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1. INTRODUCTION

Switched systems are a class of hybrid systems encountered in many practical situations
which involve switching between several subsystems depending on various factors. Gen-
erally, a switching system consists of a family of continuous-time subsystems and a rule that
supervises the switching between them. This class of systems have numerous applications
in the control of mechanical systems, the automotive industry, aircraft and air traffic control,
switching power converters and many other fields. Two main problems are widely studied
in the literature according to the classification given in (Blanchini and Savorgnan, 2006): The
first one, which is the one solved in this work, looks for testable conditions that guarantee the
asymptotic stability of a switching system under arbitrary switching rules, while the second
is to determine a switching sequence that renders the switched system asymptotically sta-
ble (see (Liberzon and Morse, 1999) and the reference therein). Following the first approach,
(Blanchini et al., 2009) investigate the problem of designing a switching compensator for a
plant switching amongst a (finite) family of given configurations (Ai, Bi, Ci).
A main problem which is always inherent to all dynamical systems is the presence of actuator
saturations. Even for linear systems, this problem has been an active area of research for many
years. Besides approaches using anti-windup techniques (Mulder et al., 2004) and model pre-
dictive controls (Camacho and Bordons, 2004), two main approaches have been developed
in the literature: The first is the so-called positive invariance approach which is based on the
design of controllers which work inside a region of linear behavior where saturations do not
occur (see (Benzaouia and Burgat, 1988), (Benzaouia and Hmamed, 1993), (Blanchini, 1999)
and the references therein). This approach has already being applied to a class of hybrid sys-
tems involving jumping parameters (Benzaouia and Boukas, 2002). It has also been used to
design controllers for switching systems with constrained control under complete modelling
taking into account reset functions at each switch and different system’s dimension . The
second approach, however allows saturations to take effect while guaranteeing asymptotic
stability (see (Nguyen and Jabbari, 1999, 2000), (Tarbouriech et al., 2006), ( Hu et al., 2002)-
(Hu and Lin, 2002), (Benzaouia et al., 2006) and the references therein). The main challenge
in these two approaches is to obtain large domains of initial states which ensures asymptotic
stability for the system despite the presence of saturations (Gilbert and Tan 1991), (Benzaouia
and Baddou, 1999), (Benzaouia et al., 2002), ( Hu et al., 2002).
The objective of this chapter is to present the available results in the literature for switching
systems subject to actuator saturations. These results follow generally two ways: the first con-
cerns the synthesis of non saturating controllers ( controllers working inside a large region
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of linear behavior where the saturations do not occur), while the second extends the results
obtained for unsaturated switching systems by ( Mignone et al., 2000), ( Ferrari-Trecate et al.,
2001) and ( Daafouz et al., 2001, 2002) leading to saturating controllers ( controllers tolerating
saturations to take effect). The second method was firstly used in (Benzaouia et al., 2004) with
the use of a multiple Lyapunov function. However, only the intersection of all the correspond-
ing level sets of the local functions was considered as a region of asymptotic stability of the
switching system. This drawback is improved in (Benzaouia et al., 2006) and (Benzaouia et al.,
2009a) by considering, for the first time, a large set of asymptotic stability composed by the
union of all the level sets.
In this context, two main different sufficient conditions of asymptotic stability were obtained
for switching systems subject to actuator saturations. Furthermore, these conditions were pre-
sented in the form of LMIs for the state feedback control case. A particular attention was given
to the output feedback case which has an additive complexity due to the output equation. It
was also shown that the LMIs obtained for computing controllers working inside a large re-
gion of linear behavior are less conservative.
The obtained results are then extended to uncertain switching system subject to actuator sat-
urations as developed in (Benzaouia et al., 2009b) and (Benzaouia et al., 2009c) respectively.
The uncertainty types considered in these two works are the polytopic one and the struc-
tured one. This second type of uncertainty was also studied, without saturation, in (Hetel et
al., 2006). Thus, in this work (Benzaouia et al., 2009a), two directions are explored: the first
concerns the synthesis of non saturating controllers, while the second direction deals with
controllers tolerating saturations to take effect under polytopic uncertainties. For structured
uncertainties studies in (Benzaouia et al., 2009b), the synthesis of the controller follows two
different approaches, the first one deals firstly with the nominal system and then uses a test
to check the asymptotic stability in presence of uncertainties while the second considers the
global representation of the uncertain system.

2. Stabilization of switching systems subject to actuator saturation

2.1 PROBLEM FORMULATION

In this section, we give a more precise problem statement for the class of systems under con-
sideration, namely, discrete-time switching linear systems with input saturation and state or
output feedback. An equivalent description of such systems, based on the indicator function
is also used in this work. The main results of this section are published in (Benzaouia et al.,
2009a).
Thus, we consider systems described by:

x(t + 1) = Aαx(t) + Bαsat(u(t)) (1)

y(t) = Cαx(t)

where x ∈ R
n is the state, u ∈ R

m is the control, y ∈ R
p is the output, sat(.) is the

standard saturation function and α a switching rule which takes its values in the finite set
ℐ := {1, . . . , N}, t ∈ Z+. The saturation function is assumed here to be normalized, i. e.,
(∣sat(u)∣ = min{1, ∣u∣}). Each subsystem α is called a mode.

Definition 2.1. (Lygeros et al., 1999) An hybrid time basis τ is an infinite or finite sequence of sets
Is = {t ∈ N : ts ≤ t ≤ t̄s}, with t̄s = ts+1 for s ∈ ℒ = {0, . . . , L}, and if card(τ) = L + 1 < ∞

then t̄L can be finite or infinite.
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Throughout this chapter, it is assumed that:

• The switching system is stabilizable;

• Matrices Cα are of full rank;

• ts+1 ≥ ts + 1, ∀s ∈ ℒ;

• the switching rule is not known a priori but α(t) is available at each t.

The third assumption ensures that at each time only one subsystem is active. The fourth as-
sumption corresponds to practical implementations where the switched system is supervised
by a discrete-event system or operator allowing for α(t) to be known in real time.
In this work, we are interested by the synthesis of stabilizing controllers for this class of hybrid
systems subject to actuator saturation. We use a feedback control law as:

u(t) = Fαx(t) = Kαy(t), (2)

and write the closed-loop system as

x(t + 1) = Aαx(t) + Bαsat(Fαx(t)). (3)

= Aαx(t) + Bαsat(Kαy(t))

Upon introducing the indicator function:

ξ(t) = [ξ1(t), . . . , ξN(t)]T (4)

where ξi(t) = 1 if the switching system is in mode i and ξi(t) = 0 if it is in a different mode,
one can write the closed-loop system (3) as follows:

x(t + 1) =
N

∑
i=1

ξi(t)[Aix(t) + Bisat(Fix(t))]. (5)

=
N

∑
i=1

ξi(t)[Aix(t) + Bisat(KiCix(t))]

2.2 PRELIMINARY RESULTS

In this section, we recall two results on which our work is based. Let α be fixed. Then System
(3) becomes a linear time-invariant system with input saturation given by:

x(t + 1) = Ax(t) + Bsat(Fx(t)) (6)

Define the following subsets of R
n:

ε(P, ρ) = {x ∈ R
n∣xT Px ≤ ρ}, (7)

ℒ(F) = {x ∈ R
n∣∣Fl x∣ ≤ 1, l = 1, . . . , m}, (8)

with P a positive definite matrix, ρ > 0 and Fl the lth row of the matrix F ∈ R
m×n. Thus

ε(P, ρ) is an ellipsoid while ℒ(F) is a polyhedral consisting of states for which the saturation
does not occur.

Lemma 2.1. (Hu et al., 2002) For all u ∈ R
m and v ∈ R

m such that ∣vl ∣ < 1, l ∈ [1, m]

sat(u) ∈ co{Dsu + D−
s v, s ∈ [1, η]} ; η = 2m (9)

where co denotes the convex hull.
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Consequently, there exist δ1 ≥ 0, . . . , δη ≥ 0 with ∑
η
s=1 δs = 1 such that,

sat(u) =
η

∑
s=1

δs[Dsu + D−
s v] (10)

Here, Ds is an m by m diagonal matrix with elements either 1 or 0 and D−
s = Im − Ds. There

are 2m possible such matrices. One can also consult the work of (Benzaouia et al., 2006) for
more details and other extensions to linear systems with both constraints on the control and
the increment or rate of the control.
Consider the following autonomous switching system:

x(t + 1) =
N

∑
i=1

ξi(t)Aix(t) (11)

The use of the Lyapunov functions revealed two ways:

• The existence of a common Lyapunov function to the various subsystems guarantees
the asymptotic stability of the switching system. In general, the search for such function
is not always obvious (Shorten and Narenda, 1997, 1998).

• The multiple Lyapunov functions were introduced in (Branicky, 1998). They are con-
sidered as a strong tool in the analysis of the stability of the hybrid systems and in
particular the switching systems.

Proposition 2.1. (Branicky, 1998) If there exists a multiple Lyapunov function V(t, x), t ∈ Is, with
V : N × R

n −→ R+, such that the following hold:

• ∆V(t, x(t)) < 0, for any time t ∈ Is

• V(tk, x(tk)) < V(tk−1, x(tk−1), ∀k ∈ ℒ

then, the switching autonomous system (11) is asymptotically stable.

We now recall a useful stability result for switching systems with no input saturations pre-
sented by many authors ( see ( Mignone et al., 2000), ( Ferrari-Trecate et al., 2001) and ( Daafouz
et al., 2001, 2002)) firstly used for linear time varying systems ( Daafouz and Bernussou, 2001).

Theorem 2.1. The closed-loop switching system (11) is asymptotically stable at the origin if there exist
N symmetric and positive definite matrices P1, . . . , PN satisfying,

AT
i Pj Ai − Pi < 0, ∀(i, j) ∈ ℐ × ℐ (12)

A corresponding Lyapunov function for the system is then given by:

V(t, x) = xT(t)(
N

∑
i=1

ξi(t)Pi)x(t) (13)

It is worth to note that function V(t, x), which is a multiple Lyapunov function candidate
involving matrices Pi, can be seen as a standard Lyapunov function candidate. It was the way
followed by (Mignone et al., 2000) and (Daafouz et al., 2001, 2002). Further, condition (12) is
equivalent, by using Schur complement to,

[

Pi AT
i Pj

∗ Pj

]

> 0 , ∀(i, j) ∈ ℐ × ℐ (14)
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where ∗ denotes the transpose of the off diagonal element of the LMI. Subsequently, we will
need the following equivalent LMI representation of (14):

[

Xi Xi A
T
i

∗ Xj

]

> 0 , ∀(i, j) ∈ ℐ × ℐ (15)

where Xi = P−1
i . By noting that inequality (12) is equivalent to:

Gi A
T
i Pj AiG

T
i − GiPiG

T
i < 0, ∀(i, j) ∈ ℐ × ℐ (16)

for any nonsingular matrix Gi. By using the fact that (Gi − Xi)
T X−1

i (Gi − Xi) ≥ 0, implies

GiX
−1
i GT

i ≥ Gi + GT
i − Xi. The LMI (15) is also in turn equivalent to the following LMI,

generally used to relax the previous one (Daafouz et al., 2001, 2002):

[

Gi + GT
i − Xi GT

i AT
i

∗ Xj

]

> 0, ∀(i, j) ∈ ℐ × ℐ (17)

where matrices Gi called slack variables are nonsingular matrices and Xi the positive definite
matrices.
It is worth nothing that condition (12) has to be satisfied ∀(i, j) ∈ ℐ × ℐ , in particular for i = j.
This means that each mode is necessarily asymptotically stable and Vi(t, x) = xT(t)Pix(t) is
the associated Lyapunov function. Recall that a level set of the Lyapunov function V(t, x)
given by (13) and associated to the switching system (11) is given by the set ε(P, ρ) defined
by (7) with P = ∑

N
i=1 ξi(t)Pi. This region of asymptotic stability is very difficult to construct.

Nevertheless, an estimate can be obtained as large as possible as presented in the next section
based on the union of the sub-level ellipsoid sets ε(Pi, 1). Other type of level sets obtained
with different Lyapunov functions for switched systems can be found in (Hu et al., 2006). A
useful lemma is also recalled.

Lemma 2.2. Let R, S and Γ be matrices with appropriate dimension. Suppose Γ
T

Γ ≤ I, then for any
scalar λ > 0, we have:

RΓS + ST
Γ

T RT ≤ λRRT + λ−1SST (18)

2.3 Analysis and synthesis of stabilizability

In this section, the region of local asymptotic stability associated to the saturated switching
system is firstly studied. The design of a stabilizing controller for the class of switching system
with actuator saturation is then presented by following two ways, the first concerns controllers
working inside the region of linear behavior where the saturations do not occur while the
second is based on Lemma 2.1 tolerating saturations to occur.

2.3.1 Region of asymptotic stability

The link between the result of Theorem 2.1 and the level set (7) is not mentioned in (Mignone
et al., 2000) nor in (Daafouz et al., 2001, 2002). The absence of saturation on the control of the
switching systems in these works does not necessitate to take care with the level sets since
the asymptotic stability is global. We present here after an interesting result on this subject
inspired from the general class studied in (Benzaouia et al., 2007).
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Theorem 2.2. If there exist N symmetric positive definite matrices P1, . . . , PN such that the inequali-
ties (12) are satisfied then the set given by,

Ω =
N
∪

i=1

ε(Pi, 1) (19)

is a level set of the multiple Lyapunov function V(t, x) given by (13) with respect to the trajectories of
the autonomous switching system (11).

Proof: Note that condition (12) for i = j ensures that ∆V(t, x) < 0, for t ∈ Is, s ∈ ℒ (Daafouz
et al., 2001, 2002). Now let x(t̄k−1) ∈ ε(Pi, 1). What happens at the switching time t̄k−1?
For this, compute x(tk). With an identity reset function we have,

x(tk) = x(t̄k−1) (20)

The switch to the next region ε(Pj, 1) will be seen an unit time after,

x(tk + 1) = x(t̄k−1 + 1)

= Aix(t̄k−1) (21)

We have,

xT(tk + 1)Pjx(tk + 1) = xT(t̄k−1)
(

AT
i Pj Ai

)

x(t̄k−1) (22)

According to condition (12), one can obtain,

xT(tk + 1)Pjx(tk + 1) < xT(t̄k−1)Pix(t̄k−1) (23)

Since x(t̄k−1) ∈ ε(Pi, 1), then, x(tk + 1) ∈ ε(Pj, 1), ∀i, j ∈ ℐ × ℐ . This proves that V(tk, x(tk)) <
V(tk−1, x(tk−1)), ∀k ∈ ℒ. Consequently, function V(t, x) is a multiple Lyapunov function of
the switching system according to Proposition 2.1 and the set Ω is a level set associated to this
function. It is worth to note that the same reasoning holds for ε(Pj, ρ) for any positive scalar
ρ. □

Note that an important remark is to be done at this level: since the studied system is a switch-
ing one composed of N subsystems (modes), the switching system can be initialized inside
any level set ε(Pi, 1), however, the initial mode to be selected is the corresponding mode i.

2.3.2 State feedback control

We assume that the state is available, so a state feedback control can be performed. The first
result we present is a simple extension of known result given by (Gutman and Hagandar,
1985) for linear systems and concerns the synthesis of non saturating controllers ensuring that
a large region of linear behavior is a region of asymptotic stability.

Theorem 2.3. If there exists N symmetric matrices X1, . . . , XN and N matrices Y1, . . . , YN solutions
of the following LMIs:

[

Xi (AiXi + BiYi)
T

∗ Xj

]

> 0, (24)

[

1 Yli

∗ Xi

]

> 0, (25)

∀(i, j) ∈ ℐ × ℐ , ∀l ∈ [1, m]
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where Yli is the lth row of matrix Yi; then the switching system with saturations in closed-loop (3),
with,

Fi = YiX
−1
i , Pi = X−1

i (26)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: In order to guarantee that the control by state feedback is always admissible, each sub-
level set of the Lyapunov function has to be contained inside the polyhedral set where the
saturations do not occur ε(Pi, 1) ⊂ ℒ(Fi), ∀i ∈ ℐ (Gutman and Hagandar, 1985). Using (Boyd
et al., 1994), this inclusion condition can also be transformed to the equivalent LMI (25) by

letting Xi = P−1
i and FiXi = Yi. Let x(t) ∈ Ω, ∀t ∈ Is. According to condition (25), the system

in closed-loop (5) can be equivalently written as,

x(t + 1) =
N

∑
i=1

ξi(t)Aci x(t). (27)

with, Aci = Ai + BiFi. The proof follows from the asymptotic stability conditions of the
switching system given by Theorem 3.2, which is expressed equivalently by (15), with matrix
Aci instead of Ai. Further, Theorem 2.2 ensures that the set Ω is a set of asymptotic stability of
the switching system with saturations in closed-loop (3). □

To achieve a domain of attraction as large as possible, we can solve the following optimization
problem:

(Pb.1) :

⎧

⎨

⎩

sup(Xi ,Yi)
Trace(Xi)

s.t. (24), (25),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.
The obtained LMIs (24) of Theorem 2.1 are similar to those obtained in (Mignone et al., 2000)
and (Ferrari-Trecate et al., 2001) for non saturated switching systems. The presence of satu-
ration on the control in our problem leads to the additional LMIs (25), which will obviously
restrict the set of solutions. Nevertheless, the associated large region of asymptotic stability Ω

for the saturated switching system enables one to conclude that these LMIs are not conserva-
tive.
The second result we present concerns the synthesis of saturating controllers tolerating satu-
rations to take effect inside a large region of asymptotic stability.

Theorem 2.4. If there exist symmetric positive definite matrices P1, . . . , PN ∈ R
n×n and matrices

H1, . . . , HN ∈ R
m×n such that,

[

Pi [Ai + Bi(DisFi + D−

is Hi)]
T Pj

∗ Pj

]

> 0 , (28)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

and,
ε(Pi, 1) ⊂ ℒ(Hi), ∀i ∈ ℐ (29)

then, the closed-loop switching system (3) is asymptotically stable at the origin ∀x0 ∈ Ω and for all
sequences of switching α(t).
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Proof: Assume that there exist N matrices H1, . . . , HN and N symmetric matrices P1, . . . , PN

such that condition (28) and (29) are satisfied. Using the expression in (10) and rewriting
System (3) as in (5) yields that:

sat(Fix(t)) =
η

∑
s=1

δis(t)[DisFi + D−

is Hi]x(t) ; (30)

δsi(t) ≥ 0,
η

∑
s=1

δsi(t) = 1 (31)

and, subsequently :

x(t + 1) =
η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acisx(t); (32)

Acis := Ai + Bi(DisFi + D−
is Hi), s ∈ [1, η]

The rate of change of the Lyapunov function candidate (13) along the trajectories of (32) is
given by:

∆V(t, x(t)) = xT(t + 1)(
N

∑
j=1

ξ j(t + 1)Pj)x(t + 1)− xT(t)(
N

∑
i=1

ξi(t)Pi)x(t) = xT(t) (33)

⎡

⎣

(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛

⎝

N

∑
j=1

ξ j(t + 1)Pj

⎞

⎠

(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)

−
N

∑
i=1

ξi(t)Pi

⎤

⎦ x(t)

Let condition (28) be satisfied. At this level, for each i, multiply the j = 1, . . . , N inequalities
(28) by ξ j(t + 1) and sum. Multiply the resulting i = 1, . . . , N inequalities by ξi(t) and sum.

Multiply again the resulting s = 1, . . . , η inequalities by δis(t) and sum. As ∑
N
i=1 ξi(t) =

∑
N
j=1 ξ j(t + 1) = ∑

η
s=1 δis(t) = 1, one gets:

[

∑
N
i=1 ξi(t)Pi Γ ∑

N
j=1 ξ j(t + 1)Pj

∗ ∑
N
j=1 ξ j(t + 1)Pj

]

> 0, (34)

with, Γ =
[

∑
η
s=1 ∑

N
i=1 ξi(t)δis(t)Acis

]T
. The use of Schur complement allows us to write con-

dition (34) under the equivalent form,

(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)T
⎛

⎝

N

∑
j=1

ξ j(t + 1)Pj

⎞

⎠

(

η

∑
s=1

N

∑
i=1

ξi(t)δis(t)Acis

)

−
N

∑
i=1

ξi(t)Pi < 0, (35)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η]

Letting λ be the largest eigenvalue among all the above matrices, we obtain that

∆V(t, x(t)) ≤ λxT(t)x(t) < 0. (36)

which ensures the desired result. Noting that condition (28) is also satisfied for i = j, this
implies that each set ε(Pi, 1) is a contractively invariant set for the corresponding subsystem.
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Further, by taking account of condition (29), one can guarantee that for every xo ∈ ε(Pi, 1) ⊂
ℒ(Hi), each subsystem is asymptotically stable at the origin. Besides, following Theorem
2.2, conditions (28)-(29) also allow for a state belonging, before the switch, to a set ε(Pi, 1) ⊂

ℒ(Hi), if a switch occurs at any time tk, that the switch will handle the state to the desired set
ε(Pj, 1) ⊂ ℒ(Hj). That means that the set Ω is a set of asymptotic stability of the switching
system. □

This stability result can be used for control synthesis as follows.

Theorem 2.5. If there exists N symmetric matrices X1, . . . , XN and 2N matrices Y1, . . . , YN and
Z1, . . . , ZN solutions of the following LMIs:

[

Xi (AiXi + BiDisYi + BiD
−

is Zi)
T

∗ Xj

]

> 0, (37)

[

1 Zli

∗ Xi

]

> 0, (38)

∀(i, j) ∈ ℐ × ℐ , ∀s ∈ [1, η], ∀l ∈ [1, m]

then the switching system with saturations in closed-loop (3), with,

Fi = YiX
−1
i , Hi = ZiX

−1
i , Pi = X−1

i (39)

is asymptotically stable at the origin ∀x0 ∈ Ω and for any sequences of switching α(t).

Proof: The Inequalities (28) can be transformed equivalently by Schur complement to the
following:

Pj

[

Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[

Ai + Bi(DisFi + D−

is Hi)
]T

Pj − Pj < 0 (40)

By pre and post-multiplying the latter by P−1
j , it follows:

[

Ai + Bi(DisFi + D−

is Hi)
]

P−1
i

[

Ai + Bi(DisFi + D−

is Hi)
]T

− P−1
j < 0 (41)

Pose Xi = P−1
i , inequality (41) can then be rewritten as,

[

Ai + Bi(DisFi + D−

is Hi)
]

Xi

[

Ai + Bi(DisFi + D−

is Hi)
]T

− Xj < 0,

that is

[

AiXi + Bi(DisFiXi + D−

is HiXi)
]

X−1
i

[

AiXi + Bi(DisFiXi + D−

is HiXi)
]T

− Xj < 0.

The use of the Schur complement a second time leads to:

[

Xi (AiXi + BiDisFiXi + BiD
−

is HiXi)
T

∗ Xj

]

> 0 (42)

By letting FiXi = Yi and HiXi = Zi, the LMI (37) follows readily. Using (Boyd et al., 1994), the
inclusion condition (29) can also be transformed to the equivalent LMI (38). □
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To obtain larger ellipsoid domains ε(Pi, 1), we can apply the following optimization problem:

(Pb.2) :

⎧

⎨

⎩

sup(Xi ,Yi ,Zi)
Trace(Xi)

s.t. (37), (38),
i = 1, . . . , N

When this optimization problem is feasible, the obtained ellipsoid volumes are maximum
with respect to the data of the system.

Remark 2.1. The results presented in this section can be extended easily to level sets ε(Pi, ρi) where
the scalars ρi, i = 1, . . . , N can be a priori fixed, by using the variables Xi = Pi/ρi in the LMIs (24)-
(25) and (37)-(38).

Commennt 2.1. The resolution of the LMIs (37) for s ∈ [1, η], may be very restrictive. One can relax
this resolution by accepting controllers working in a region of linear behavior where the saturations
do not occur. The obtained results in this work, where the switching system is with saturated control,
are a set of (2m × N2 + Nm) LMIs for computing stabilizing controllers working inside the saturated
regions ℒ(Hi) or only a set of (N2 + Nm) LMIs for computing stabilizing controllers working inside
regions of linear behavior ℒ(Fi). Note also that the LMIs of Theorem 2.3 can be obtained from LMIs of
Theorem 2.5 by letting Dis = I and D−

is = 0.

Example 2.1. Consider a numerical switching discrete-time system with saturation specified by the
two subsystems:

A1 =

[

−0.7 1
−0.5 −1.5

]

; B1 =

[

1
0

]

; A2 =

[

0.9 −1
1.7 −1.5

]

; B2 =

[

0
−1

]

.

We have to solve 5 LMIs with 4 variables to compute controllers working inside a region of linear
behavior. The use of the Matlab LMI Toolbox to check our conditions leads to the following results
without using the optimization problem (Pb.1).

P1 =

[

7.3328 18.7125
18.7125 55.9711

]

; F1 =
[

1.2244 0.7535
]

; Ac1 =

[

0.5244 1.7535
−0.5000 −1.5000

]

;

P2 =

[

4.8237 −5.1001
−5.1001 5.6715

]

; F2 =
[

1.7559 −1.5699
]

; Ac2 =

[

0.9000 −1.0000
−0.0559 0.0699

]

;

Figure 1 presents the two ellipsoid sets of invariance and contractivity ε(Pi, 1) together with the sets
of linear behavior ℒ(Fi) computed with LMIs (24)-(25).
For the same example, the use of the Matlab LMI Toolbox to check conditions (37)-(38) leads to the
following results by using the optimization problem (Pb.2) with 10 LMIs and 6 variables.

P1 =

[

7.4032 18.1841
18.1841 56.6345

]

; H1 =
[

1.2534 0.8569
]

; F1 =
[

1.2641 0.8526
]

;

Ac1 =

[

0.5641 1.8526
−0.5000 −1.5000

]

;

P2 =

[

4.5202 −4.3908
−4.3908 6.5909

]

; H2 =
[

1.7693 −1.5845
]

; F2 =
[

1.7697 −1.5836
]

;

Ac2 =

[

0.9000 −1.0000
−0.0697 0.0836

]

;
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Fig. 1. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (24)-(25).

Note that the optimal values of the optimization problem (Pb.2) are given by Trace(P−1
1 ) = 0.7227

and Trace(P−1
2 ) = 1.0568. Figure 2 presents the two ellipsoid sets of invariance and contractivity

5 5 0 0.5 1 1.5

0

1

2

3

4

Fig. 2. The ellipsoids sets of invariance and contractivity for the switching discrete-time linear
system computed with LMIs (37)-(38) and (Pb.2).

ε(Pi, 1) together with the set of saturations ℒ(Hi) computed with (Pb.2).

Comparing the results obtained by LMIs (37)-(38) and LMIs (24)-(25), one can note that the
matrices Hi are very closed up to matrices Fi obtained with LMIs (37)-(38), that is, ℒ(Hi) ∼=
ℒ(Fi). This means that in the case of this example, the saturations allowed by this technique
are not very important. Recall that inside the sets ℒ(Fi) no saturations occur. Furthermore, the
results obtained with LMIs (24)-(25) are less conservative. This is due to the fact that among
the number of LMIs to be solved in (37)-(38), one find the LMIs (24)-(25).

2.3.3 Output feedback control

Static output-feedback control plays a very important role in control applications: The
purpose is to design controllers such that the resulting closed-loop system is asymptotically
stable without using any reconstruction method of the unavailable states. In this section,
we begin by the synthesis of the saturating controllers since the non saturating ones can be
derived as a particular case. The synthesis of the stabilizing controller by output feedback
control for the class of switching system with actuator saturation is presented by applying
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the results of Theorem 2.4.

Theorem 2.6. If there exist symmetric matrices Xi, matrices Vi, Yi and Zi solutions of the following
LMIs:

[

Xi (AiXi + BiDisYiCi + BiD
−
is Zi)

T

∗ Xj

]

> 0, (43)

[

1 Zil

∗ Xi

]

> 0, (44)

ViCi = CiXi (45)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV
−1
i , Hi = ZiX

−1
i , Pi = X−1

i (46)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: The same development as (40)-(42) while replacing Fi by KiCi, can be followed to ob-
tain,

[

Xi (AiXi + BiDisKiCiXi + BiD
−
is HiXi)

T

∗ Xj

]

> 0.

According to Equation (45), we have KiCiXi = KiViCi. By letting KiVi = Yi and HiXi = Zi,
the LMI (43) follows together with relations (46). Similarly, the inclusion condition (29) can
also be transformed to the equivalent LMI (44). Finally, the inequality (43) ensures that the
obtained solutions Xi are positive definite while equalities (45) guarantee that matrices Vi are
nonsingular. □

It is worth noting that the state feedback follows readily from Theorem 2.6 by letting Ci = Im.
In this case, Vi = Xi.
The LMI (43), relating matrices Ci to matrix Xi by means of Equation (45), can be relaxed by us-
ing the LMI (17), where the new variables Gi are related to matrices Ci instead of the matrix Xi.

Corollary 2.1. If there exist symmetric matrices Xi, matrices Gi, Vi, Yi and Zi solutions of the follow-
ing LMIs:

[

Gi + GT
i − Xi Ψ

T
is

∗ Xj

]

> 0, (47)

[

1, Zil

∗ Gi + GT
i − Xi

]

> 0, (48)

ViCi = CiGi (49)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

where Ψis = (AiGi + BiDisYiCi + BiD
−
is Zi), then the closed-loop saturated switching system (3) with

Ki = YiV
−1
i , Hi = ZiG

−1
i , Pi = X−1

i (50)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).
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Proof: The proof uses the equivalent LMI (17) and is similar to that of Theorem 2.6. However,
the inclusion condition ε(Pi, 1) ⊂ ℒ(Hi) ∀i ∈ ℐ holds if 1 − Hil Xi H

T
il > 0, ∀l ∈ [1, m], which

is equivalent to,

1 − (HiGi)l(G
T
i X−1

i Gi)
−1(HiGi)

T
l > 0. That is, by virtue of (50) 1 −

(Zil)(G
T
i X−1

i Gi)
−1(Zil)

T
> 0. Since, (Gi − Xi)

T X−1
i (Gi − Xi) ≥ 0, then GiX

−1
i GT

i ≥

Gi + GT
i − Xi. It follows that, 1− Zil(Gi + GT

i − Xi)ZT
il > 0 sufficient to have ε(Pi, 1) ⊂ ℒ(Hi).

By Schur complement, the LMI (48) is obtained. □

To achieve a domain of attraction as large as possible, we can solve similar optimization
problem as for state feedback control.
Another way to deal with the problem by relaxing the more constraining relations (45) of
Theorem 2.6, especially in MIMO case, is presented by the following result which uses the
same idea as in (El Ghaoui et al., 1997) and (Chadli et al., 2002).

Theorem 2.7. If there exist symmetric matrices Xi and Si, matrices Yi and Zi solutions of the following
LMIs:

[

Xi (Ai + BiDisYiCi + BiD
−
is Zi)

T

∗ Sj

]

> 0, (51)

[

1 Zil

∗ Xi

]

> 0, (52)

[

Xi, I

∗ Si

]

≥ 0 (53)

∀(i, j) ∈ ℐ2, ∀s ∈ [1, η], ∀l ∈ [1, m]

such that Trace(XiSi) = n, then the closed-loop saturated switching system (3) with

Ki = Yi, Hi = Zi, Pi = Xi (54)

is asymptotically stable ∀x0 ∈ Ω and all switching sequences α(k).

Proof: The inequality (28) can be equivalently transformed via the Schur Complement to the
following:

[

Ai + Bi(DisKiCi + D−
is Hi)

]T
Pj

[

Ai + Bi(DisKiCi + D−
is Hi)

]

− Pi < 0 (55)

The use of the Schur complement a second time leads to

[

Pi (Ai + BiDisKiCi + BiD
−
is Hi)

T

∗ P−1
j

]

> 0

(56)

By letting Xi = Pi, Sj = P−1
j , Yi = Ki and Zi = Hi, the LMI (51) follows together with relations

(54). The inclusion condition (29) can also be transformed to the equivalent LMI (52) (Boyd

et al., 1994): Hil P
−1
i HT

il ≤ 1 can be rewritten by Schur complement, while using Zi = Hi as
(52). Note that the LMI (51) ensures that the obtained solutions Xi and Si are positive definite.
Finally, the LMI (53) is equivalent to SiXi ≥ I. □
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This result presents the advantage of computing directly the matrices Ki and Hi. Neverthe-
less, an optimization problem must be solved to achieve XiSi ≃ I by minimizing iteratively
the trace of matrix XiSi using an algorithm presented in (El Ghaoui et al., 1997). This heuris-
tic is based on a linear approximation of Tr(XiSi) by Tr(X0Si + S0Xi) where X0 and S0 are
particular solutions of the LMI constraints (51), (52) and (53).

(Pb.3) :

⎧

⎨

⎩

min(Sj ,Xi ,Yi ,Zi) Trace(XiSi)

s.t. (51), (52), (53)
i, j = 1, . . . , N

An output feedback non saturating controller can be obtained, as noted in Comment 2.1, as
a particular case of the saturating controller results by letting Dis = I and D−

is = 0. It is also
obvious that the inclusion condition becomes ε(Pi, 1) ⊂ ℒ(KiCi). The following results are
then directly obtained.

Corollary 2.2. If there exist symmetric matrices Xi, matrices Vi and Yi solutions of the following
LMIs:

[

Xi (AiXi + BiYiCi)
T

∗ Xj

]

> 0, (57)

[

1 (YiCi)l

∗ Xi

]

> 0, (58)

ViCi = CiXi (59)

∀(i, j) ∈ ℐ2, ∀l ∈ [1, m]

then the closed-loop saturated switching system (3) with

Ki = YiV
−1
i , Pi = X−1

i (60)

is asymptotically stable ∀x0 ∈ Ω and for all switching sequences α(k).

Proof: This proof can be obtained easily by letting Dis = I and D−
is = 0 in Theorem 2.6.

However, the inclusion condition ε(Pi, 1) ⊂ ℒ(KiCi) leads to (KiCi)l P
−1
i (KiCi)

T
l ≤ 1 which is

equivalent to,

(KiCiP
−1
i )l Pi(KiCiP

−1
i )T

l ≤ 1,

by using (59), (KiViCi)l X
−1
i (KiViCi)

T
l ≤ 1, can be rewritten by Schur complement, while using

Yi = KiVi as (58). □

In a similar way, the result of Theorem 2.7 can be applied for designing non saturating controls
by letting Dis = I and D−

is = 0.

Example 2.2. In order to illustrate these results, consider a SISO saturated switching discrete-time
system with two modes given by the following matrices:

A1 =

[

1 1
0 1

]

; B1 =

[

10
5

]

; C1 =
[

1 1
]

A2 =

[

0 −1
0.0001 1

]

; B2 =

[

0.5
−2

]

; C2 =
[

2 3
]

−40 −30 −20 −10 0 10 20 30 40
−40

−30

−20

−10

0

10

20

30

40

x1

x2

www.intechopen.com



Stabilization of saturated switching systems 15

For this example with n = 2, m = p = 1 and N = 2, we have to solve 13 LMIs with 9 variables by
using the LMIs of Corollary 2.1. Let the scalar ρ = 1. The use of the Matlab LMI Toolbox yields the
following results:

P1 =

[

0.0016 0.0006
0.0006 0.0025

]

; H1 =
[

−0.0196 −0.0479
]

;

K1 = −0.0743; Ac1 =

[

0.2574 0.2574
−0.3713 0.6287

]

;

P2 =

[

0.0010 0.0004
0.0004 0.0027

]

; H2 =
[

0.000007 0.0483
]

;

K2 = 0.0347; Ac2 =

[

0.0615 −0.9077
−0.2460 0.6309

]

The main conditions (12) are also satisfied:

AcT
1 P2 Ac1 − P1 = 10−3

[

−0.0012 −0.0011
−0.0011 −0.0013

]

;

AcT
2 P1 Ac2 − P2 = 10−3

[

−0.0008 −0.0007
−0.0007 −0.0011

]

Figure 3 shows the level set as the union of two ellipsoid sets of invariance and contractivity for
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−40
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−20
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20

30

40
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x2

Fig. 3. The level set as the union of two ellipsoid sets of invariance and contractivity for the
switching discrete-time linear system obtained by Corollary 2.1.

the switching discrete-time linear system obtained by Corollary 2.1. Each ellipsoid set is contained
inside the set of admissible saturations ℒ(Hi). Inside this set, the asymptotic stability of the saturated
switching system is guaranteed for any arbitrary switch from any linear subsystem to another. This
SISO example is studied only in order to illustrate the results of this work by plotting the level set in
the plane. The use of Theorem 2.7 leads to the following results for ρ = 1 :

P1 =

[

1.0961 0.0848
0.0848 1.0290

]

; P2 =

[

1.5366 0.1255
0.1255 1.4821

]

;

S1 =

[

0.6553 −0.0555
−0.0555 0.6794

]

; S2 =

[

0.9182 −0.0756
−0.0756 0.9781

]

;
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H1 =
[

−0.0786 −0.1208
]

; K1 == −0.1007; H2 =
[

0.00004 0.5473
]

; K2 = 0.1812

The level set obtained with this approach is plotted in Figure 4 together with few trajectories.
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Fig. 4. The level set as the union of two ellipsoid sets of invariance and contractivity for
the switching discrete-time linear system obtained by Theorem 2.7 and the corresponding
switching sequences.

One can notice that the obtained level sets with Corollary2.1 are the most larger. One can
conclude, via this example, that the result of Corollary 2.1 is the less conservative among all
the other results due to the introduced slack variables Gi. Combining the comparisons made
for state feedback control and output feedback control, one can expect that the introduction of
slack variables in the Corollary 2.2 can lead to the more less conservative results.
In this section, two main different sufficient conditions of asymptotic stability are obtained
for switching discrete-time linear systems subject to actuator saturations for each case: state
feedback and output feedback control. The first allows the synthesis of stabilizing controllers
inside a large region of linear behavior while the second applies the idea of Lemma 2.1 which
rewrites the saturation function under a combination of 2m elements to obtain stabilizing con-
trollers tolerating saturations to take effect.

3. Stabilization of saturated switching systems with polytopic uncertainties

The objective of this section is to extend the results of (Benzaouia et al., 2006) to uncertain
switching system subject to actuator saturations. The uncertainty type considered in this
work is the polytopic one. This type of uncertainty was also studied, without saturation,
in (Hetel et al., 2006). Thus, in this work, two directions are explored: the first concerns the
synthesis of non saturating controllers, while the second direction deals with controllers

www.intechopen.com



Stabilization of saturated switching systems 17

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

tolerating saturations to take effect under polytopic uncertainties. The main results of this
section are published in (Benzaouia et al., 2009b).

3.1 Problem presentation

Let us consider the uncertain saturated switching discrete-time linear system described by:

{

xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(ut)

yt = Cα(qα(t))xt
(61)

where xt ∈ R
n, ut ∈ R

m, yt ∈ R
p are the state, the input and the output respectively, sat(.) is

the standard saturation (assumed here to be normalized, i.e., ∣sat(ut)∣ = min(1, ∣ut∣)), function
α(t) : N �−→ ℐ is a switching rule taking its values α(t) = i in the finite set ℐ = {1, ..., N} and
qα(t) ∈ Γα ⊂ R

dα are the bounded uncertainties that affect the system parameters in such a
way that

Aα(qα(t)) = Aα +
dα

∑
h=1

Aαhqαh(t) (62)

Bα(qα(t)) = Bα +
dα

∑
h=1

Bαhqαh(t) (63)

Cα(qα(t)) = Cα +
dα

∑
h=1

Cαhqαh(t) (64)

where matrices Aα, Bα, Cα represent the nominal matrices and qαh(t) the hth component of
vector qα(t) :

qα(t) = [qα1(t) qα2(t) ... qαh(t) ... qαdα
(t)]T .

The following additional assumption is required:

• Γα are compact convex sets.

Let the control be obtained by an output feedback control law:

ut = Kαyt = Fαxt,

Fα = KαCα. (65)

Thus, the closed-loop system is given by:

xt+1 = Aα(qα(t))xt + Bα(qα(t))sat(KαCα(qα(t))xt). (66)

Defining the indicator function:

ξ(t) := [ξ1(t), ..., ξN(t)]T , (67)

where ξi(t) = 1 if the switching system is in mode i and 0 otherwise, yields the following
representation for the closed-loop system:

xt+1 =
N

∑
i=1

ξi(t)[Ai(qi(t))xt + Bi(qi(t))sat(KiCi(qi(t))xt]. (68)

www.intechopen.com



Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

