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1. Introduction 
 

The problem of changes detection in dynamical properties of signals and systems appears 
in many problems of signal processing, navigation and control (Basseville & Benveniste, 
1986; Benveniste et al., 1987; Gadzhiev, 1992; Chen & Patton, 1999; Chan et al., 1999; 
Hajiyev & Caliskan, 2003; Vaswani, 2004; Tykierko, 2008; Li & Jaimoukha, 2009). 
Abnormal measurements, sudden shifts appearing in the measuring channel, faultiness of 
measuring devices, changes in statistical characteristics of noises of an object or of 
measurements, malfunctions in the computer, and also a sharp change in the trajectory of 
a monitoring process, etc. should be enumerated among these changes. In real situations 
of exploiting an object, the problem occurs of operative detection of such changes in order 
to subsequently correct estimators or to make timely decisions on the necessity and 
character of control actions with respect to the process of technical exploitation of the 
object. Under this process, different methods of control and diagnostics are used. 
Many fault detection methods have been developed to detect and identify sensor and 
actuator faults by using analytical redundancy (Zhang & Li, 1997; Rago et al., 1998; 
Maybeck, 1999; Larson et al., 2002; Lee & Lyou, 2002). In (Larson et al., 2002) an analytical 
redundancy-based approach for detecting and isolating sensor, actuator, and component 
(i.e., plant) faults in complex dynamical systems, such as aircraft and spacecraft is 
developed. The method is based on the use of constrained Kalman filters, which are able 
to detect and isolate such faults by exploiting functional relationships that exist among 
various subsets of available actuator input and sensor output data.  
A statistical change detection technique based on a modification of the standard 
generalized likelihood ratio (GLR) statistic is used to detect faults in real time. The GLR 
test requires the statistical characteristics of the system to be known before and after the 
fault occurs. As this information is usually not available after the fault, the method has 
limited applications in practice. An integrated robust fault detection and isolation (FDI) 
and fault tolerant control (FTC) scheme for a fault in actuators or sensors of linear 
stochastic systems subjected to unknown inputs (disturbances) is presented in (Lee & 
Lyou, 2002). The FDI modules is constructed using banks of robust two-stage Kalman 
filters, which simultaneously estimate the state and the fault bias, and generate residual 
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sets decoupled from unknown disturbances. All elements of residual sets are evaluated by 
using a hypothesis statistical test, and the fault is declared according to the prepared 
decision logic. In this work it is assumed that single fault occurs at a time and the fault 
treated is of random bias type. The diagnostic method presented in the article is valid only 
for the control surface FDI.  
In (Zhang & Li, 1997; Rago et al., 1998) the algorithms for detection and diagnosis of 
multiple failures in a dynamic system are described. They are based on the Interacting 
Multiple-Model (IMM) estimation algorithm, which is one of the most cost-effective 
adaptive estimation techniques for systems involving structural as well as parametric 
changes. The proposed algorithms provide an integrated framework for fault detection, 
diagnosis, and state estimation. In (Maybeck, 1999) Multiple model adaptive estimation 
(MMAE) methods have been incorporated into the design of a flight control system for the 
variable in-flight stability test aircraft (VISTA) F-16, providing it with the capability to 
detect and compensate for sensor/actuator failures. The algorithm consists of a “front 
end” estimator for the control system, composed of a bank of parallel Kalman filters, each 
matched to a specific hypothesis about the failure status of the system (fully functional or 
a failure in any one sensor or actuator), and a means of blending the filter outputs through 
a probability-weighted average. In methods described in (Zhang & Li, 1997; Rago et al., 
1998; Maybeck, 1999), the faults are assumed to be known, and the Kalman filters are 
designed for the known sensor/actuator faults. As the approach requires several parallel 
Kalman filters, and the faults should be known, it can be used in limited applications. 
In the references (Napolitano et al., 1993; Raza, et al., 1994; Napolitano, et al., 1996; Borairi 
& Wang, 1998; Alessandri, 2003) the neural network based methods to detect 
sensor/actuator failures are developed and discussed. In the reference (Napolitano  et al., 
1993) a neural network is proposed as an approach to the task of failure detection 
following damage to an aerodynamic surface of an aircraft flight control system. This 
structure, used for state estimation purpose, can be designed and trained on line in flight 
and generates a residual signal indicating the damage as soon as it occurs. In (Raza et al., 
1994)  the problem of detecting control surface failures of a high performance aircraft is 
considered. The detection model is developed using a linear dynamic model of an F/A-18 
aircraft. Two parallel models detect the existence of a surface failure, whereas the isolation 
and magnitude of any one of the possible failure modes is estimated by a decision 
algorithm using either neural networks or fuzzy logic. The reference (Napolitano et al., 
1996) describes a study related to the testing and validation of a neural-network based 
approach for the problem of actuator failure detection and identification following battle 
damage to an aircraft control surface. Online learning neural architectures, trained with 
the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in 
the presence of sensor noise. In (Borairi & Wang,1998) an approach for the fault detection 
and diagnosis of the actuators and sensors in non-linear systems is presented. First, a 
known non-linear system is considered, where an adaptive diagnostic model 
incorporating the estimate of the fault is constructed. Further, unknown nonlinear 
systems are studied and a feed forward neural network trained to estimate the system 
under healthy conditions. Genetic algorithms is proposed as a means of optimizing the 
weighting connections of neural network and to assist the diagnosis of the fault. In 
(Alessandri, 2003) a neural network based method to detect faults in nonlinear systems is 
proposed. Fault diagnosis is accomplished by means of a bank of estimators, which 

provide estimates of parameters that describe actuator, plant, and sensor faults. The 
problem of designing such estimators for general nonlinear systems is solved by searching 
for optimal estimation functions. These functions are approximated by feed forward 
neural networks and the problem is reduced to find the optimal neural weights. The 
methods based on artificial neural networks and genetic algorithms do not have physical 
bases. Therefore according to the different data corresponding to the same event the 
model gives different solutions. Thus, the model should continuously be trained by using 
the new data. 
The reference (Perhinschi et al., 2002) focuses on specific issues relative to real-time on-
line estimation of aircraft aerodynamic parameters at nominal and post-actuator failure 
flight conditions. A specific parameter identification (PID) method, based on Fourier 
Transform, has been applied to an approximated mathematical model of the NASA IFCS 
F-15 aircraft. The direct evaluation of stability and control derivatives versus the 
estimation of the coefficients of the state space system matrices evaluation has been 
considered. This method may not produce good results when the number of the stability 
and control derivatives is high. 
In this direction of studies, it is necessary to mention the theory of diagnostics of a 
dynamic system by the innovation sequence of the Kalman filter (Mehra & Peschon, 1971; 
Willsky, 1976; Basseville &  Benveniste, 1986; Gadzhiev, 1992, 1993; Hajiyev & Caliskan, 
2003, 2005). The advantages of these methods are as follows: they provide the monitoring 
of the correctness of the result obtained by current working input actions; they do not 
require a priori information on the values of changes in the statistical characteristics of the 
innovation sequence in the case of fault; they allow one to solve the fault detection 
problem in real time; they require small computational expenditures for their realizations 
since they do not increase, in contrast to the most algorithmic methods, the dimension of 
the initial problem. 
As is known (Mehra & Peschon, 1971), in the case where a system is normally operated, 
the normalized innovation sequence in the Kalman filter compatible with the model of 
dynamics is the white Gaussian noise with zero mean and identity covariance matrix. The 
faults appearing in the system of estimations lead to the changes in these statistical 
characteristics of the normalized innovation sequence. Therefore, in this case, the fault 
detection problem is reduced to the problem of fastest detection of the deviation of these 
characteristics from nominal. 
In (Hajiyev & Caliskan, 2005) the sensor and control surface/actuator failures that affect 
the mean of the innovation sequence have been considered. The methods of testing the 
correspondence between the innovation sequence and the white noise and of revealing 
the change of its expectation are based on the classical statistical methods and are 
considered in detail in the literature (Mehra & Peschon, 1971; Hajiyev & Caliskan, 2003, 
2005) therefore, it shall not be concentrated on testing these characteristics. 
Testing, in real time, the covariance matrix of the innovation sequence of the Kalman filter 
turns out to be very complicated and not well developed, since there are difficulties in the 
determination of the confidence domain for a random matrix. Moreover, the existing 
methods of high-dimensional statistical analysis (Anderson, 1984; Kendall & Stuart, 1969) 
usually lead to asymptotic distributions; this sharply diminishes the operativeness of 
these methods. The method of testing the covariance matrix of the innovation sequence 
proposed in (Gadzhiev, 1992) on the basis of using the statistics of the ratio of two 

www.intechopen.com



Sensor and Actuator/Surface Failure Detection Based  
on the Spectral Norm of an Innovation Matrix 197

sets decoupled from unknown disturbances. All elements of residual sets are evaluated by 
using a hypothesis statistical test, and the fault is declared according to the prepared 
decision logic. In this work it is assumed that single fault occurs at a time and the fault 
treated is of random bias type. The diagnostic method presented in the article is valid only 
for the control surface FDI.  
In (Zhang & Li, 1997; Rago et al., 1998) the algorithms for detection and diagnosis of 
multiple failures in a dynamic system are described. They are based on the Interacting 
Multiple-Model (IMM) estimation algorithm, which is one of the most cost-effective 
adaptive estimation techniques for systems involving structural as well as parametric 
changes. The proposed algorithms provide an integrated framework for fault detection, 
diagnosis, and state estimation. In (Maybeck, 1999) Multiple model adaptive estimation 
(MMAE) methods have been incorporated into the design of a flight control system for the 
variable in-flight stability test aircraft (VISTA) F-16, providing it with the capability to 
detect and compensate for sensor/actuator failures. The algorithm consists of a “front 
end” estimator for the control system, composed of a bank of parallel Kalman filters, each 
matched to a specific hypothesis about the failure status of the system (fully functional or 
a failure in any one sensor or actuator), and a means of blending the filter outputs through 
a probability-weighted average. In methods described in (Zhang & Li, 1997; Rago et al., 
1998; Maybeck, 1999), the faults are assumed to be known, and the Kalman filters are 
designed for the known sensor/actuator faults. As the approach requires several parallel 
Kalman filters, and the faults should be known, it can be used in limited applications. 
In the references (Napolitano et al., 1993; Raza, et al., 1994; Napolitano, et al., 1996; Borairi 
& Wang, 1998; Alessandri, 2003) the neural network based methods to detect 
sensor/actuator failures are developed and discussed. In the reference (Napolitano  et al., 
1993) a neural network is proposed as an approach to the task of failure detection 
following damage to an aerodynamic surface of an aircraft flight control system. This 
structure, used for state estimation purpose, can be designed and trained on line in flight 
and generates a residual signal indicating the damage as soon as it occurs. In (Raza et al., 
1994)  the problem of detecting control surface failures of a high performance aircraft is 
considered. The detection model is developed using a linear dynamic model of an F/A-18 
aircraft. Two parallel models detect the existence of a surface failure, whereas the isolation 
and magnitude of any one of the possible failure modes is estimated by a decision 
algorithm using either neural networks or fuzzy logic. The reference (Napolitano et al., 
1996) describes a study related to the testing and validation of a neural-network based 
approach for the problem of actuator failure detection and identification following battle 
damage to an aircraft control surface. Online learning neural architectures, trained with 
the Extended Back-Propagation algorithm, have been tested under nonlinear conditions in 
the presence of sensor noise. In (Borairi & Wang,1998) an approach for the fault detection 
and diagnosis of the actuators and sensors in non-linear systems is presented. First, a 
known non-linear system is considered, where an adaptive diagnostic model 
incorporating the estimate of the fault is constructed. Further, unknown nonlinear 
systems are studied and a feed forward neural network trained to estimate the system 
under healthy conditions. Genetic algorithms is proposed as a means of optimizing the 
weighting connections of neural network and to assist the diagnosis of the fault. In 
(Alessandri, 2003) a neural network based method to detect faults in nonlinear systems is 
proposed. Fault diagnosis is accomplished by means of a bank of estimators, which 

provide estimates of parameters that describe actuator, plant, and sensor faults. The 
problem of designing such estimators for general nonlinear systems is solved by searching 
for optimal estimation functions. These functions are approximated by feed forward 
neural networks and the problem is reduced to find the optimal neural weights. The 
methods based on artificial neural networks and genetic algorithms do not have physical 
bases. Therefore according to the different data corresponding to the same event the 
model gives different solutions. Thus, the model should continuously be trained by using 
the new data. 
The reference (Perhinschi et al., 2002) focuses on specific issues relative to real-time on-
line estimation of aircraft aerodynamic parameters at nominal and post-actuator failure 
flight conditions. A specific parameter identification (PID) method, based on Fourier 
Transform, has been applied to an approximated mathematical model of the NASA IFCS 
F-15 aircraft. The direct evaluation of stability and control derivatives versus the 
estimation of the coefficients of the state space system matrices evaluation has been 
considered. This method may not produce good results when the number of the stability 
and control derivatives is high. 
In this direction of studies, it is necessary to mention the theory of diagnostics of a 
dynamic system by the innovation sequence of the Kalman filter (Mehra & Peschon, 1971; 
Willsky, 1976; Basseville &  Benveniste, 1986; Gadzhiev, 1992, 1993; Hajiyev & Caliskan, 
2003, 2005). The advantages of these methods are as follows: they provide the monitoring 
of the correctness of the result obtained by current working input actions; they do not 
require a priori information on the values of changes in the statistical characteristics of the 
innovation sequence in the case of fault; they allow one to solve the fault detection 
problem in real time; they require small computational expenditures for their realizations 
since they do not increase, in contrast to the most algorithmic methods, the dimension of 
the initial problem. 
As is known (Mehra & Peschon, 1971), in the case where a system is normally operated, 
the normalized innovation sequence in the Kalman filter compatible with the model of 
dynamics is the white Gaussian noise with zero mean and identity covariance matrix. The 
faults appearing in the system of estimations lead to the changes in these statistical 
characteristics of the normalized innovation sequence. Therefore, in this case, the fault 
detection problem is reduced to the problem of fastest detection of the deviation of these 
characteristics from nominal. 
In (Hajiyev & Caliskan, 2005) the sensor and control surface/actuator failures that affect 
the mean of the innovation sequence have been considered. The methods of testing the 
correspondence between the innovation sequence and the white noise and of revealing 
the change of its expectation are based on the classical statistical methods and are 
considered in detail in the literature (Mehra & Peschon, 1971; Hajiyev & Caliskan, 2003, 
2005) therefore, it shall not be concentrated on testing these characteristics. 
Testing, in real time, the covariance matrix of the innovation sequence of the Kalman filter 
turns out to be very complicated and not well developed, since there are difficulties in the 
determination of the confidence domain for a random matrix. Moreover, the existing 
methods of high-dimensional statistical analysis (Anderson, 1984; Kendall & Stuart, 1969) 
usually lead to asymptotic distributions; this sharply diminishes the operativeness of 
these methods. The method of testing the covariance matrix of the innovation sequence 
proposed in (Gadzhiev, 1992) on the basis of using the statistics of the ratio of two 
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quadratic forms, whose matrices are reversed sample and theoretical covariance matrices, 
is free from the above-mentioned shortcoming. Nevertheless, the results obtained in 
(Gadzhiev, 1992)  are valid only in the case where the reversed matrices which enter the 
expression of the monitoring statistics are nonsingular. 
In practice, therefore, one makes use of  a scalar measure of this matrix such as the trace, 
sum of the matrix elements, generalized variance (determinant), eigenvalues of a matrix, 
etc., each characterizing one or another geometrical parameter of the correlation ellipsoid.  
The algorithm for testing the trace of the covariance matrix of the innovation sequence is 
presented in (Mehra & Peschon, 1971).  But the trace testing algorithm ignores the off-
diagonal elements of the covariance matrix. Therefore this algorithm cannot detect very 
small changes, in the measurement channel (Hajiyev & Caliskan, 2003). 
In (Gadzhiev, 1993) a confidence range has been constructed for the generalized variance 
of the Wishart matrix using Chebyshev inequality. However as it is known (Krinetsky et 
al., 1979), the Chebyshev inequality gives the extended confidence range for the random 
variables. Therefore in this case the miss-failure probability increases.   
Most of fault detection tests are based on the statistical properties of the eigenvalues of 
the sample covariance matrix (Bienvenu & Kopp, 1983; Wax & Kailath, 1985). In (Wu et al., 
1995) an algorithm based on the geometrical location of these eigenvalues has been 
proposed. In (Grouffaud et al., 1996) a new kind of test based on an analytic expression of 
the ordered eigenvalues profile, obtained under noise only hypothesis. Strategy in this 
work consists in looking for a break in profile by comparing observed profile and noise 
only one. The decision is taken by comparing the error of prediction with the threshold, 
which is obtained by solving the integral equation. Unfortunately, the distributions 
entering in this equation are not analytically known, hence it is difficult to determine the 
threshold and perform the proposed algorithm. 
There exists some interesting results on the distribution of eigenvalues, characteristic 
function of eigenvalues, and distribution and moments of the smallest eigenvalue of 
Wishart distributed matrices (Malik, 2003; Zanella et al., 2008; Edelman, 1991; Everson & 
Stephen, 2000). But application of mentioned works to fault detection problem of 
multidimensional dynamic systems turns out to be very complicated since there are 
difficulties in determining the confidence domain (or intervals) for the eigenvalues of 
random matrix. 
In this study, an approach to detect the aircraft sensor and actuator/surface failures based 
on the spectral norm of an innovation matrix is proposed. A real-time detection of sensor 
and actuator/surface failures affecting the mean and variance of the innovation process 
applied to F-16 fighter flight dynamic is examined. A decision approach to isolate the 
sensor and actuator/surface failures based on the Adaptive Extended Kalman Filter 
insensitive to sensor failures is proposed. 
The structure of this chapter is as follow. In Section 2, the failure detection problem in 
multidimensional dynamic systems using spectral norm of the innovation matrix of the 
Kalman filter is formulated. The upper confidence bound of the spectral norm of a 
Gaussian random matrix that consists of normally distributed random variables with zero 
mean is found and a new failure detection approach based on the properties of the 
spectral norm of the innovation matrix is proposed in this Section. In Section 3 the 
AFTI/F-16 aircraft model description is given and the Extended Kalman filter (EKF) for 
the F-16 nonlinear dynamic model estimation is designed. In Section 4 an adaptive EKF 

for the F-16 aircraft state estimation which is insensitive to sensor failures is designed and 
a decision approach to isolate the sensor and actuator/surface failure is proposed. In 
Section 5 some simulations are carried out for the sensor and actuator/surface failure 
detection problem in the AFTI/F-16 aircraft flight control system. The changes that affect 
the mathematical expectation and variance of the innovation sequence have been 
considered. Simulation results of adaptive EKF insensitive to sensor failures are given in 
this section too. Section 6 gives a brief summary of the obtained results and conclusions. 

 
2. Failure Detection Using Spectral Norm of the Innovation Matrix 

In diagnosing some dynamic systems, of special interest now are the methods of dynamic 
diagnosis that take into account influence of failures on system dynamics, in particular, 
revealing failures based on the analysis of the innovation sequence. Let us consider the 
linear dynamic system described by the equation of state 
 

)k(w)k,1k(G)k(x)k,1k()1k(x                                        (1) 
 
and the equation of measurements 
 

)k(V)k(x)k(H)k(z  ,                                                 (2) 
 
where )k(x  is an N - dimensional vector of system state;  )k,1k   is the NN  
transition matrix of the system; )k(w  is a random N - dimensional vector of disturbances 
(system noise);  k,1kG   is the NN  transition matrix of system noise; )k(z  is the n - 
dimensional vector of measurements; )k(H is the Nn   matrix of measurements of the 
system; and )k(V  is a random n - dimensional vector of measurement noise. Assume that 
random vectors )k(w  and )k(V  are a Gaussian white noise. Their mean values and 
covariance are determined by the expressions 
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Here E  is the operator of statistical averaging; T  is the sign of transposition; and  kj   is 
the Kronecker delta symbol. Note that  )k(w  and  )k(V  are assumed mutually 
uncorrelated. 
Estimate of the state vector  )k/k(x̂   and covariance matrix of estimation errors )k/k(P   
can be found using the optimum linear discrete Kalman filter (Sage and Melsa, 1971): 
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quadratic forms, whose matrices are reversed sample and theoretical covariance matrices, 
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In practice, therefore, one makes use of  a scalar measure of this matrix such as the trace, 
sum of the matrix elements, generalized variance (determinant), eigenvalues of a matrix, 
etc., each characterizing one or another geometrical parameter of the correlation ellipsoid.  
The algorithm for testing the trace of the covariance matrix of the innovation sequence is 
presented in (Mehra & Peschon, 1971).  But the trace testing algorithm ignores the off-
diagonal elements of the covariance matrix. Therefore this algorithm cannot detect very 
small changes, in the measurement channel (Hajiyev & Caliskan, 2003). 
In (Gadzhiev, 1993) a confidence range has been constructed for the generalized variance 
of the Wishart matrix using Chebyshev inequality. However as it is known (Krinetsky et 
al., 1979), the Chebyshev inequality gives the extended confidence range for the random 
variables. Therefore in this case the miss-failure probability increases.   
Most of fault detection tests are based on the statistical properties of the eigenvalues of 
the sample covariance matrix (Bienvenu & Kopp, 1983; Wax & Kailath, 1985). In (Wu et al., 
1995) an algorithm based on the geometrical location of these eigenvalues has been 
proposed. In (Grouffaud et al., 1996) a new kind of test based on an analytic expression of 
the ordered eigenvalues profile, obtained under noise only hypothesis. Strategy in this 
work consists in looking for a break in profile by comparing observed profile and noise 
only one. The decision is taken by comparing the error of prediction with the threshold, 
which is obtained by solving the integral equation. Unfortunately, the distributions 
entering in this equation are not analytically known, hence it is difficult to determine the 
threshold and perform the proposed algorithm. 
There exists some interesting results on the distribution of eigenvalues, characteristic 
function of eigenvalues, and distribution and moments of the smallest eigenvalue of 
Wishart distributed matrices (Malik, 2003; Zanella et al., 2008; Edelman, 1991; Everson & 
Stephen, 2000). But application of mentioned works to fault detection problem of 
multidimensional dynamic systems turns out to be very complicated since there are 
difficulties in determining the confidence domain (or intervals) for the eigenvalues of 
random matrix. 
In this study, an approach to detect the aircraft sensor and actuator/surface failures based 
on the spectral norm of an innovation matrix is proposed. A real-time detection of sensor 
and actuator/surface failures affecting the mean and variance of the innovation process 
applied to F-16 fighter flight dynamic is examined. A decision approach to isolate the 
sensor and actuator/surface failures based on the Adaptive Extended Kalman Filter 
insensitive to sensor failures is proposed. 
The structure of this chapter is as follow. In Section 2, the failure detection problem in 
multidimensional dynamic systems using spectral norm of the innovation matrix of the 
Kalman filter is formulated. The upper confidence bound of the spectral norm of a 
Gaussian random matrix that consists of normally distributed random variables with zero 
mean is found and a new failure detection approach based on the properties of the 
spectral norm of the innovation matrix is proposed in this Section. In Section 3 the 
AFTI/F-16 aircraft model description is given and the Extended Kalman filter (EKF) for 
the F-16 nonlinear dynamic model estimation is designed. In Section 4 an adaptive EKF 

for the F-16 aircraft state estimation which is insensitive to sensor failures is designed and 
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detection problem in the AFTI/F-16 aircraft flight control system. The changes that affect 
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considered. Simulation results of adaptive EKF insensitive to sensor failures are given in 
this section too. Section 6 gives a brief summary of the obtained results and conclusions. 
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transition matrix of the system; )k(w  is a random N - dimensional vector of disturbances 
(system noise);  k,1kG   is the NN  transition matrix of system noise; )k(z  is the n - 
dimensional vector of measurements; )k(H is the Nn   matrix of measurements of the 
system; and )k(V  is a random n - dimensional vector of measurement noise. Assume that 
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Estimate of the state vector  )k/k(x̂   and covariance matrix of estimation errors )k/k(P   
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Here )k(K  is the gain matrix of the Kalman filter; )k(  is the innovation sequence; I is a 
unit matrix; )1k/k(P    is the covariance matrix of extrapolation errors  and 

)1k/1k(P   is the covariance matrix of estimation errors at the previous step. 
If there are no faults in the estimation system, then the normalized innovation sequence 
   ),k()k(R)k(H)1k/k(P)k(H)k(~ 2/1T  

                                  (5) 

 
in the Kalman filter (4) coordinated with the model dynamics is a Gaussian white noise 
with zero mean and a unit covariance matrix (Mehra and Peschon, 1971) 
     ).kj(IP)j(~)k(~E;0)k(~E ~T                                             (6) 
 
Failures that change system dynamics due to abrupt changes or shifts in components of 
the state vector, faults in computer, abnormal measurements, sudden shifts appearing in 
the channel of measurement, divergence of the estimation algorithm, and also such faults 
as a decrease in device accuracy, noise increase, etc. will result in changes of the above 
characteristics of the sequence of  )k(~ . Of interest is development of an on-line method 
of a simultaneous check of mathematical expectation and variance of the normalized 
innovation sequence (5) that does not require a priori information on the values of their 
changes in case of failure and allows one to detect on-line faults in the estimation system. 
To do this, two hypotheses are introduced:  
 

0  : the Kalman filter operates normally; 
                                           1  : a failure takes place. 
 
To reveal a failure, let us construct a matrix whose columns are vectors of innovation of 
the Kalman filter (Hajiyev, 2007). The following definitions are introduced. 

Definition 1. By the innovation matrix of the Kalman filter a rectangular mn   matrix ( n  
is the dimension of the innovation vector; 2m;2n  ) is mentioned, whose columns are 
the innovation vectors  )k(  that correspond to m  different instants of time. 

Definition 2. The innovation matrix composed of the normalized innovation vectors )k(~  
is referred as the normalized innovation matrix of the Kalman filter. 

Hereinafter, to check the innovation sequence, the normalized innovation matrices A  that 
consist of a finite number of normalized innovation vectors will be used. For a real-time 
check, it is expedient, at the instant of time )mk(k  , to construct the matrix )k(A  from a 
finite number m )2m(   of sequential innovation vectors: 
 

)k(A =    
m

)k(~),1k(~),2k(~  .                                              (7) 

 
To verify the hypothesis 0  and 1 , a spectral norm of the matrix (7) below will be used.  

 
2.1 Deriving the Upper Confidence Bound of the Spectral Norm of a Random Matrix 
As is generally known (Horn and Jonson, 1986), the spectral norm 2.  of a real matrix  

)k(A  is determined by the formula 
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eigenvalues of the matrix  )k(A)k(A T , i.e., the quantities   2/1T
i ))k(A)k(A( , are called 

the singular values of the matrix  )k(A . Therefore, spectral norm of the matrix )k(A   is 

equal to its maximum singular value. Since the matrix )k(A)k(A T  is Hermitian,     )k(A)k(A)k(A)k(A)k(A)k(A TTTTTT  , and is positive definite, i.e., for any nonzero 
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(parentheses designate here a scalar product), the singular values are real and positive. 
For the same reasons, computation of singular values and, consequently, also of spectral 
norm, is more simpler than deriving eigenvalues for an arbitrary matrix. This explains the 
choice of spectral norm of matrices as a controllable scalar measure in solving some 
diagnosis problems. Of interest is here deriving the upper bound of the spectral norm of 
random matrices. 
In the present study, based on the calculation of a respective vector and matrix norms, an 
analytical expression is found for the upper bound of spectral norm of a random matrix 

mnR)k(A   composed of normally distributed random variables with zero mathematical 
expectation. The results of the above analysis are applied to the case of dynamic diagnosis 
of the Kalman filter in innovation sequence. 
Let the Euclidean norm (or the 2-norm) of the vector nRx  and the spectral norm (or the 
2-norm) of the matrix  mnR)k(A    be determined by the expressions 
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choice of spectral norm of matrices as a controllable scalar measure in solving some 
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where  .max  and  .max  are the maximum eigenvalue and maximum singular value of 
the respective matrix. 
The Frobenius norm of the matrix    mn
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where  )(tr  is the trace of the matrix. The Frobenius norm and the 2-norm are related as 
follows (Chan  et al.,1999): 
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where  mnR)k(A   and   mRx . Since 0x  ,  let us present expression (12) in the 
equivalent form 
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Inequality (13) is true for all  mnR)k(A  , mRx , 0x  , including the maximum value 
of the left-hand side of the inequality, i.e., 
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As is generally known (Horn and Jonson, 1986), the matrix norm associated with the 
respective vector norm is the relation 
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If the Euclidean norm 2x  is selected as the vector norm, then the respective matrix norm 
is the maximum singular value of the matrix A, i.e., 
  AA max .                                                     (16) 
 

Regarding (14) – (16), the following inequality can be written, 
   Fmax2 AAA  .                                              (17) 
 
Let the matrix  mnR)k(A   be composed of normally distributed random variables with 
zero mathematical expectation and the mean-square deviation , i.e., 
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Consequently, the quantity  2
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m
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2
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 will have the 2 -distribution with 

1nmk   degrees of freedom (Rao, 1965).  It is easy to establish a relation between  
 Amax  and  2 : 

   Fmax AA   ,                                                    (19) 
 

where    2
FA  . 

Specifying the significance level , the following condition can be used 
    2 )1nm(,

2P  ,                                               (20) 

 
where   1  is the confidence probability, and tables of the  2 -distribution to derive 

2
)1nm(,  , which is a confidence boundary (quantile) of the  2 -distribution with  1nm    

degrees of freedom. Substituting  2
)1nm(,   into (19), it is obtained finally 

 

  2
)1nm(,max A  .                                            (21) 

 
Formula (21) determines the upper confidence bound for spectral norm of a random 
matrix A. Thus, an analytical expression, convenient for practical calculations, is found for 
the upper bound of spectral norm of a random matrix, composed from normally 
distributed random variables with zero mathematical expectation. The obtained result 
may be used in applied statistical problems, in particular, to check statistical compatibility 
of data of statistical simulation with the results of field tests, and in health monitoring and 
diagnosis of multidimensional technical systems. 
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2.2 Failure Detection Using Spectral Norm of the Innovation Matrix   
Since the random normalized innovation matrix (7) consists of normally distributed 
stochastic elements with zero mathematical expectation and a finite variance  1,0Naij  ,  

inequality (21) may be used for solution of the above diagnosis problem. Expression (21) 
characterizes the relation between the mean-square value    of the elements of a random 
matrix  A  and its spectral norm and may be used to derive the upper confidence 
boundary of the spectral norm of matrix (7). In this case, one may state that if elements ija  

of the controlled normalized innovation matrix of the Kalman filter obey the distribution  1,0N , then inequality (21) should be fulfilled. Non-fulfillment of inequality (21) points 
to the shift of zero mean of the elements ija , a change of the unit variance or to difference 

of  ija  from white noise. If the case  1  is considered, then inequality (21) can be 

written in a more simple form: 
 

  2
)1nm(,max A   .                                                    (22) 

 
As is seen from expression (22), in the case being considered, the upper confidence 
boundary of the spectral norm of the normalized innovation matrix of the Kalman filter is 
determined by the dimension of the innovation vector (or dimension of the measurement 
vector), the number of sequential innovation vectors used, and the confidence probability 
selected. 
In view of that stated above, in solving the diagnosis problem posed, the decision rule 
concerning the hypotheses introduced has the form 
   

                                                    2
)1nm(,max0 A:   ,  km;   

                              A,mk: max1   2
)1nm(,  .                                             (23) 

 
The boundary for the spectral norm of the normalized innovation matrix found is quite 
simple and allows one to check on-line simultaneously mathematical expectation and 
variance of the innovation sequence. Under operating conditions, the algorithm proposed 
can be reduced to the following sequence of calculations performed at each step of 
measurements. 

       1. Using expressions (4), calculate the Kalman estimate for the vector of system state 
and the value of the vector of the normalized innovation sequence at the current step k . 
       2. Compose the normalized innovation matrix for the Kalman filter according to (7) 
for the given 2m,2n   and  mk  .   

       3. Determine eigenvalues of the matrix )k(A)k(AT  as solutions of the equation    0IAdet   and the spectral norm  
     2/1T

imax2 ))k(A)k(A(max)k(A)k(A  .                           (24) 

       4. Check realization of inequality (22) and make decision on detection of a failure in 
the Kalman filter based on the decision rule (23). 
       5. Repeat the sequence of calculations, beginning with step 1, for the next instant of 
time 1k  . 

Qualitative characteristics of the proposed algorithm of failure revealing are probabilities 
of a correct detection and a false alarm. These characteristics are calculated in a usual way 
with the use of the table of the 2 -distribution (Grishin and Kazarinov, 1985). Deriving 
the required characteristics involves a large volume of mathematical simulation for a 
justified choice of m number of innovation vectors )k( , that correspond to m  different 
instants of time, from which the matrix of innovation  A  is composed. A too large m  
smoothes effects caused by the system failure, and a too small m , increases probability of 
a false alarm. 

 
3. Design of the EKF for the F-16 Aircraft State Estimation 

3.1 F-16 Aircraft  Model  Description 
The technique for failure detection is applied to an unstable multi-input multi-output model 
of an AFTI/F-16 fighter. The fighter is stabilized by means of a linear quadratic optimal 
controller. The control gain brings all the eigenvalues that are outside the unit circle, inside 
the unit circle. It also keeps the mechanical limits on the deflections of control surfaces. The 
model of the fighter is as follows (Lyshevski, 1997): 
 

)k(Gw+))k(x(F+)k(Bu+)k(Ax=)1+k(x                                       (25) 
 

where )k(x  is the 9-dimensional state vector of the aircraft, A is the transition matrix of 
order 9x9 of the aircraft, B is the control distribution matrix of order 9x6 of the aircraft, 

)k(u is the 6-dimensional control input vector, ))k(x(F  is the 9-dimensional vector of 
nonlinear elements of system, )k(w  is the random 9-dimensional vector of system noises 

with zero mean and  the covariance matrix    )kj()k(Q)j(w)k(wE T  , G is the transition 
matrix of the system noises. 
The aircraft state variables are: 
  T,,r,p,,,q,,vx  , 
 
where, v is the forward velocity,   is the angle of attack,  q is the pitch rate,   is the pitch 
angle,   is the side-slip angle, p  is the roll rate, r  is the yaw rate,   is the roll angle, and 
  is the yaw angle. 
The fighter has six control surfaces and hence six control inputs are: 
  RCFLFRHLHR ,,,,,u  , 
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order 9x9 of the aircraft, B is the control distribution matrix of order 9x6 of the aircraft, 

)k(u is the 6-dimensional control input vector, ))k(x(F  is the 9-dimensional vector of 
nonlinear elements of system, )k(w  is the random 9-dimensional vector of system noises 

with zero mean and  the covariance matrix    )kj()k(Q)j(w)k(wE T  , G is the transition 
matrix of the system noises. 
The aircraft state variables are: 
  T,,r,p,,,q,,vx  , 
 
where, v is the forward velocity,   is the angle of attack,  q is the pitch rate,   is the pitch 
angle,   is the side-slip angle, p  is the roll rate, r  is the yaw rate,   is the roll angle, and 
  is the yaw angle. 
The fighter has six control surfaces and hence six control inputs are: 
  RCFLFRHLHR ,,,,,u  , 
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where HR  and HL are the deflections of the right and left horizontal stabilizers, FR  and  

FL  are the deflections of the right and left flaps, C  and  R  are the canard and rudder 
deflections. The following hard bounds (mechanical limits) on the deflections of control 
surfaces are assumed: 44.0, HLHR  rad, 35.0, FLFR  rad, 47.0C  rad and 

52.0R  rad.  B,A and )x(F  for the sampling period of 0.03 s. are: 
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Below the Extended Kalman Filter (EKF) to estimate the F-16 aircraft motion is designed.       

 
 

3.2 Deriving  of  the EKF     
Let us define the estimated vector as: 
  )k(),k(),k(r),k(p),k(),k(),k(q),k(),k()k(xT   

 
and apply the Kalman filter to estimate this vector. The nonlinear mathematic model for 
the longitudinal and lateral F-16 aircraft motion is given in (25). 
The measurement equations can be written as:  
 

)k(V+)k(Hx=)k(z ,                                                             (26) 
 

where H  is the measurement matrix, which is 99 unit matrix, )k(V is the measurement 
noise and its mean and correlation matrix respectively are: 
 
                                               [ ] [ ] )kj(δ)k(R=)j(V)k(VE;0=)k(VE T . 
 
By using quasi-linearization method let us linearize the equation (25): 
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Among the procedures of estimation theory, the Bayes procedure has the most accuracy 
because it is based on both the experimental data in likelihood function and a priori data 
expressed by a priori density of the estimated parameters. The more data, the more 
accuracy yields. Moreover, the Bayes procedure does not require the system to be linear 
and stationary, and produces a solution for the filtering when the initial conditions of the 
state vector are unknown (Gadzhiev, 1996). Therefore, the Bayes procedure to filter the 
state vector of the aircraft motion is preferred. A posteriori distribution density of the 
state vector is given by the Bayes formula: 
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where Zk=z(1),z(2),z(3),.....,z(k);   Zk-1= z(1),z(2),.........,z(k-1).               
When the probability density functions in (28) are substituted and the conditional 
mathematical expectation of the a posteriori probability density function is taken as the 
optimum estimation value, the following recursive EKF algorithm for the state vector 
estimation of the F-16 aircraft motion is obtained as (Caliskan and Hajiyev, 2003):  
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where HR  and HL are the deflections of the right and left horizontal stabilizers, FR  and  

FL  are the deflections of the right and left flaps, C  and  R  are the canard and rudder 
deflections. The following hard bounds (mechanical limits) on the deflections of control 
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Below the Extended Kalman Filter (EKF) to estimate the F-16 aircraft motion is designed.       

 
 

3.2 Deriving  of  the EKF     
Let us define the estimated vector as: 
  )k(),k(),k(r),k(p),k(),k(),k(q),k(),k()k(xT   

 
and apply the Kalman filter to estimate this vector. The nonlinear mathematic model for 
the longitudinal and lateral F-16 aircraft motion is given in (25). 
The measurement equations can be written as:  
 

)k(V+)k(Hx=)k(z ,                                                             (26) 
 

where H  is the measurement matrix, which is 99 unit matrix, )k(V is the measurement 
noise and its mean and correlation matrix respectively are: 
 
                                               [ ] [ ] )kj(δ)k(R=)j(V)k(VE;0=)k(VE T . 
 
By using quasi-linearization method let us linearize the equation (25): 
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Among the procedures of estimation theory, the Bayes procedure has the most accuracy 
because it is based on both the experimental data in likelihood function and a priori data 
expressed by a priori density of the estimated parameters. The more data, the more 
accuracy yields. Moreover, the Bayes procedure does not require the system to be linear 
and stationary, and produces a solution for the filtering when the initial conditions of the 
state vector are unknown (Gadzhiev, 1996). Therefore, the Bayes procedure to filter the 
state vector of the aircraft motion is preferred. A posteriori distribution density of the 
state vector is given by the Bayes formula: 
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where Zk=z(1),z(2),z(3),.....,z(k);   Zk-1= z(1),z(2),.........,z(k-1).               
When the probability density functions in (28) are substituted and the conditional 
mathematical expectation of the a posteriori probability density function is taken as the 
optimum estimation value, the following recursive EKF algorithm for the state vector 
estimation of the F-16 aircraft motion is obtained as (Caliskan and Hajiyev, 2003):  
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       Equation of   the estimation value 
  )k(ν)k(K+)1k/k(x̂=)k(x̂ -                                          (29) 

 
       Equation of  the  extrapolation value  
 

  ))1k(x̂(F+)1k(ûB+)1k(x̂A=)1k/k(x̂ ----                                 (30) 
 

       The  innovation sequence    

               [ ]))1k(x̂(F+)1k(ûB+)1k(x̂AH)k(z=)k(ν ----                            (31) 
  

       The   gain matrix  of filter    
 

 ( ) ( ) ( ) )k(RkHkP=kK 1T -                                             (32) 
 

       The covariance matrix of estimation errors        
      

  [ ] )k(HM)k(R+H)k(HMH)k(M)k(M=)k(P 1TT --                        (33) 
 

       The covariance matrix of extrapolation errors 
                     

TT
xx

T
u

T

G)1k(GQ)1k(F)1k(P)1k(F

B)1k(BDA)1k(AP)k(M




                              (34) 

 
where  Du is the covariance matrix of the control input error, )1k(Q -  is the covariance 
matrix of  system noise.  

 
4. Adaptive EKF Insensitive to Sensor Failures 
An adaptive EKF for the F-16 aircraft state estimation may be designed in order to isolate 
the detected sensor and actuator/surface failures. The following approach for the solution 
of the filtration problem is proposed for this case (Hajiyev, 2006). In the case of normal 
operation of measurement system, the filter works according to the conventional EKF 
algorithm (29)-(34). But if the condition of the operation of the measurement system does 
not correspond to the models, used in the synthesis of the filter, then the gain coefficient 
(32) of the discrepancy automatically changes due to the change in the covariance matrix 
of the innovation sequence according to the rule 
 

                   )k(R)k(S+H)k(HM=)k(P T
ν                                                (35) 

 
in which weight coefficient )k(S is calculated from the discrepancy (31) analysis results. In 
this case the filter gain coefficient (32) can be written in the form of 
 

( ) ( ) ( ) ( )[ ] 1TT kR)k(S+HkHMHkM=kK -
                                (36) 

According to the proposed approach the gain coefficient (32) is changed when the 
following condition is valid 
 

{ } [ ]{ }
( )[ ] ( )[ ]{ }

{ })k(R+H)k(HMtr

=)k(v+)1k/k(x̂)k(xH×)k(v+)1k/k(x̂)k(xHEtr

=)k(ν)k(νEtr)k(ν)k(νtr

T

T

TT

----

≥

             (37) 

 
where  (.)tr is the trace of matrix. When a significant change in the conditions of the 
operation of the measurement system occurs, the prediction of observations in (31), 

( )1k/kx̂H - , will considerably differ from the observation results )k(z . Consequently, the 
sum of the discrepancy squares on the left side of (37) will characterize the real filtration 
error, while the right side determines the theoretical accuracy of the innovation sequence, 
obtained on the basis of a priori information. If condition (38) is met, then the real 
filtration error exceeds the theoretical error. Therefore, it is necessary to correct the filter 
gain matrix (32). In this case by substituting (35) in (37) the following equation can be 
obtained; 
 

{ } { } { })k(Rtr)k(S+H)k(HMtr=)k(ν)k(νtr TT                                      (38) 
 
Hence taking the expression { } )k(ν)k(ν=)k(ν)k(νtr TT   into consideration, the following 
formula for the weighting factor )k(S is obtained: 
 

{ }
{ })k(Rtr

H)k(HMtr)k(ν)k(ν
=)k(S

TT -
                                             (39) 

 
Using (35), (36) and (39) in the estimation algorithm (29) -(34) gives the possibility to 
accomplish the adaptation of the filter to the change of measurement system operation 
conditions. If the left side of the expression (37) is greater than the right side, the value of 
coefficient )k(S will increase. This corresponds to the beginning of the adaptation of filter. 
Consequently, both the covariance matrix of innovation sequence )k(Pν  (35) and the filter 
gain matrix )k(K  (32) increase, and that cause to the strengthening of the corrective 
influence of discrepancy in (29) which makes the estimation value )k(x̂ approach to the 
actual value )k(x . This will lead to the decrease of discrepancy )k(ν and coefficient )k(S , 
weakening of the corrective influence of discrepancy, etc.  
The final expressions of the proposed adaptive filtration algorithm with the filter gain 
correction insensitive to measurement faults can be written in the following form: 
 
                                                         )k(ν)k(K+)1k/k(x̂=)k(x̂ -  
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where  Du is the covariance matrix of the control input error, )1k(Q -  is the covariance 
matrix of  system noise.  
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(32) of the discrepancy automatically changes due to the change in the covariance matrix 
of the innovation sequence according to the rule 
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where  (.)tr is the trace of matrix. When a significant change in the conditions of the 
operation of the measurement system occurs, the prediction of observations in (31), 

( )1k/kx̂H - , will considerably differ from the observation results )k(z . Consequently, the 
sum of the discrepancy squares on the left side of (37) will characterize the real filtration 
error, while the right side determines the theoretical accuracy of the innovation sequence, 
obtained on the basis of a priori information. If condition (38) is met, then the real 
filtration error exceeds the theoretical error. Therefore, it is necessary to correct the filter 
gain matrix (32). In this case by substituting (35) in (37) the following equation can be 
obtained; 
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Using (35), (36) and (39) in the estimation algorithm (29) -(34) gives the possibility to 
accomplish the adaptation of the filter to the change of measurement system operation 
conditions. If the left side of the expression (37) is greater than the right side, the value of 
coefficient )k(S will increase. This corresponds to the beginning of the adaptation of filter. 
Consequently, both the covariance matrix of innovation sequence )k(Pν  (35) and the filter 
gain matrix )k(K  (32) increase, and that cause to the strengthening of the corrective 
influence of discrepancy in (29) which makes the estimation value )k(x̂ approach to the 
actual value )k(x . This will lead to the decrease of discrepancy )k(ν and coefficient )k(S , 
weakening of the corrective influence of discrepancy, etc.  
The final expressions of the proposed adaptive filtration algorithm with the filter gain 
correction insensitive to measurement faults can be written in the following form: 
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))1k(x̂(F+)1k(ûB+)1k(x̂A=)1k/k(x̂ ----  
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where )k(Pν  is the covariance matrix of the innovation sequence, and )k(S  is the 
weighting factor. The other filter parameters in (40) are same with the ones given in the 
expressions (29)-(34). 
In contrast to the EKF algorithm (29)-(34), in which the filter gain )k(K changes by 
program, in the proposed algorithm the current measurements have larger weight, since 
the coefficients of matrix )k(K are corrected by the results of each observation. This 
algorithm is adapted to the measurement system operation conditions by the 
approximation of the theoretical covariance matrix )k(Pν to the real covariance matrix of 
the innovation sequence, due to the change in the weighting factor )k(S . Mentioned 

change is accomplished because of regarding the matrix )k(ν)k(ν T , which characterizes 
the real filtration error. Proposed adaptive EKF for the F-16 aircraft state estimation will 
ensure the guaranteed adaptation of the filter to the change of the measurement system 
operation conditions, consequently it will become insensitive to sensor failures. 
The  designed adaptive EKF (40) is  not  an  optimum  filter, unlike  the  EKF (29)-(34), 
because  of  the )k(S factor. Even in the absence of a failure, the estimation error could be 
larger than that of the conventional filtration algorithm (29)-(34).  Therefore, adaptive 
algorithm is operated only when the measurements are faulty or in order to isolate the 
detected sensor and actuator/surface failures. In all other cases procedure is run 
optimally with regular EKF (29)-(31). 

 
4. Simulation Results of Failure Detection and Adaptive EKF Algorithms  

The technique for failure detection is applied to multi-input multi-output model of an 
AFTI/F-16 fighter (25). The measurements are processed using Kalman filter (29)-(32) that 
allows us to determine the estimate of the state vector of F-16 aircraft and the covariance 
matrix of the estimate errors at each thk  step. 
If there are no faults in the estimation system, then the normalized innovation sequence  
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of the EKF (29)-(32) is a Gaussian white noise with zero mean and a unit covariance 
matrix. Sensor and control surface/actuator failures will result with changes in the above 
characteristics of the sequence of )k(~ .  To verify the hypothesis  0  and 1 , let us use a 
spectral norm of the matrix constructed as (7).  

In the simulations, 997.0=β;9=n;10=m are taken, and the threshold value 2
)1nm(,βχ -   

is found as 11.4. Decisions as to reveal a failure in the system are made based on the rule 
(23). The results of simulations are shown in Figs. 1–16. 

 
4.1 A Sensor Failure (Shift in the Pitch Rate Gyroscope) 
Shift in the pitch rate gyroscope is simulated at iteration 30 as follows;  
  

    3+)k(V+)k(q=)k(z qq , ( )30k≥ .                             (42) 

 
The graph of the spectral norm  Amax  is shown in Figure 1 when a shift occurs in the 
pitch rate gyroscope. 
 As seen in Figure 1, until the sensor failure occurs  Amax  is lower than the threshold. 
When a failure occurs in the pitch rate gyroscope,  Amax  grows rapidly, and after 1 
iteration it exceeds the threshold.  Hence 1  hypothesis is judged to be true. This failure 
causes a change in the mean of the innovation sequence. The innovation sequences in case 
of a shift in the pitch  rate gyroscope are shown in Figures 2-4. 

 
Fig. 1. Behavior of the spectral norm  Amax  in case of a shift in the pitch  rate gyroscope 
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