, a2, X2) (y23, a3, x3)
(yal, as1, x1) (y32 a3, x2) (y33, as3, x3)
v

i
Fig. 11. Representation of the Matrix Vector Product in spacetime (t=k)

We call Ry the initial representation of a problem, the one for which there is a coincidence
between the canonical basis and the spacetime basis, i.e. P = I, I being the Identity Matrix,
and V the null vector (O and O' are coinciding). For the MVP example, initial representation
is given on Fig. 11.

These representations show the occurencies of a data at successive instants. Processings can
be done in the same cell or on adjacent cells. In the first case, data makes a systolic network

www.intechopen.com

Systolic Petri Nets 75

made of functional cells in which the data can be put in the cell memory. In the second case,
data circulate in the network from cell to cell.

The representation of the problem in spacetime defines a scheduling for the processing. To
obtain networks with a different order, we apply transformations on the initial
representation Ry. If, after a transformation, data are still processed simultaneously, a new
transformation is applied until the creation of an optimal scheduling. From this
representation a set of systolic networks is determined.

Applying a transformation to a representation consists in modifying the temporal abscissa
of the points. Whatever the representation is, this transformation must not change the n-
uple associated to the invariant points when order and simultaneity of processings is
changed. The only possible transformations are thus those who move the points from the D
domain in parallel to the temporal axis (O, t). For each given representation, D, is the set of
points which have the same temporal abscisse, resulting in segments parallel to (O, i) in
spacetime are obtained.

The transformation to be applied consists in deleting data occurencies simultaneities by
forcing their successive and regular use in all the processings, which implies that the image
of all lines d; by this transformation is also a line in the image representation. For instance,
for the initial representation Ro of the MVP, D straight lines are dotted on Fig. 11. One can
therefore see that occurrencies of data xi, 0<k<n-1 are simultaneously used on each point of
straight line Dy with t = k. Therefore, a transformation can be applied to associate a non
parallel straight line to the (O', i) axis to each Dy parallel straight line to (O, i).

Two types of transformations can be distinguished leading to different image straight lines :
- T for which the image straight line has a slope = +P (Fig. 12a)

- T4 for which the image straight line has a slope = -P (Fig. 12b)

o (yi', a1, x1) _ (y1% a1, X2) . (1, a3, x3)

, (y2!, @21, x1) . (y22 an, x2) , (y23, a3, x3)

Kyt an x) Ay anx) Ky, an x) @)

i

O (vil, a1, x1) (v12, 212, X0) (v13, a13, X3)

“u(y2l, a0, x1) Ax"a__(YZz/ az, X2) A.""‘,A(y?, a3, X3)
' (y1l, a11, x1) .""'(V12, ay, X2) ' (y13, a13, x3) (b)
i
Fig. 12. Applying a transformation on the initial representation : (a) Tc, (b) Td

The application of a transformation enables to delete the occurencies use simultaneity of
data, but increases the processing total execution time. For instance, for the initial
representation of Fig. 11, the total execution time is t=n=3 time units, whereas for
representations on Fig. 12, it is t=2.n-1 = 5 time units.

www.intechopen.com

76 Petri Nets: Applications

Concerning the initial representation, one can notice that 2 points of the straight line Dy
having the same temporal abscisse have 2 corresponding points on the image straight line
which coordinates differ by 1. It means that two initially simultaneous processings became
successive. After the first transformation, no simultaneity in data occurency use is seen,
since all elementary processings on D; parallel to (O', i) use different data. Thus, no other
transformation is applied. For the different representations, P (transformation matrices) as
well as V (translation vectors) are :

r{30) st =) v

p:[:'; and i'=([,:] for Fig. 12b.

3.1.2.5 Determining systolic networks associated to a representation

For a given representation of a problem, the last step consists in determining what is/are the
corresponding systolic network(s). The repartition of processings on each cell of the net has
therefore to be carefully chosen depending on different constraints. An allocation direction
has thus to be defined, as well as a vector with integer coordinates in R3, which direction
determines the different processings that will be performed in a same cell at consecutive
instants. In fact, the direction of allocations can not be chosen orthogonally to the time axis,
since in this case, temporal axis of the different processings would be the same, which
contradicts the definition.

Consider the problem representation of Fig. 12a. By choosing for instance an allocation
direction £=(1, 0)sc or &=(1, 1)er and projecting all the processings following this direction
(Fig. 13), the result is the systolic network shown on Fig. 14. This network is made of n=3
cells, each performing 3 recurrency steps. The total execution time is therefore 2n-1 = 5 time
units. If an allocation direction colinear to the time axis is chosen, the network shown on Fig.
15 is then obtained.

O (v1l, an, x1) (V1% ap, Xo) (V13 a3, X3)

21, as1, X1)

(ys!, as1, x1) V32, a3z, X2) (5% ass, x3)
Cell 0 Cell1 Cell 2
i
Fig. 13. Processings projection with &=(1,1)er

Other networks can be obtained by choosing another value for D; slope. The nature of the
network cells depends on the chosen allocation direction.

Cappello and Steiglitz approach (Capello & Setiglitz, 1983) is close to Mongenet. It differs
from the canonical representation obtained by associating a temporal representation
indexed on the recurrency definition. Each index is associated to a dimension of the

www.intechopen.com

Systolic Petri Nets 77

geometrical space, and each point corresponds to a n-uple of indexes in which recurrency is
defined.

ass ass,
23, as2 an azn
13 an a3l ai an asi.
a QA21 a3 a1
an an
s X %1 l_V v \ 4 s % A 4 \ 4 \ 4
Co C C Go G C
Fig. 14. Systolic network for &=(1,1)er Fig. 15. Systolic network for £=(0,1)gr

Basic processings are thus directly represented in the functional specifications of the
architecture cells. The different geometrical representations and their corresponding
architectures are then obtained by applying geometrical transformations to the initial
representation.

3.2 Methods using sequential algorithms

Among all methods listed in (Quinton & Robert, 1991), we'll detail a bit more the Moldovan
approach (Moldovan, 1982) that is based on a transformation of sequential algorithms in a
high-level language.

The first step consists in deleting data diffusion in the algorithms by moving in series data to
be diffused. Thus, for (nxn)-matrices product, the sequential algorithm is :

Vi | 1<i<n, Vj | 1<j<n, Vk | 1<k<n, cnew(i,j)=co1a(i,j) + a(i k).b(k,j) 9)

If one loop index on variables a, b and c is missing, data diffusion become obvious. When
pipelining them, corresponding indexes are completed and artificial values are introduced
so that each data has only one use. New algorithm then becomes :

Vi | 1<i<n, Vj | 1<j<n, Vk | 1<k<n
aitl(i, k) = ai(i, k)
bit1(k, j) = bi(k, j
Sk1(i,)= (i,)+ aifi, k)bi(k,)
The algorithm is thus characterized by the set L" of indexes of n overlapped loops. Here,
L3 ={(kij) | 1<k<n, 1<i<n, 1<j<n }
which corresponds to the domain associated to the problem.

The second step consists in determining the set of dependency vectors for the algorithm. If
an iteration step characterized by a n-uple of indexes I(t) = {i'(t), i(t), ..., i*(t)}eLr uses a

www.intechopen.com

78 Petri Nets: Applications

data processed by an iteration step characterized by another n-uple of indexes J(t)= { ji(t),
(1), ..., j7(t) }eLn, then a dependency vector DE(t) associated to this data is defined :

DE(t) =J(t) - I(t)

Dependency vectors can be constant or depending of L» elements. Thus, for the previous
algorithm, processed data ck(i,j) at the step defined by (i, j, k-1) is used at the step (i, j, k).
This defines a first dependency vector di=(i, j, k) - (i, j, k-1) = (0, 0, 1). In the same way, step
(i, j, k) uses the ai(i, k) data processed at the step (i, j-1, k) as well as the bi(j, k) data processed
at the step (i-1, j, k). The two other dependency vectors of the problem are therefore
de2=(0,1,0) and de3=(1,0,0).

The next step consists in applying on the <L», E> structure a monotonous and bijective
transformation T (E is the order imposed by the dependency vectors), defined by :

T:<Ln, E> — <L, Er>

T is partitionned into :

IT: Ln — Ltk k<n
S:Ln— Lk

k gives the dimension of IT and S. It is such as the function results in the order Er. Thus, the
k first coordinates of | and Lt» depend on time, whereas the following n-k coordinates are
linked to the algorithm geometrical properties. For obtaining planar results, n-k must be less
or equal than 2.

In the case that the algorithm made of n loops is characterized by n constant dependency
vectors

DE = {dey, dey,... , den}

the transformation T is chosen linear, i.e. [=T . [

If vi is the dependency vector dej after transformation, Vi = T. DE; , the system to solve is
T.DE = A, DE = {v1, 3, ..., v }. Necessary and sufficient conditions for existence of a valid
transformation T for such an algorithm are :

-v; = DE{[qj] , cjbeing the HCF of the d; elements

- T.DE = A has a solution

- The first non-zero element of v; is positive

Therefore, in our exemple of matrix product, dependency vectors are defined by :

1 0 0
0 10 0
00 1

D=

A linear transformation T is such as T = A. The first non-zero element of v; being positive, we
consider IT .d; >0 and k =1 in order to size IT and S, with :

www.intechopen.com

Systolic Petri Nets 79

'rll JI:; i-|LI
I=\ty b ;:L'

[Tl O

In this case, I1.de; = t;; > 0 . Thus, we choose for t;;, i=1, ..., 3, the lowest positive values, i.e.
t11 = ti2 = t13 = 1. S is determined by taking into account that T is bijective and with a matrix
made of integers, i.e. Det(T) =+1. Among all possible solutions, we can choose :

I' 1 1
'=lop 1 0
oo 1

This transformation of the indexes set enables to deduce a systolic network :

- Functions processed by the cells are deduced from the algorithm mathematical
expressions. An algorithm similar to (9) contains instructions executed for each point of Ln.
Cells are thus identical, except for the peripherical ones. When loop processings are too
important, the loop is decomposed in several simple loops. The corresponding network
therefore requires several different cells.

- The network geometry is deduced from function S. Identification number for each cell is
given by S(I) = (j&*1, ..., jn) for IeLn. Interconnections between cells are deduced from the n-
k last components of each dependency vector v; after being transformed :

v =S(I + DE;) - S(I)
When T is linear :
v = S.DEj

For each cell, vp vectors indicate the identification number of the cell for the variable
associated to the vector. The network temporal processing is given by :

IT:Ln — Itk

The elementary processing corresponding to IeLn is performed at t=II(I). The
communication time for a data flow associated to the dependency vector DE; is given by
I1(I+DE)) - I (I), which is reduced to IT(DE;) when T is linear.

Using the integer k for sizes of ITand S with the lowest possible value, the number of
parallel operations is increased at the expense of cells number. Thus, when considering the
matrix product defined with the following linear transformation :

I 1 1
'=lo 1 0
00 1

S is defined by :

www.intechopen.com

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

@
Free-eBooks

http://www.free-ebooks.net/

