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1. Introduction      

Vibration in modern structures like airplanes, satellites or cars can cause malfunctions, 

fatigue damages or radiate unwanted and loud noise (Simpson & Schweiger, 1998; Wu et al., 

2000; Hopkins et al., 2000; Kim et al., 1999; Zhang et al., 2001; Hagood et al., 1990). Since 

conventional passive damping materials have reached their limits to damp vibration 

because it is not very effective at low frequencies and requires more space and weight, new 

control designs with novel actuator systems have been proposed. These so called smart 

materials can control and suppress vibration in an efficient and intelligent way without 

causing much additional weight or cost. The vast majority of research in smart damping 

materials has concentrated on the control of structures made from composite materials with 

embedded or bonded piezoelectric transducers because of their excellent mechanical-

electrical coupling characteristics. A piezoelectric material responds to mechanical force by 

generating an electric charge or voltage. This phenomenon is called the direct piezoelectric 

effect. On the other hand, when an electric field is applied to the material mechanical stress 

or strain is induced; this phenomenon is called the converse piezoelectric effect. The direct 

effect is used for sensing and the converse effect for actuation. The methods of vibration 

control using piezoelectric transducers can be mainly divided into three categories: passive, 

active, and semi-active. Passive control systems, which use the R-L shunting (Hagood & 

Crawley, 1991; Hollkamp, 1994), are simplest among the three categories, but their control 

performance is sensitive to the variations of the system parameters. Moreover, the passive 

control systems usually need large inductance in low frequency domain, which is difficult to 

realize. Active control systems require high-performance digital signal processors and bulky 

power amplifiers to drive actuators, which are not suitable for many practical applications.  

In order to overcome these disadvantages, several semi-active approaches have been 

proposed. Wang et al. (1996) studied a semi-active R-L shunting approach, in which an 

adaptive inductor tuning, a negative resistance and a coupling enhancement set-up lead to a 

system with damping ability. Davis et al. (1997, 1998) developed a tunable electrically 

shunted piezoceramic vibration absorber, in which a passive capacitive shunt circuit is used 

to electrically change the piezoceramic effective stiffness and then to tune the device 

response frequency. Clark, W. W. (1999) proposed a state-switched method, in which 

piezoelements are periodically held in the open-circuit state, then switched and held in the 

short-circuit state, synchronously with the structure motion.  
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Another type of semi-active control, which has been receiving much attention in recent years, 
is called pulse switching technique (Richard et al., 1999, 2000; Onoda et al., 2003; Makihara et 
al., 2005). It consists in a fast inversion of voltage on the piezoelement using a few basics 
electronics, which is synchronized with the mechanical vibration. In the methods proposed by 
Richard et al. (1999) the voltage on the piezoelectric element is switched at the strain extrema 
or displacement extrama of vibration. These methods are called Synchronized Switch 
Damping (SSD) techniques. On the other hand, in the method proposed by Onoda and 
Makihara the switch is controlled by an active control theory and it is called active control 
theory based switching technique here (Onoda et al., 2003; Makihara et al., 2005).  
In this chapter, the semi-active control methods based on state-switched piezoelectric 
transducers and pulse-switched piezoelectric transducers are introduced (Qiu et al., 2009). 
The semi-active approaches have several advantages compared to the passive and active 
methods: it is not sensitive to the variation of the parameters of system, and its 
implementation is quite simple, requiring only few small electronic components. It may use 
inductors, but much smaller than the ones needed by passive technique. So the control 
system is more compact compared with active control and passive control. 

2. Modeling of a structural system with piezoelectric transducers 

2.1 Equivalent SDOF model 
A mechanical model based on a spring-mass system having only one degree of freedom 
gives a good description of vibrating behavior of a structure near a resonance (Badel et al., 
2006; Ji et al., 2009a). The following differential equation is established assuming that the 
global structure including piezoelectric elements is linearly elastic: 

 E iMu Cu K u F+ + = ∑$$ $  (1) 

where M represents the equivalent rigid mass, C is the inherent structural damping 

coefficient, KE is the equivalent stiffness of the structural system, including the host structure 

and piezoelectric elements in short-circuit, u is the rigid mass displacement and iF∑  

represents the sum of other forces applied to the equivalent rigid mass, comprising forces 

applied by piezoelectric elements. The equivalent stiffness KE can be expressed as 

 = + sc
E sK K K  (2) 

where Ks is the stiffness of the host structure and the Ksc is the stiffness of the piezoelectric 
transducer in short circuit. Piezoelectric elements bonded on the considered structure ensure 
the electromechanical coupling, which is described by 

 α= −pF V  (3) 

 α= − $$
0I u C V  (4) 

where Fp is the electrically dependent part of the force applied by piezoelectric elements on 
the structure, C0 is the blocked capacitance of piezoelectric elements, α is the force factor, 
and I is the outgoing current from piezoelectric elements. M, C0, α and KE can be deduced 
from piezoelectric elements and structure characteristics and geometry. 

Finally, ∑ iF  applied to the rigid equivalent mass comprises Fp and an external excitation 

force F. Thus, the differential equation governing the mass motion can be written as 
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 α+ + = −$$ $
EMu Cu K u F V  (5) 

The following energy equation is obtained by multiplying both sides of the above equation 
by the velocity and integrating it over the time variable. 

 α= + + +∫ ∫ ∫$ $ $ $
0 00 0 0

1 1
² ² ²

2 2

T T TTT
EFudt Mu K u Cu dt Vudt  (6) 

This equation exhibits that the provided energy is divided into kinetic energy, potential 

elastic energy, mechanical losses, and transferred energy. In the steady-state vibration, the 

terms of potential energy and kinetic energy in Eq. (6) disappear. The provided energy is 

balanced by the energy dissipated on the mechanical damper and the transferred energy, 

which corresponds to the part of mechanical energy which is converted into electrical 

energy. Maximizing this energy amounts to minimize the mechanical energy in the structure 

(kinetic + elastic).  

If the frequency of excitation equals the resonance frequency of the system, the velocity of 

the mass, $u , can be considered to be in phase with the excitation force F(t). In that case, the 

provided energy and the energy dissipated on mechanical damper are 

 π=∫ $
0

T

M MFudt F u  and ω π=∫ $ 2 2
0

0

T

MCu dt C u  (7) 

where FM is the amplitude of the excitation force. 
 

 

Fig. 1. A single SDOF with a piezoelectric transducer 

2.2 A system with a shunt circuit 

In passive control, the piezoelectric transducer in a structural system is connected to an 

electrical impedance (Hagood, 1991). In semi-active control, the piezoelectric transducer is 

usually connected to a switching shunt circuit, which is electrically nonlinear (Clark, 2000). 

When the piezoelectric transducer is connected to an electrical impedance ZSU, Eq. (4) 

becomes 

 
α= +# #

2

0 1

SU

SU

s Z
V u

sC Z
 (8) 
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in the Laplace domain, where #V  and #u  are the Laplace transformation of V and u, and s is 

the Laplace variable. Substitution of Eq. (8) into the Laplace transformation of Eq. (5) gives 
the transfer function from excitation force F to displacement response u as follows 

 α=
+ + + +

##
2

2

0

1
/

1

SU

E SU

u F
s Z

Ms Cs K
sC Z

 (9) 

where #F  is the Laplace transformation of F. In passive control, optimal control performance 
is achieved by tuning the electrical impedance, ZSU, of the shunt circuit. However, the 
control performance of a passive control system deteriorates drastically when the ZSU is 
detuned. Hence a passive control system is very sensitive to the variation of the system 
parameters and has low robustness. 
Several semi-active approaches have been proposed to overcome the disadvantages of 
passive control systems. One is to adaptively tune the impedance, ZSU, of the shunt circuit. 
The second is to switch the shunt circuit between the states with different impedances. The  
third is to invert the voltage on the piezoelectric transducer by synchronically pulse-
switching the shunt circuit. 

2.3 Different states of piezoelectric transducer 

(1) Short circuit condition 

In the short circuit condition, the impedance of the shunt circuit connected to the 
piezoelectric transducer is zero (ZSU=0) and no electric power is dissipated, either. In the 
frequency domain, Equations (8) and (9) can be expressed as 

 =# 0V , ( )ω ω= − +
#
# 2

1

E

u

F K M jC
 (10) 

It is assumed that at the resonance frequency the force F and the speed  $u  are in phase (this 
is a good approximation for structures with low viscous losses). The resonance angular 
frequency and the amplitude of the displacement are given by 

 ω =0
sc EK

M
, ω=

0

M
M

F
u

C
. (11) 

where FM is this amplitude of the driving force. In the short circuit condition, the provided 
energy is balanced by the mechanical loss. 

(2) Open circuit condition 

In the open circuit condition of the piezoelectric elements, the impedance of the shunt circuit 
is infinity (ZSU=∞) and no electric power is dissipated, either. In the frequency domain, 
Equations (8) and (9) can be expressed as 

 
α=# #

0

V u
C

, α ω ω
= ⎛ ⎞+ − +⎜ ⎟⎝ ⎠

#
# 2

2

0

1

E

u

F
K M jC

C

 (12) 
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For the same reason as for the short circuit case, the resonance angular frequency and the 
amplitude of the displacement are given by. 

 

α
ω

+
=

2

0
0

E
oc

K
C

M
, ω=

0

M
M oc

F
u

C
. (13) 

Obviously, the stiffness of the piezoelectric transducer in the open circuit condition is 

 
α= + 2

0

oc scK K
C

. (14) 

The piezoelectric transducer exhibits higher stiffness in the open circuit condition and the 
resonance frequency of the system in open circuit condition is higher than that in the short 
circuit condition. The voltage on the piezoelectric transducer and the displacement and 
velocity of the mass are illustrated in Fig.2. In this state, the net converted energy from 
mechanical to electrical in a cycle of vibration is zero, that is, the last term in Eq. (6) is zero. 
 

u

V

t

uɺ

 

Fig. 2. Voltage, displacement and velocity in the open circuit condition 

Obviously, the difference between the resonance frequency in the short circuit condition and 

that in the open circuit condition is due to the electro-mechanical coupling of the 

piezoelectric transducer in the structure. To quantitatively characterize its electro-

mechanical property, the following parameter, kstruct, is defined as the electro-mechanical 

coupling factor of the structure:  

 
( ) ( )( )
ω ω

ω
−=

2 2

0 0

2

0

oc sc

struct
sc

k . (15) 

The resonance frequencies, ω0
oc and ω0

sc , of the structure with the piezoelectric transducer 

under open and short circuit conditions, respectively, can easily be measured 

experimentally. Hence the electro-mechanical coupling factor of the structure can easily be 

estimated from experimentally results. After kstruct is obtained, the force factor, α, can easily 

be calculated from the following equation: 

 α ω= 0 0
sc

structk C . (16) 

(3) Resistive shunt condition 

When the piezoelectric transducer is shunted by a resistor R, that is, ZSU=R, Equations (8) 
and (9) can be expressed as 
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ρω ω α
ρω ω= ⋅+# #

2

0

/

/ 1
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n

j
V u

j C
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 ρω ω αω ω ρω ω
= ⎛ ⎞− + + ⋅⎜ ⎟⎜ ⎟+⎝ ⎠
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/ 1
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F j
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j C

 (17) 

in the frequency domain, where ωn  is an arbitrary angular frequency for non-

dimensionalization and ρ ω= 0nC R  is the non-dimensional resistance. The condition R=0 

corresponds to short circuit and R=∞ corresponds to the open circuit condition. 

Resistive shunt has been widely used in passive damping based on piezoelectric transducers. 

An optimal resistance can be obtained by minimizing the magnitude of the transfer function 

from #F  to #u  at the resonance frequency of the system. In the next section the control 

performance of the state-switched approach is compared with that of the resistive shunt. 

3. The state-switched approach 

The state-switched method has been successfully used in semi-passive vibration absorbers 
(Cunefare, 2002) and semi-passive vibration damping using piezoelectric actuator (Clark 
1999, 2000; Corr & Clark 2001). Only the state-switched approach using piezoelectric 
actuators is discussed in this section. In the state-switched approach using piezoelectric 
actuators, a piezoelectric actuator is switched between the high- and low-stiffness states 
using a simple switching logic to achieve vibration suppression, essentially storing energy in 
the high-stiffness state and dissipating a part of the that energy in the switching process 
between the low-stiffness state and high-stiffness state. As shown in the Section 2.3, the 
piezoelectric transducer has different stiffness for different electrical boundary conditions 
(short circuit or open circuit). Different from the pulse-switched approach introduced in the 
next section, this approach keeps the piezoelectric element in each of the high- and low-
stiffness states for one quarter-cycle increments.  
The energy loss in a state-switched system can be explained by a mass-spring system as 
shown in Fig. 3 (Corr & Clark, 2001). The stiffness of the spring, K*, in the system can be 
switched between two states: KHI and KLO, with KHI > KLO. As the mass move away from its 
equilibrium position, the stiffness of the spring is set to KHI. When the mass reaches its 
maximum displacement the potential energy is at a maximum: 

 = HI 2
max MU K u  (18) 

At this point, the stiffness of the variable spring is changed from KHI to KLO. Now the 
potential energy of the system is less than before. The difference in energy is 

 ( )Δ = −HI LO 21

2
MU K K u . (19) 

Hence, there is ΔU  less potential energy to be converted back to kinetic energy, that is, the 

system has lost some of its total energy. The variable spring is left in the KLO state until the 
mass goes back to its original equilibrium point. At this time, the variable spring is again 
changed to KHI state and the cycle repeats itself. 
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mass

F(t)

*
K

u(t)

 

Fig. 3. A SDOF system with a variable spring 

In theory, one could continuously vary the resistance in the circuit in real time to obtain a 
completely variable semi-active system. An alternative is to simply switch between states of 
the system. The two most straightforward scenarios are shown in Fig. 4(b) and 4(c), where 
switching occurs between the open and short circuit states (OC-SC), and between the open 
and resistive shunt states (OC-RS). (Note that switching between the short circuit and 
resistive shunt states will not be explored because neither of these states exhibits high-
stiffness.) State-switching of the actuator is based on the following logic: Given the single 
degree-of-freedom system shown in Fig. 4, when the system is moving away from 
equilibrium, or 

 >$ 0uu  (20) 

the circuit is switched to the high-stiffness state (open circuit), and when the system is 
moving toward equilibrium, 

 <$ 0uu  (21) 

then the system is switched to the low-stiffness and/or dissipative state (short or resistive 
circuit). So during a full cycle of motion, switching occurs four times, once after each quarter 
cycle. At equilibrium the system is switched to a high stiffness, then at peak motion it is 
switched back to low stiffness and it returns to equilibrium to complete the half-cycle. At 
equilibrium again the system is switched to high stiffness, and the switching process repeats 
over the next half-cycle. This has the effect of suppressing deflection away from equilibrium, 
and then at the end of the deflection quarter-cycle, dissipating some of the stored energy so 
that it is not given back to the system in the form of kinetic energy. 
 

( )V t

+

− R

i
+

−
+

− R

 
                                      (a)                                      (b)                                    (c) 

Fig. 4. Schematic of three piezoelectric configurations used in this study: (a) Passive resistive 
shunt; (b) State-switched: Open-circuit to short circuit; (c) State-switched: Open-circuit to 
resistive circuit 
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Now the SDOF system in Fig. 1 is considered. The mass is under excitation of a harmonic 

force F(t) with an angular frequency of ω and its response is assumed to be a harmonic 

vibration of the same frequency. The piezoelectric transducer is switched between open 

circuit and short circuit using the switching strategy in Eqs. (20) and (21). The energy 

dissipated in a full cycle of vibration due to the switching actions is 

 

α

= + + +
= −
=

∫ ∫ ∫ ∫$ $ $ $
/4 /2 3 /4

0 /4 /2 3 /4

2

2
2

0

( )

T T T T
dis oc sc oc sc
cycle

T T T

oc sc
M

M

E K uudt K uudt K uudt K uudt

K K u

u
C

 (22) 

In the open-circuit case, deflection stores energy by way of the mechanical stiffness and by 

the capacitance of the device, which also appears as a mechanical stiffness. When the system 

is then switched to the short circuit state, the charge stored across the capacitor is shunted to 

ground, effectively dissipating that portion of the energy, and the effective stiffness is 

decreased. Since the provided energy is balanced by the mechanical loss and the energy 

dissipated by the switched shunted circuit, the following equation holds when the system is 

excited at the resonance frequency: 

 
απ ω π= + 2

2 2
0

0

M M M MF u C u u
C

. (23) 

The displacement amplitude of vibration is 

 αω π
=

+ 2

0

0

M
M

F
u

C
C

. (24) 

To quantitatively evaluate the damping effect of a control method, a performance index A is 
defined as follows 

 = vibration amplitude with control
20log( )

vibration amplitude without control
A . (25) 

The performance index of the state-switched control for a single-frequency vibration is 
given by 

 
ω

αω π
=

+
0

State-swithing 2

0

0

20log( )
C

A

C
C

. (26) 

If on the other hand, the circuit is switched to the resistive shunt, then the electrical charge is 

dissipated through the resistor, and the effective stiffness is also decreased (an added benefit 

is that additional damping is obtained while the resistor is in the circuit during the next 

quarter cycle, so in some cases the OC-RS system can perform better than the OC-SC 

system.)  
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The damped impulse response of the OC-SC system can be compared to that of the other 

two systems of interest, that is, the RS system and the OC-RS system [Clark 2000]. The 

resistor used in both the RS circuit and that in the OC-RS circuit are chosen to be optimal. 

The results are shown in Fig. 5. Note that for the impulse response, it is better to use a 

resistor in the circuit during state-switching. It is also shown that slightly better damping 

can be achieved with the passive resistive shunt circuit. The effective damping ratios were 

calculated for each case by logarithmic decrement and are shown in Table 1. 

 

System Effective Damping Ratio 

Passive Resistive Shunt 0.22 

State-Switched OC-SC 0.12 

State-Switched OC-RS 0.19 

Table 1. Effective damping ratios for passive and state-switched systems 

Even though the passive resistive shunt system provides slightly better performance than 

the state-switched systems for the optimized cases, it is interesting to note that the results 

change significantly when the resistors are no longer optimized. Simulations were 

performed on the impulse response of the same three systems when the mass and actuator 

material compliance are dramatically changed but the resistance values are held at their 

previous optimal values. The results showed that the state-switched systems are less 

sensitive to the change, seeing very little change in performance, with the OC-RS case still 

providing slightly better performance (note that the OC-SC case can be thought of as a lower 

limit on damping performance), but the passive resistive shunt case is much worse than 

before. 
 

 

Fig. 5. Impulse response of passive resistive shunt, the OC-RS state switched, and OC-RS 
state-switched systems using optimal resistance 
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Fig. 6. Impulse response of passive resistive shunt, the OC-RS state switched, and OC-RS 
state-switched systems with non-optimal resistance 

4. The pulse-switch methods 

4.1 The Synchronized Switch Damping technique 

The synchronized switch damping (SSD) method, also called pulse-switched method, 

consists in a nonlinear processing of the voltage on a piezoelectric actuator. It is 

implemented with a simple electronic switch synchronously driven with the structural 

motion. This switch, which is used to cancel or inverse the voltage on the piezoelectric 

element, allows to briefly connect a simple electrical network (short circuit, inductor, voltage 

sources depending on the SSD version) to the piezoelectric element. Due to this process, a 

voltage magnification is obtained and a phase shift appears between the strain in 

piezoelectric patch and the resulting voltage. The force generated by the resulting voltage is 

always opposite to the velocity of the structure, thus creating energy dissipation. The 

dissipated energy corresponds to the part of the mechanical energy which is converted into 

electric energy. Maximizing this energy is equivalent to minimizing the mechanical energy 

in the structure. 

(1) The synchronized switch damping on short circuit 

Several SSD techniques have been reported. The simplest is called SSDS, as shown in Figure 

7(a), which stands for Synchronized Switch Damping on Short circuit (Richard et al., 1999, 

2000). The SSDS technique consists of a simple switching device in parallel with the 

piezoelectric patch without other electric devices. The switch is kept open for most of the 

time in a period of vibration. It is closed when the voltage reaches a maximum 

(corresponding to a maximum of the strain in the piezoelectric patch) to dissipate all the 

electric energy in a short time (much shorter than the period of vibration) and then opened 

again. The voltage on the piezoelectric transducer is shown in Fig. 7(b). The maximum 

voltage on the piezoelectric transducer is 
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(b) 

Fig. 7. The principle of SSDS technique 

 
α=
0

2
Max MV u

C
 (27) 

which is twice as large as that in the open circuit condition. 
The maximum electric energy stored in the piezoelectric transducer can easily be calculated 
from the voltage in Eq. (27). This energy is dissipated when the voltage is discharged to zero 
at the maximum displacement point. In each cycle of mechanical vibration, the piezoelectric 
transducer is discharged twice. Hence, in the SSDS technique, the transferred energy Et in a 
period of single-frequency vibration is given by 

 
α= 2

2

0

4
t ME u

C
 (28) 

The performance index of the SSDS damping for a single-frequency vibration is given by 

 
ω

αω π
=

+
0

2

0

0

20log( )
4SSDS

C
A

C
C

 (29) 

The above expressions exhibit that more energy is dissipated by the SSDS than by the state-
switched shunt circuit in a single cycle of mechanical vibration and SSDS yields better 
control performance. 

(2) The synchronized switch damping on inductor 

To further increase the dissipated energy, the SSDI technique (synchronized switch 
damping on inductor) as shown in Fig. 8a has been developed by Richard et al. (2000), 
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Guyomar et al. (2001) and Petit et al. (2004). In the SSDI approach, an inductor is connected 
in series with the switch. Because the piezoelectric patch and the inductor constitute a L-C 
resonance circuit, fast inversion of the voltage on the piezoelectric patch is achieved by 
appropriately controlling the closing time and duration of the switch. The switch is closed at 
the displacement extremes, and the duration of the closed state is half the period of the L-C 
circuit. This leads to an artificial increase of the dissipated energy. The period of the L-C 
circuit is chosen to be much smaller than that of the mechanical vibration. The following 
relation holds between the voltage before inversion, VM, and that after inversion, Vm, 

 γ=m MV V , (30) 

where [ ]γ ∈ 0,1  is the voltage inversion coefficient. The inversion coefficient γ is a function 

of the quality factor of the shunt circuit. The larger the quality factor is, the larger the 
voltage inversion coefficient is. A typical value of γ is between 0.6 to 0.9.  
 

Switch

PZT

V

Inductor

Extremum 

Detection

Switch 

Control  

(a)  Schematic of the system 

V
M

u
M

-V
m

 

(b) Voltage on the piezoelectric transducer 

Fig. 8. The principle of SSDI technique 

As shown in Fig. 8(b), in the steady-state vibration the voltage on piezoelectric transducer 
increases from Vm to VM between two switching points due to mechanical strain. Hence their 
difference is VMax given by Eq. (27). From these relationships, the absolute value of the 
average voltage between two switching points is  

 
γ α
γ

++ = − 0

1 1
( )

2 1
m M MV V u

C
 (31) 

It indicates that the average voltage on the piezoelectric transducer has been amplified by a 
factor of (1+γ)/(1−γ). The dissipated energy Et during a period of single-frequency vibration 
is given by 
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α γ

γ
+= −

2
2

0

4 1

1
t ME u

C
 (32) 

Compared with Eq. (28) the transferred energy has also been magnified by a factor of  

(1+γ)/(1−γ) (Badel et al., 2005). If the voltage inversion coefficient is 0.9, its value is 9.5. 
Hence, much better control performance can be achieved with SSDI. The theoretical 
damping value of the SSDI technique for a single-frequency vibration is 

 
ω
α γω π γ

= ++ −
0
2

0

0

20log( )
4 1

1

SSDI

C
A

C
C

. (33) 

4.2 The active control theory based switching law 

Onoda and Makihara proposed a new switching law based on active control method 
(Onoda et al., 2003; Makihara et al. 2007c). As an example, the LQR (linear quadratic 
regulator) control law was used in their studies. The state equation of the plant to be 
controlled is assumed to be 

 = + +$z Az Df BQ  (34) 

where z is the state variable, A, B and C are state matrices, f is the external disturbance, and 
Q is the control input, which is the charges on the piezoelectric elements. A linear quadratic 
regulator is designed to minimized the performance index 

 ( )= +∫ 1 2
T TJ dtz W z Q W Q  (35) 

where W1 and W2 are weight matrices. The control input can be expressed in the following 
form: 

 =TQ Fz . (36) 

The regulator F is given by 

 -1
2

TF = W B P  (37) 

where P is a positive definite solution of 

 -1
2 1 0T TPBW B P - A P - PA - W = . (38) 

Usually the value of z is difficult to measure and they estimated by an observer. When the 
estimated value of z is used, the active control input is obtained from 

 = ˆ
TQ Fz . (39) 

where ẑ  is the estimated value of z. Once the value of QT is obtained, the switch in the 
shunt circuit for the ith piezoelectric actuator is controlled based on QTi, which is the ith 
component in the QT, according to the switch control law discussed below. 
It should be noted that in a semi-active control system, damping effect is achieved by 

switching shunt circuit, not by applying the control input QT as in active control. In order to 

www.intechopen.com



 Vibration Control 

 

248 

obtain damping effect, a possible strategy to control the switch is to turn the switch on and 

off so that the charge Qi on the ith piezoelectric element traces QTi as closely as possible. 

However, in many cases, a large gain results in quick vibration damping. Therefore, the 

switch is controlled such a way that Q becomes as large, that is, positive, as possible when 

QT is positive, and as small, that is, negative, as possible when QT is negative. The study by 

Onoda et al. (1997) has shown that this strategy is more effective than tracing QT, although 

the difference between their performances is small. 

Based on the above discussion, the following control law can be obtained for switched R 

shunt of a piezoelectric element: Turn on the switch when 

 < 0TQ V , (40) 

and turn off the switch when 

 > 0TQ V , (41) 

where V is the voltage on the piezoelectric patch.  

The switch control law for a piezoelectric element with a switched L-R shunt can be 

expressed in the following form: Turn on the switch when 

 < 0TQ V , (42) 

and turn it off when 

 <$ 0TQ Q . (43) 

Note that any active control theory can be used to obtain QT of a piezoelectric though LQR 

control method has been used as an example above. 

5. The SSDV approach 

5.1 The classical SSDV technique  

In order to further increase the damping effect, a method called SSDV (SSDV stands for 
synchronized switch damping on voltage) as shown in Fig. 9 was proposed by Lefeuvre et 
al. (2006), Makihara et al. (2005), Faiz et al. (2006), and Badel et al., (2006). In the case of the 
SSDV, a voltage source Vcc is connected to the shunting branch, in series with the inductor, 
which can magnify the inverted voltage and hence improve the control performance. The 
absolute value of average voltage on piezoelectric transducer between two switching actions 
is (Badel, , et al., 2006) 

 
α γ

γ
+= + −0

1
( )

1
M ccV u V

C
. (44) 

The dissipated energy during one period of vibration is a function of uM and Vcc as follows: 

 
α γα γ

+= + −
2

2

0

4 1
( 4 )

1
t M M ccE u u V

C
. (45) 

The theoretical value of the SSDV damping is then given by 
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, (46) 

where FM is the amplitude of excitation force Fe. The SSDV technique can achieve better 
vibration control performance than SSDI, but a stability problem arises due to the fact that 
the voltage source is kept constant. Equation (46) shows that under a given excitation force, 
the value of voltage source Vcc that theoretically totally cancels the vibration can be found. 
This particular value is 

 
π γ
α γ

−= +max

1

4 1
cc MV F . (47) 

This is also the maximum voltage that can be applied in this excitation condition. Applying 
a voltage higher than Vccmax leads to instability (experimental results actually show that 
stability problems occur before reaching this critical value). 
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Fig. 9. The principle of SSDV technique 

5.2 Adaptive SSDV techniques 

Equation (47) shows that Vccmax is proportional to the amplitude of the excitation. Hence if 
the voltage is adjusted according to the amplitude of the excitation, the stability problem can 
be solved. Accordingly the enhanced and adaptive SSDV techniques, in which the voltage is 
adjusted according to the amplitude of excitation, have been developed. In a real system, the 
amplitude of the excitation is usually unknown, but we can measure the vibration 
amplitude of the structure.  

(1) Enhanced SSDV 

In the enhanced SSDV proposed by Badel et al. (2006) the voltage source is proportional to 
the vibration amplitude as shown in following equation. 

 
0

,
cc M

V u
C

αβ= −  (48) 

where β is the mentioned voltage coefficient. In the Enhanced SSDV, the dissipated energy 
Et during a period can be expressed as 
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Compared with the classical SSDV technique, the enhanced SSDV increases the transferred 
energy, which results in an increase in the vibration damping. The theoretical value of 
damping of the enhanced SSDV is given by 

 
ω
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. (50) 

Equation (50) shows that, for a given value of parameter β, the damping is not sensitive to 
the amplitude of the applied force. This is the critical point of the enhanced SSDV. But it 

must be noted that for large value of β, the above theoretical expressions are no longer valid 
because the displacement of high-order modes cannot be neglected any longer compared to 
the fundamental one. From the experimental results it has been found that the optimal value 

of the voltage coefficient β depends on many factors such as the noise level of the measured 
signal, the property of the switch, et al. Hence, in order to achieve optimal control 
performance, the voltage coefficient should be adjusted adaptively according to the 
vibration amplitude and other experimental conditions.  

(2) Derivative-based adaptive SSDV 

An adaptive enhanced SSDV technique, in which the voltage coefficient is adjusted 

adaptively to achieve optimal control performance, has been proposed by Ji et al. (2009a). 

The basic principle of the adaptive SSDV technique is that the coefficient β is adjusted based 

on the sensitivity of the vibration amplitude with respect to β: the more the vibration 

amplitude is sensitive to β, the more β is increased. If the variation of amplitude is Δ
Mi

u  due 

to an increment of the voltage coefficient Δβi, the sensitivity is defined as Δ
Mi

u /Δβi. The 

increment of the voltage coefficient, Δβi+1, in the next step is defined as 

 
ΔΔβ η Δβ+ = −

1
Mi

i

i

u
, (51) 

where η is the convergence rate factor. The larger the factor η is, the faster the convergence 
rate is. But when η is too large, the iteration process may become unstable. The physical 
meaning of the algorithm defined in Eq.(51) is similar to the Newton-Raphson method in 
numerical analysis.  

Since ΔuMi/Δβi is an approximation of the derivative of amplitude uM with respect to β, this 

approach is called derivative-based adaptive SSDV. In the real system, Δβi is not updated in 

each cycle of vibration because of the noise in the measured amplitude. Instead, Δβi is kept 

constant for n cycles and the amplitudes uMk (k=1,…,n) are recorded. A parabolic curve is 

then fitted from the points uMk and the slope at the final point uMn is defined as the 

sensitivity.  

(3) LMS-based adaptive SSDV 

In the derivative-based adaptive SSDV, the voltage coefficient β is optimized to achieve 
good damping control performance. Actually, the final goal of optimizing voltage coefficient 
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β is to obtain the optimal voltage. A novel adaptive SSDV method based on LMS algorithm 
to adjust the voltage source directly or voltage coefficient was proposed by Ji et al. (2009b).  
In the LMS-based adaptive SSDV, a FIR filter is used to optimize the voltage Vcc or the 
voltage coefficient β. Their values are defined at each switching point (each displacement 
extrema), not the discrete sampling time n. Hence the detected displacement amplitude uM 
(which is used as a sensor signal to control the switch action) (Ji et al., 2009b), instead of the 
displacement u itself, is used as the error e to the FIR filter. The output y of the FIR filter is 
the voltage or the voltage coefficient β at the switching times, instead of the voltage value at 
each discrete time, and the calculated voltage is held constant until the next switching time 
so that a rectangular wave is generated automatically by the switching circuit. Hence the 
LMS-based system is a sub-system which is not executed at each discrete time, but triggered 
and executed at each detected extrema. The diagram of a LMS-based adaptive SSDV control 
system is shown in Fig. 10. In the case of the optimization of β, the value of β is calculated 
from 

 β ′ ′ ′ ′ ′ ′= − = − + − + + −A( ) ( ) * ( 1) (1) ( 1) (2) ( 2) ( ) ( )m m m mn n n h u n h u n h m u n mh u  (52) 

where h is an FIR filter, ′n  is the discrete time defined at the detected extrema. This means 

that ′ − 1n  represent the discrete time at the previous detected extremum. After β is calculate 

from Eq. (52), the voltage Vcc is obtained from Eq. (46). This method can be considered as an 

extension of the enhanced SSDV. In the case of the direct optimization of the voltage Vcc, the 

following equation is used: 

 ′ ′ ′ ′ ′ ′= − = − + − + + −A( ) ( ) * ( 1) (1) ( 1) (2) ( 2) ( ) ( )cc m m m mV n n n h u n h u n h m u n mh u . (53) 

Since the voltage is directly optimized by this method, it can be considered as an 
improvement to the classical SSDV, where the voltage source is fixed. The same symbol h is 
used in Eqs. (52) and (53), but they have different values. 
It should be noted that although the standard LMS algorithm has been used in this study, its 
implementation is not standard. The LMS-based is masked and executed only at the discrete 
time defined at the detected extrema, ′n , at which the FIR filter is updated and the control 
input is calculated. Due to the non-standard implementation, the other LMS-based control 
laws, such as the Filtered-X algorithm, is difficult to apply in this system. 
 

 

Fig. 10. The diagram of a LMS-based adaptive SSDV control system  
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