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1. Introduction 

What is satellite?  
The word satellite is coming from the Latin language (Latin satelles – escort, companion). 
Satellites are objects that rotate around the planets under the influence of the gravitational 
force. For example, the Moon is natural satellite of the Earth.  
What is the artificial Earth satellite? 
The artificial Earth satellites are artificial objects which are launched into orbit around the 
Earth by a rocket vehicle. This kind of satellites was named, the Human-Made Earth 
Satellites.  
How do rockets function? 
Aeroplanes work on the principle of buoyancy difference on their wings. This is the reason 
why aeroplanes can fly only in the air but not in the vacuum. Thus, an airplane cannot be 
used for launching satellites in their orbit around the Earth (Fig. 1). 

 
Fig. 1. When the aeroplanes have velocity in the air on the bottom of his wings they have 
higher pressure then on the top of wings. This difference of pressure is giving the force of 
buoyancy and the aeroplanes can fly. 
 
It is also not possible to launch a human-made satellite into the orbit around the Earth with 
a cannon or a gun because a cannon-ball has the velocity of about 0.5 km/s. It means that 
this velocity of cannon-ball is about 15 times smaller than the first cosmic velocity (7.9 
km/s). So for it has been possible to launch a satellite into an orbit around the Earth where 
there is vacuum is possible only with using rockets.     
The word rocket comes from the Italian Rocchetta (i.e. little fuse), a name of a small firecracker. 
It is commonly accepted that the first recorded use of a rocket in battle was by the Chinese 
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Fig. 6. A balloon closed under gas pressure 
and after opening an aperture. 

Fig. 7. The principle of a rocket operation.  

 
It means that the momentum for a particle is negative (-dm·urel) and we can write the 
equation (Carton, 1965) and (Danby, 1989): 
 
  rel)()( uvvv  dmddmMM . (1) 
 

 
Fig. 8. Imagery of launching a satellite by rocket with 
the three stages.  

Fig. 9. For example during the 
start a three stages rocket may 
have the mass 100 t but mass of a 
space vehicle will be only 51.2 
kg. 

 
It follows from this equation that the velocity of rocket increased for the elementary 
magnitude  
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dmM

dmd 
 )( reluvv . (2) 

 
From this equation it is possible to see that the increase of the rocket velocity is larger if the 
velocity urel of the particles of gas is maximally the greater when the mass of particle dm has 
some magnitude. This is the reason why the constructors of rockets like to make rockets 
with very high (maximal) velocity of the particles (gas) of the rocket.  
Usual rockets have vertical start. Longer delaying of rockets in the Earth gravitation field 
causes the loss of velocity but also to big thrust during the start is not suitable. So rockets are 
usually made in same stages (Fig. 8 and 9). During the starts of rockets the consummation of 
fuel is very large so that a satellite or a space vehicle enters into the orbit with a mass 
practically next to nothing (see for example Table 1).   
 
Table 1. Data on initial mass of a rocket in a start, spend fuel, thrown parts for a launching 
space vehicle of the mass 51.2 kg 

Stage 1 2 3 

Initial mass 100 t 8 t 640 kg 

Spend fuel 80 t 6.4 t 512 kg 

Thrown part - 12 t 960 kg 

Definitely mass 20 t 1.6 t 128 kg 

Velocity 3860 (m/s) 7720 (m/s) 11580 (m/s) 

 
2. Planet Motion 

Until the 17th century people were thinking that the Sun and planets are rotated around the 
Earth by circles. Such opinions were practically usual until Johann Kepler.  

 
2.1 Kepler’s Laws of Planetary Motion 
Johann Kepler (1546 -1601) discovered the laws of planetary motion empirically from Tycho 
Brahe’s (1546 -1601) astronomical observations of the planet Mars. The first and the second 
laws he published in Astronomia Nova (New Astronomy) in 1609, and the third law in 
Harmonices mundi libri V (Harmony of the World) in 1619. 
 
a) Kepler’s First Law of Planetary Motion   
This law can be expressed as follows: 
 

The path of each planet describes an ellipse with the Sun located at one of its foci.  
 (The Law of Ellipse) 

 
This first Kepler’s Law (Fig. 10 and 11) is sometimes referred to as the law of ellipse because 
planets are orbiting around the Sun in a path described as an ellipse. An ellipse is a special 

curve in which the sum of the distances from every point on the curve to two other points 
(foci F1 and F2) is a constant. 
 

 
Fig. 10. The Orbit of a planet is an ellipse and its elements. 
 
Before Kepler the Greek astronomer Ptolemy and many others after him were thinking that 
the Sun and planets travel in circles around the Earth. The ellipse can be mathematically 
expressed in the polar coordinate system by this equation:  
 

 
1 cos

p
r    , (3) 

 
where (r, θ) are heliocentric polar coordinates for the orbit of planet (r – the distance 
between the Sun and a planet, θ – angle from the perihelion to the planet as seen from the 
Sun, respectively known as the true anomaly), p is the semi-latus rectum, and  ε  is the 
numerical eccentricity.  
At θ = 0 the minimum distance is equal to 
 

 
1min

p
r . (4) 

 
At θ = 90 the distance is equal p. 
At θ = 180 the maximum distance is  
 

 
1max

pr . (5) 

 
The semi-major axis is the arithmetic mean between rmin and rmax:: 
 

 2
minmax

12  prra . (6) 

 
The semi-minor axis is the geometric mean between rmin and rmax: 

 

F1 = SUN 

Planet 

F2 
A 

Aphelion P 
Perihelion 

rmax rmin 

r 
θ p 

a a 

elin =ε a 

b 

A-P apsidal line 

www.intechopen.com



Satellite Motion 479

 
dmM

dmd 
 )( reluvv . (2) 

 
From this equation it is possible to see that the increase of the rocket velocity is larger if the 
velocity urel of the particles of gas is maximally the greater when the mass of particle dm has 
some magnitude. This is the reason why the constructors of rockets like to make rockets 
with very high (maximal) velocity of the particles (gas) of the rocket.  
Usual rockets have vertical start. Longer delaying of rockets in the Earth gravitation field 
causes the loss of velocity but also to big thrust during the start is not suitable. So rockets are 
usually made in same stages (Fig. 8 and 9). During the starts of rockets the consummation of 
fuel is very large so that a satellite or a space vehicle enters into the orbit with a mass 
practically next to nothing (see for example Table 1).   
 
Table 1. Data on initial mass of a rocket in a start, spend fuel, thrown parts for a launching 
space vehicle of the mass 51.2 kg 

Stage 1 2 3 

Initial mass 100 t 8 t 640 kg 

Spend fuel 80 t 6.4 t 512 kg 

Thrown part - 12 t 960 kg 

Definitely mass 20 t 1.6 t 128 kg 

Velocity 3860 (m/s) 7720 (m/s) 11580 (m/s) 

 
2. Planet Motion 

Until the 17th century people were thinking that the Sun and planets are rotated around the 
Earth by circles. Such opinions were practically usual until Johann Kepler.  

 
2.1 Kepler’s Laws of Planetary Motion 
Johann Kepler (1546 -1601) discovered the laws of planetary motion empirically from Tycho 
Brahe’s (1546 -1601) astronomical observations of the planet Mars. The first and the second 
laws he published in Astronomia Nova (New Astronomy) in 1609, and the third law in 
Harmonices mundi libri V (Harmony of the World) in 1619. 
 
a) Kepler’s First Law of Planetary Motion   
This law can be expressed as follows: 
 

The path of each planet describes an ellipse with the Sun located at one of its foci.  
 (The Law of Ellipse) 

 
This first Kepler’s Law (Fig. 10 and 11) is sometimes referred to as the law of ellipse because 
planets are orbiting around the Sun in a path described as an ellipse. An ellipse is a special 

curve in which the sum of the distances from every point on the curve to two other points 
(foci F1 and F2) is a constant. 
 

 
Fig. 10. The Orbit of a planet is an ellipse and its elements. 
 
Before Kepler the Greek astronomer Ptolemy and many others after him were thinking that 
the Sun and planets travel in circles around the Earth. The ellipse can be mathematically 
expressed in the polar coordinate system by this equation:  
 

 
1 cos

p
r    , (3) 

 
where (r, θ) are heliocentric polar coordinates for the orbit of planet (r – the distance 
between the Sun and a planet, θ – angle from the perihelion to the planet as seen from the 
Sun, respectively known as the true anomaly), p is the semi-latus rectum, and  ε  is the 
numerical eccentricity.  
At θ = 0 the minimum distance is equal to 
 

 
1min

p
r . (4) 

 
At θ = 90 the distance is equal p. 
At θ = 180 the maximum distance is  
 

 
1max

pr . (5) 

 
The semi-major axis is the arithmetic mean between rmin and rmax:: 
 

 2
minmax

12  prra . (6) 

 
The semi-minor axis is the geometric mean between rmin and rmax: 

 

F1 = SUN 

Planet 

F2 
A 

Aphelion P 
Perihelion 

rmax rmin 

r 
θ p 

a a 

elin =ε a 

b 

A-P apsidal line 

www.intechopen.com



Satellite Communications480

 2
2maxmin 1

1
  aprrb . (7) 

The semi-latus rectum p is equal to 

 
2bp
a

 . (8) 

The area A of an ellipse is  
 
 abπA  . (9) 
 
In the special case when ε = 0 then an ellipse turns into a circle where r = p = rmin= rmax= a = b 
and A= πr2. 
Using ellipse-related equations Kepler’s procedure for calculating heliocentric polar 
coordinates r, θ, for planetary position as a function of the time t from Perihelion, and the 
orbital period P, follows four steps: 

1. Compute the mean anomaly Ma from the equation  
P
πtM 2

a  .                (10) 

2. Compute the eccentric anomaly E by numerically solving Kepler’s equation:  
 
 a sinM E E  . (11) 

3. Compute the true anomaly θ by the equation 
2

tan
1
1

2
tan E





 .               (12) 

4. Compute the heliocentric distance r from the equation  cos1 pr .               (13) 

For the circle ε = 0 we have simple dependence θ = E = Ma. 
 

 
Fig. 11. Elements of parameters of a satellite 
orbit.  

Fig. 12. The radius vector drawn from the 
Sun to a planet covers equal areas in equal 
times. 
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b) The Second Kepler’s Law of Planetary Motion 
This law can be expressed as follows: 
 

The radius vector drawn from the Sun to a planet covers equal areas in equal times.  
(The Law of equal areas) 

 
Mathematically this law can be expressed with the equation:  
 

 0
2
1 2 


 r

dt
d , (14) 

where  is angular velocity of true anomaly, 2
2
1 r  is the ‘’areal velocity’’ that the radius 

vector r drawn from the Sun to the planet sweeps in one second (Fig. 12).  
 
From this law it follows that the speed at which any planet moves through space is 
continuously by changing. A planet moves most quickly when it’s closer to the Sun and 
more slowly when it is further from the Sun.      
 
c) The Third Kepler’s Law of Planetary Motion 
This law can be expressed as follows: 
 

The squares of the periodic times of the planets are proportional to the cubes of the  
semi-major axes of their orbits. (The harmonic law) 

   
This law is giving the relationship between the distance of planets from the Sun and their 
orbital periods. Mathematically and symbolically it’s possible to express as follows: 
 

P2  α  a3  , 
where P is the orbital period of circulate planet around the Sun and a is the semi-major axis 
of this orbit. Because this proportionality is the same for any planet which rotates around 
the Sun it’s possible to write the next equation: 
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3. The Physical Laws of Motions  

Sir Isaac Newton’s formulated three fundamental laws of the classical mechanics and the 
law of gravitation in his great work Philosophieæ Naturalis (Principia Mathematica) published 
on July 5, 1687. Before Isaac Newton the great contribution to the advance of mechanic was 
given by Galileo, Kepler and Huygens.     

 
3.1 The First Law of Motion – Law of Inertia  
This law can be expressed as follows: 
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of this orbit. Because this proportionality is the same for any planet which rotates around 
the Sun it’s possible to write the next equation: 
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3. The Physical Laws of Motions  

Sir Isaac Newton’s formulated three fundamental laws of the classical mechanics and the 
law of gravitation in his great work Philosophieæ Naturalis (Principia Mathematica) published 
on July 5, 1687. Before Isaac Newton the great contribution to the advance of mechanic was 
given by Galileo, Kepler and Huygens.     

 
3.1 The First Law of Motion – Law of Inertia  
This law can be expressed as follows: 
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Everybody persists in its state of being at rest or moving uniformly straight forward,  
except insofar as it is compelled to change its state by force impressed. 

 
Newton’s first law of motion is also called the law of inertia. It states that if the vector sum of 
all forces acting on an object is zero, then the acceleration of the object is zero and its velocity 
is constant. Consequently: 
   • An object that is at rest will stay at rest until a balanced force acts upon it. 
   • An object that is in motion will not change its velocity until a balanced force acts upon it. 
 
If the resultant force acting on a particle is zero, the particle will remain at rest (if 
originally at rest) or will move with constant speed in a straight line (if originally in 
motion). 

 
3.2 The Second Law of Motion – Law of Force  
This law can be expressed as follows: 
 
Force equals mass times acceleration. 
If the resultant force acting on a particle is not zero, the particle will have acceleration 
proportional to the magnitude of the resultant and in the direction of this resultant force. 
 
This law may be expressed by the equation: 
 
 F = ma , (16) 
 
where F is the vector of force, m  the mass of particle and a is the vector of acceleration (Fig. 
13. a).  
 

 
Fig. 13. a) An acceleration a of a free body on a horizontal plane under influence of a force F, 
b) In the rotation when the rope is broken, a little ball shall start moving with constant 
velocity along the line of tangent in the horizontal plane.  
 
Really, this is differential equation which represents a basic equation of motion or basic 
equation of dynamic. 
Alternatively this law can be expressed by the equation: 
 

  vF m
dt
d , (17) 

m 
F a 

O 
ω v = const ≈ 

Tangent 

aF m  
where the mass m is a factor of 

proportionality and a measure of inertial 
a)                                                                           b) 

Little ball 

F 
F 

F 
Rope 

where the product mv is the momentum: m - the mass of particle and v - the velocity. So, we 
can say: 
 

The force is equal to the time derivative of the body’s momentum. 

 
3.3 The Third Law – Law of action and reaction 
This law can be expressed in the following way: 
 

To every action there is an equal by magnitude and opposite reaction (Fig. 14. a). 
 

 
Fig. 14. a) Under the influence of the weight W of a body, a normal reaction of its support 
occurs, b) A beam under loading by a force F will be deformed as reaction to an active 
force F.  
 
This law can be also expressed: 
 

The forces of action and reaction between bodies in contact have the same magnitude,  
same line of action and opposite sense. 

 
3.4 The Law of Gravitation – The Law of Universal Gravitation 
Isaac Newton stated that two particles at the distance r from each other and, respectively, of 
mass M and m, attract each other with equal and opposite forces F1 and F2 directed along the 
line joining the particles (Fig. 15). The common magnitude F of these two forces is: 
 

 2G
r

MmF  , (18) 

 
where G is the universal constant of gravitation G ≈ 6.67428 × 10-11 m3kg-1s-2),or approximately 
3.44×10-8ft4/lb-sec4 in British gravitational system of units (Beer & Johnston 1962). 
 
The force of attraction exerted by the Earth on body of the mass m located on or near its 
surface is defined as the weight (W) of the body (Fig. 16)  
 
 W =mg , (19) 
 
where g is the acceleration of gravity, being also the acceleration of force of weight. 

m 

W 

N 

F 

a) b) 
|W| = |N| 
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Fig. 15. Newton’s Law of the 
universal gravitation.  

Fig. 16. The weight of a body on the surface of the Earth 
and the influence of centrifugal forces.  

 
Because this force is really the force of universal gravitation it’s possible to say 
 

 m
R
Mm 2GgW  . (20) 

 
From this equation it follows that the acceleration of gravity is 
 

 2
G
R
Mg  . (21) 

 
The Earth is not truly spherical so the distance R from the centre of the Earth depends on the 
point selected on its surface. This will be the reason why the weight of the same body will 
also not be the same weight on different geographical latitude and altitude of the considered 
point. For more accurate definition of the weight of a body it’s necessary to include a 
component representing the centrifugal force due to the rotation of the Earth. So, the values 
of g for a body in rest at the sea level vary from 9.780  m/s2 (32.09 ft/s2)  at the equator to 
9.832 m/s2 (32.26 ft/s2) at the poles. 

 
3.5 D’Alembert’s Principle 
Jean le Rond d’ Alembert (1717-1783) postulated the principle called by his name from the 
basic equation of dynamic: 
 
 aF  m . (22) 
 
This equation can be written in this form: 
 
   0 aF m . (23) 
 
From this equation the magnitude  am  is called inertial force. So, this equation represents 
an equation of fictive equilibrium where F represents resultant of all active and reactive 
forces, and inertial force which has the magnitude m·a, but in opposite direction of the 
acceleration a. This equation is named equation of dynamic equilibrium.  
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For example, when a body is rotating in a circle with constant velocity v restrained by a rope 
length R then centrifugal force appears (Fig. 17).  
 

 
Fig. 17. Centrifugal force at rotation with constant magnitude of velocity v along a circle, and 
then centrifugal force L appears.  

 
3.6 Potential due to a Spherical Shell  
A basic result proved by Isaac Newton is that spherical shell which is homogeneous (with 
constant density) attracts an exterior point with mass m=1 as if all of the mass M of the 
spherical shell concentrated at its centre C (Fig. 18). This is the same, as if we have 
homogenous concentric layers but with different densities and whole masses M then an 
exterior mass point m attracts as if all of the mass M of the spheres was concentrated at its 
centre (Fig. 19).  
 

 
Fig. 18. The potential due to the solid 
spherical shell.  

Fig. 19. The potential due to the concentric 
solid homogeneous spherical shells. 

 
This fundamental result allows us to consider that the attraction between the Earth and the 
Sun, for example, to be equivalent to that between two mass points.  
So we can say: 
 

The solid sphere of constant density attracts an exterior unit mass  
though all of its masses were concentrated at the centre. 

 
The potential, therefore, due to a spherical body homogeneous in concentric layers, for a 
point outside the sphere is  
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GMU

r
  , (24) 

where r is the distance from the point with mass m to the centre C of the mass of the 
homogeneous sphere or to the centre C of the concentric homogeneous spheres.  

 
4. Determination of Orbits  

Jacques Philippe Marie Binet (1786-1856) derived the differential equation in the polar 
coordinate system of the motion free material particle under action of the central force when 
areal velocity by the second Kepler’s law is constant. This Binet’s differential equation can 
be put down in writing   

 rad2

2
22 Fu

d
udumC 



    , (25) 

where is 
r

u 1 , C - double areal velocity ( 2rC  ), Frad gravitation force of the central body 

with mass M on the free particle with mass m ( 2
rad GMmuF  ), where minus sign 

indicates that this is an attracting force, and plus sign stands  for the repulsive force. 
This differential equation is equation of free particle motion in a plane displayed in the polar 
coordinate system. Thus, inhomogeneous differential equation is obtained 

 22
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C
GMu

d
ud 



   . (26) 

 
 
 
 
The solution for the homogeneous part of this equation is 
 
 )cos( 01   Bu , (27) 

 
where B and θ0 are the constants of integration. Choosing the polar axis so that θ0 = 0 we can 
write 
 
  cos1 Bu    (28) 
 
and for the inhomogeneous part of the equation  
 

 
pC

GMu 1
22  . (29) 

 
The solution of this inhomogeneous differential equation (26) is 

Homogeneous     Inhomogeneous 
         Part                        Part 
 

  2

2 1
1 1 cosCu u u B
p GM

        . (30) 

 
The equation for the ellipse and for the other conic section in the polar coordinate system 
can be written in the form 
 

  1 1 1 cos
r p

   . (31) 

 
After comparing the equations (30) and (31) it is possible to see that the equation (30) truly 
represents the equation of a conic section. The product of the constants B and C2/(GM) 
defines the eccentricity ε of the conic section. So it can be expressed by the equation (Beer & 
Johnston, 1962) 
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B BC
GM GM
C

   . (32) 
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Fig. 20. The conic sections: circle, ellipse, parabola and hyperbola. 
 
Four cases may be distinguished for different eccentricities (Fig. 20). 
1) The conic section is a circle when is ε = 0. 
2) The conic section is an ellipse when 0 < ε < 1. 
3) The conic section is a parabola when ε = 1. 
4) The conic section is a hyperbola when ε > 1.  
Of cause for the planets and for the satellites orbits can be only circulars or ellipses. 
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5. The Two-Body Problem 

It is possible to investigate the motion of two bodies that are only under their mutual 
attraction. It can also be assumed that the bodies are symmetrical and homogeneous and 
that they can be considered to be point masses. So we can do analysis of the motion of 
planets and the Sun. 
 

 
Fig. 21. Motion of the Sun and a planet in two-body problem. 
 
The differential equation of the Sun motion (Fig. 21) is 

 
2

S
2 2
r rd MmM G

rdt r
  . (33) 

The sign + is because the force FP→S  has the same orientation as the vector r0. 
The differential equation of the planet motion is 

 
2

P
2 2

rd Mmm G
rdt r

 r
. (34) 

The sign – is because the force FS→P has the same orientation as the vector r0. 
After summing up the equations (33) and (34) we can write  

 
2 2

S P
2 2
r r 0d dM m

dt dt
      or     2

S P2 r r 0d M m
dt

  . (35) 

From the static it is known that the sum of the moment forces is equal to the moment of 
resultant. So we can say that the sum of the moment masses is equal to the moment of 
resultant mass. Now it is possible to write 
 
 S P Cr r ( )rM m M m   . (36) 
 
After the first and the second derivation we have 
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From the equations (35) and (37) it follows 

   02

2 mM
dt

d Cr      or       02

2 
dt

d Cr . (38) 

Therefore the centre of this material system has no acceleration, namely this material system 
is in the inertial motion with the possibility to move with constant velocity vC, or remain at 
rest. 
The equation (33) may be multiplied by m, and equation (34) by M and after subtracting the 
equation (33) from (34) we can write 
 

  22
SP

2 2 2
rr rdd mMMm G M m

rdt dt r

        , (39) 
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P S2 2
rr rd mMMm G M m
rdt r

       (40) 

 

 
Fig. 22. The Sun is moving also around the centre C of mass of the Sun and a planet by a 
small ellipse and a planet is moving about the same centre C by the bigger ellipse, not 
around the geometrical centre of Sun. 
 
After dividing the equation (40) by M and taking from Fig. 21 that   r=rP-rS we can write 
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From the equations (35) and (37) it follows 
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Therefore the centre of this material system has no acceleration, namely this material system 
is in the inertial motion with the possibility to move with constant velocity vC, or remain at 
rest. 
The equation (33) may be multiplied by m, and equation (34) by M and after subtracting the 
equation (33) from (34) we can write 
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Fig. 22. The Sun is moving also around the centre C of mass of the Sun and a planet by a 
small ellipse and a planet is moving about the same centre C by the bigger ellipse, not 
around the geometrical centre of Sun. 
 
After dividing the equation (40) by M and taking from Fig. 21 that   r=rP-rS we can write 
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This is differential equation (41) of the planet motion when taken into account and the 
planet acting on the Sun. It is easy to prove that this planet is really rotating around the 
centre of mass (C) of the Sun and the planet. Also the Sun’s geometrical center is rotating by 
the small ellipse around the centre of mass (C) (Fig. 22).  
Hence: 
 
The planet is rotating around the centre of masses (C) of the Sun and the planet by the 
bigger ellipse. The geometrical centre of the Sun also rotates around the centre of masses (C) 
by a small ellipse.  

 
6. Satellite Motion 

The problem, of two bodies is solved exactly in the celestial mechanics, but only in the 
special case if both bodies are having small dimensions, i.e. if the Sun and a planet can be 
thought of as particles. In this special case the motions of particles around the body with 
finite dimensions is also included, if this body with finite dimensions has the central 
spherical field of forces. (For example, as a homogeneous ball (Fig. 18) or concentric solid 
homogeneous spherical shells with different densities (Fig. 19)). Just because our Earth is not 
a ball and with homogeneous masses some discrepancies appear at satellite motions around 
the Earth from the exact solutions of two bodies when we imagine whole mass of the Earth 
as concentrated in it the centre of mass. For the solution of the problem of the motion of 
bodies (two particles) exactly valuable are three Kepler’s laws from which fallow that the 
satellite would be moving constantly in the same plane by the ellipse with constant areal 
velocity. 
 

 
Fig. 23. Keplerian orbital parameters. 
 
The positions of satellites are determined with six Keplerian orbital parameters: Ω, i, ω, a, e 
and v or t (Fig. 23): 
▪  The orientation of orbits in space is determined by: 
 Ω  -  the right ascension of ascending node (the angle measured in the equator plane between 
the directions to the vernal equinox and ascending node N where the satellite crosses 
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equatorial plane from the south to the north celestial  sphere), i  –  the inclination of orbit, (the 
angle between the equatorial plane and orbital plane) and ω – the argument of perigee (the 
angle between the ascending node and the direction to perigee (as the nearest point of  
satellite)). 
▪  The dimensions of orbit are determined by:  a -  the semi-major axis and  ε – the numerical 
eccentricity of an ellipse. 
▪  The position of satellite on its orbits is determined by: v - the true anomaly (as the angle 
between the directions to perigee and instantaneous position of satellite)  or by  t - the 
difference of time in instantaneous position and the time in perigee.  
 
All Kepler’s laws and Newton’s laws for a planet motion are valued also for the Earth’s 
satellites motion but at satellites there are some more perturbations.  

 
6.1 Required Velocity for a Satellite  
A body will be a satellite in a circular orbit around the Earth if it has velocity in the 
horizontal line so that centrifugal force is equal to centripetal force which is produced by the 
Earth’s gravitation attraction (Fig. 24). So it can be expressed with the equation: 
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where: m - mass of a satellite, M – the Earth’s mass, R - radius of the Earth, Hs - altitude of a 
satellite above the surface of the Earth, G constant of universal gravitation and vI velocity of 
a body which will become the satellite. 
 

 
Fig. 24. On the satellite in orbit act the Earth’s gravity attraction and the centrifugal force. 
 
From this equation (42) next the equation follows 
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This is differential equation (41) of the planet motion when taken into account and the 
planet acting on the Sun. It is easy to prove that this planet is really rotating around the 
centre of mass (C) of the Sun and the planet. Also the Sun’s geometrical center is rotating by 
the small ellipse around the centre of mass (C) (Fig. 22).  
Hence: 
 
The planet is rotating around the centre of masses (C) of the Sun and the planet by the 
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by a small ellipse.  
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spherical field of forces. (For example, as a homogeneous ball (Fig. 18) or concentric solid 
homogeneous spherical shells with different densities (Fig. 19)). Just because our Earth is not 
a ball and with homogeneous masses some discrepancies appear at satellite motions around 
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as concentrated in it the centre of mass. For the solution of the problem of the motion of 
bodies (two particles) exactly valuable are three Kepler’s laws from which fallow that the 
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equatorial plane from the south to the north celestial  sphere), i  –  the inclination of orbit, (the 
angle between the equatorial plane and orbital plane) and ω – the argument of perigee (the 
angle between the ascending node and the direction to perigee (as the nearest point of  
satellite)). 
▪  The dimensions of orbit are determined by:  a -  the semi-major axis and  ε – the numerical 
eccentricity of an ellipse. 
▪  The position of satellite on its orbits is determined by: v - the true anomaly (as the angle 
between the directions to perigee and instantaneous position of satellite)  or by  t - the 
difference of time in instantaneous position and the time in perigee.  
 
All Kepler’s laws and Newton’s laws for a planet motion are valued also for the Earth’s 
satellites motion but at satellites there are some more perturbations.  
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horizontal line so that centrifugal force is equal to centripetal force which is produced by the 
Earth’s gravitation attraction (Fig. 24). So it can be expressed with the equation: 

  2s

2
I G

sHR
mM

HR
vm  , (42) 
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