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Abstract

IEEE 802.16, also known as WiMAX, has received much attention recently for its capability
to support multiple types of applications with diverse Quality-of-Service (QoS) requirements.
Beyond what the standard has defined, radio resource management (RRM) still remains an
open issue, which plays an important role in QoS provisioning for different types of services.
In this chapter, we propose a downlink resource management framework for QoS scheduling
in OFDMA based WiMAX systems. Our framework consists of a dynamic resource allocation
(DRA) module and a connection admission control (CAC) module. A two-level hierarchi-
cal scheduler is developed for the DRA module, which can provide more organized service
differentiation among different service classes, and a measurement-based connection admis-
sion control strategy is introduced for the CAC module. Through system-level simulation,
it is shown that the proposed framework can work adaptively and efficiently to improve the
system performance in terms of high spectral efficiency and low outage probability.
Keywords: WiMAX OFDMA radio resource management QoS scheduling

1. Introduction

Over the last decade, the rapid growth of high-speed multimedia services for residential and
small business customers has created explosive demand for last mile broadband access. Cur-
rently, most broadband access is offered through wired lines, such as xDSL, cable or T1 net-
works. However, there are still a large number of areas where wired infrastructures are diffi-
cult to be deployed because of technical or commercial reasons. Broadband Wireless Access
(BWA) systems are gaining extensive interests from both industry and research communities
due to the advantages of rapid deployment, lower maintenance and upgrade costs, and gran-
ular investment to match market growth (1). Among the emerging technologies for BWA,
IEEE 802.16 based technology, also known as Worldwide Interoperability for Microwave Ac-
cess (WiMAX), is one of the most promising and attractive alternatives for last mile broadband
wireless access. As expected, IEEE 802.16 standard and its evolutions have been developed to
deliver a variety of multimedia applications with different Quality-of-Service (QoS) require-
ments, such as throughput, delay, delay jitter, fairness and packet loss rate. The physical
layer specifications and MAC signaling protocols have been well defined in the standard (2),
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however, radio resource management (RRM), i.e., scheduling and call admission control, still
remains as an open issue, which plays an important role in QoS provisioning for different
types of service.
Orthogonal Frequency Division Multiple Access (OFDMA) is a physical layer specification
for IEEE 802.16 systems. OFDMA builds on Orthogonal Frequency Division Multiplexing
(OFDM), which is immune to intersymbol interference and frequency selective fading, as it
divides the frequency band into a group of mutually orthogonal subcarriers, each having a
much lower bandwidth than the coherence bandwidth of the channel. In multi-user envi-
ronment, OFDMA provides another degree of freedom by enabling dynamic assignment of
subcarriers to different users at different time instances, to take advantage of the fact that at
any time instance channel responses are different for different users at different subcarriers (3).
Thus, dynamic subcarrier assignment (DSA) and adaptive power allocation (APA) to multiple
users can be employed to improve the system performance significantly.
Recently, radio resource management for OFDMA systems has attracted enormous research
interests. Many scheduling algorithms have been proposed which can adapt to changes in
users’ channel conditions and QoS requirements. In the literature, the resource allocation
problem can be divided into two categories with different objectives. The objective of the first
category is to minimize the total transmit power subject to individual data rate constraints,
see (7)-(9). The objective of the second category aims at maximizing the overall (weighted)
transmission rate subject to power constraints, see (10)-(12). In either case, the optimal re-
source allocation solutions are difficult to get due to high computational complexity. Instead,
suboptimal solutions based on relaxation, problem splitting, or heuristic algorithms are pro-
posed to reduce computational complexity (4). Such algorithms are often refereed to as loading
algorithms.
In most loading algorithms, the QoS requirement of each user is usually defined in terms of a
fixed data rate per frame. However, in practical communication systems, it is neither sufficient
nor efficient to represent different QoS requirements by a fixed data rate per frame. The re-
source allocation problem for systems supporting both real-time (RT) and non-real-time (NRT)
multimedia traffic becomes much more complicated when diverse QoS requirements have to
be considered. The transmission of RT packets can be delayed as long as the delay constraint
is not violated, and the transmission of NRT packets can be more elastic. Furthermore, most
loading algorithms assume that users always have data to transmit, which is not the case in
real systems. Instead, appropriate traffic models should be taken into account in the design
of scheduling algorithms. Therefore, efficient packet-based scheduling algorithms are of interest.
Many packet scheduling algorithms with different design objectives have been proposed in
(13)-(22).
With respect to packet-based scheduling algorithms, most of the existing literature focuses on
the design of one-level flat scheduler. In such approach, each connection is assigned a priority
value based on some criterion and the connection with the highest priority value is scheduled
for transmission. This approach has the advantage of low implementation complexity. How-
ever, due to different traffic patterns and diverse QoS requirements among different service
classes, it is hard to well define a unified priority criterion that can work well for all service
classes. Thus, it is desirable to individually design the scheduling algorithm for each ser-
vice class and separate the resource allocation from the packet scheduling. The first paper
proposing the idea of a two-level hierarchical scheduler is in (23). Performance comparisons
between one-level and two-level schedulers are done in (24). In (25), Chang et al. proposed
an adaptive hierarchical polling approach to minimize the average polling delay and band-
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width used for polling. However, so far little work has been done in the design of an efficient
bandwidth distribution algorithm for the aggregate resource allocator, which is critical on the
overall performance of a two-level hierarchical scheduler and therefore should be carefully
designed.
In this chapter, we present a downlink resource management framework for QoS scheduling
in OFDMA based WiMAX Systems. The framework consists of a dynamic resource allocation
(DRA) module and a connection admission control (CAC) module. DRA emphasizes on how
to share the limited radio resource in terms of subchannels and time slots among subscriber
stations with the objective of increasing the spectral efficiency while satisfying the diverse
QoS requirements in each service class. CAC highlights how to limit the number of ongoing
connections preventing the system capacity from being overused. The major contributions of
this chapter include:

1. A two-level hierarchical scheduler is employed to split the resource allocation problem
into two subproblems: a bandwidth distribution problem in the aggregate resource
allocator and a scheduling problem in class schedulers. Yet there is sufficient coupling
between the allocator and the schedulers as the allocator is aware of the performance of
the schedulers.

2. A novel priority-based scheduling algorithm is proposed for rtPS and nrtPS class sched-
ulers, which tightly couples the packet scheduling and subcarrier allocation together
through in integrated cross-layer approach to take advantage of the inter-dependencies
between the PHY and MAC layers.

3. An adaptive estimation-based bandwidth distribution scheme is proposed for the ag-
gregate resource allocator. The proposed scheme first estimates the required amount
of bandwidth in each class scheduler based on the backlogged traffic and the average
modulation efficiency. Then an exponentially smoothed curve with respect to QoS sat-
isfaction is applied to adjust the estimation in order to increase the spectral efficiency
while maintaining a guaranteed QoS performance.

4. An effective measurement-based connection admission control policy is proposed for
the CAC module, which takes the current state of the network and class priority into
consideration when admission decisions are made.

Through the detailed system-level simulations, the study shows that the proposed resource
management framework can significantly increase the spectral efficiency while ensuring the
QoS requirements of each service class.
The rest of the chapter is organized as follows: We first give a brief introduction of IEEE 802.16
in Section 2. Then, the structure of the proposed downlink resource management framework
is described in Section 3, followed by the design of hierarchical resource allocation algorithms
and connection admission control policies in Section 4 and Section 5, respectively. In Sec-
tion 6, simulation environments and results are outlined and discussed. Finally, conclusions
are drawn in Section 7.

2. Overview of IEEE 802.16 Networks

IEEE 802.16/WiMAX technology supports both mesh and point-to-multipoint (PMP) net-
works (2). In the PMP mode, the network has a cellular structure where base station (BS)
governs all the communications in the network and the subscriber stations (SSs) cannot com-
municate with each other directly. In contrast, in the mesh mode, traffics can be exchanged
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Fig. 1. Adjacent and distributed subcarrier allocation

directly between SSs. In this chapter, we only concentrate on the WiMAX PMP network.
The physical layer of the IEEE 802.16 air interface operates either at 10-66 GHz for line-of-
sight (LOS) communications or 2-11 GHz for non-line-of-sight (NLOS) communications, and
it supports data rates in the range of 32-130 Mbps depending on the transmission bandwidth
as well as the modulation and coding schemes used (5). Adaptive modulation and coding
scheme (AMC) is supported in the standard. The design objective of AMC is to maximize
the data rates by adjusting the transmission parameters according to time-varying channel
conditions, while maintaining a prescribed target packet error rate (PER).
As specified in the standard, IEEE 802.16 employs OFDM in the physical layer. In partic-
ular, two different air interfaces based on OFDM can be used: WirelessMAN-OFDM and
WirelessMAN-OFDMA. The first option employs fast Fourier transform (FFT) of size 256
(subcarriers). Time-division multiplexing (TDM) and time-division multiple access (TDMA)
are used for downlink and uplink transmission respectively. The second option employs a
larger FFT space (2048 and 4096 subcarriers) which are further grouped into subchannels. The
subchannels are assigned to different subscriber stations and may employ different modula-
tion and coding schemes to exploit frequency diversity as well as time diversity. The sub-
channels are also used for multiple access, namely, orthogonal frequency division multiple
access (OFDMA). There are two approaches of allocating subcarriers to form a subchannel:
distributed subcarrier permutation and adjacent subcarrier permutation. The two approaches
are shown in Fig. 1. In distributed subcarrier permutation, a subchannel is formed with differ-
ent subcarriers randomly distributed across the channel spectrum. This approach maximizes
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the frequency diversity and averages inter-cell interference. It is suitable for mobile environ-
ment where channel characteristics change fast. Both partial usage of subchannels (PUSC) and
full usage of subchannels (FUSC) schemes employ distributed subcarrier permutation. In ad-
jacent subcarrier permutation, a subchannel is formed by grouping adjacent subcarriers. This
approach creates a ’loading gain’ and is easy to use with beam-forming adaptive antenna sys-
tem (AAS). It is suitable for stationary or nomadic environment where channel characteristics
change slowly. The AMC scheme employs adjacent subcarrier permutation.
IEEE 802.16 standard supports both frequency-division duplex (FDD) and time-division du-
plex (TDD) transmission modes. For FDD scheme, distinct frequency channels are assigned
for uplink and downlink transmissions. In contrast, TDD scheme uses a single frequency
channel for uplink and downlink transmissions by dividing the MAC frame into uplink and
downlink subframes. The length of these subframes are determined dynamically by the BS
and are broadcasted to the SSs through downlink and uplink MAP messages (DL-MAP and
UL-MAP) at the beginning of each frame.
Four types of services are defined in the standard, each of which has different QoS require-
ments (2):

• Unsolicited grant service (UGS): This type of service is designed to support real-time
service flows, with strict delay requirement, which generate fixed-size data packets pe-
riodically, such as T1/E1.

• Real-time polling service (rtPS): This type of service is designed to support real-time
service flows, with less stringent delay requirements, which generate variable-size data
packets at periodic intervals, such as VoIP with silence suppression.

• Non-real-time polling service (nrtPS): This type of service is designed to support delay-
tolerant data streams which are more bursty in nature, such as FTP. In general, the nrtPS
can tolerate longer delays and is insensitive to delay jitter, but requires a minimum
throughput.

• Best-effort service (BE): This type of service is designed for traffic with no QoS require-
ments, such as email, and therefore may be handled on a resource-available basis.

3. Downlink Resource Management Framework

3.1 Assumptions and Preliminaries

In this chapter, we only investigate the WiMAX PMP network with OFDMA-TDD operation.
We assume that subscriber stations are stationary or nomadic users with slowly varying chan-
nel conditions. Adjacent subcarrier permutation strategy is employed to support AMC. In
OFDMA, radio resource is partitioned in both frequency domain and time domain, which re-
sults in a hybrid frequency-time domain resource allocation. It provides an added dimension
of flexibility in terms of higher granularity compared to OFDM/TDM systems.
We consider the downlink scenario of an infrastructure-based OFDMA system with Us sub-
carriers and K users. At the physical layer, the time axis is divided into frames with fixed
length, each of which consists of a downlink (DL) and an uplink (UL) subframe to support
TDD operation. In each DL subframe, there are Ut time slots available for downlink trans-
missions, each of which may contain one or several OFDM symbols. To reduce the resource
addressing space, channel coherence in frequency and time is exploited by grouping Is adja-
cent subcarriers and It time slots to form a basic resource unit (BRU) for resource allocation. A
BRU is the minimum resource allocation unit as shown in Fig. 2. The size of a BRU is adjusted
so that the channel experiences flat fading in both frequency and time domain. Thus in each
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Fig. 2. Frequency-time domain radio resource allocation in OFDMA systems

DL subframe, there are S = Us/Is subchannels in frequency domain and N = Ut/It slots
in time domain, which corresponds to a total of S ∗ N BRUs available in frequency-time do-
main for DL transmissions. Each BRU can be assigned to different users and be independently
bit and power loaded. In principle, adaptive power allocation in each BRU can improve the
system performance. However, some studies show that performance improvements are only
marginal over a wide range of SNRs due to the statistical effects (3). Therefore, we assume
that the total transmission power is equally distributed among all subchannels.
We further assume that in each frame the base station has perfect knowledge of channel state
information (CSI) for each subchannel of each user. This can be obtained by piggybacking
such information in each uplink packet, which is suitable for slowly varying channels. Based
on CSI, adaptive modulation and coding scheme is employed to adjust the transmission mode
dynamically according to the time-varying channel conditions. Multiple transmission modes
are available, with each mode representing a pair of specific modulation format and a forward
error correcting code. The transmission mode is determined by the instantaneous signal-to-
noise ratio (SNR). To utilize the PHY layer resources more efficiently, fragmentation at the
MAC layer is enabled. A separate queue with a finite queue length of L MAC protocol data
units (PDUs) is maintained for each connection at the base station. We assume that the MAC
PDUs are of fixed size, each of which contains d information bits.

3.2 Structure of the Resource Management Framework

The proposed downlink resource management framework consists of a dynamic resource allo-
cation (DRA) module and a connection admission control (CAC) module. CAC is responsible
for preventing the system capacity from being overused by limiting the number of ongoing
connections. DRA aims at an efficient usage of the scarce radio resource, while maintaining
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Fig. 3. Structure of the proposed downlink resource management framework for IEEE 802.16
systems

a guaranteed QoS performance among all admitted users. From a cross-layer perspective,
resource management should be a joint optimization of a large number of variables ranging
from application layer to physical layer. That is, which user should be scheduled for trans-
mission in which BRU, under certain QoS constraints and time-varying channel conditions.
However, this would lead to a very complex algorithm design since four types of services
with different QoS requirements are defined in the standard. This approach would also lose
flexibility if new traffic requirements or different optimization goals were to be considered.
Therefore, we adopt a two-level hierarchical scheduler for the DRA module, a loosely cross-
layer approach trying to strike a balance between flexibility and modularity. Then the resource
allocation problem can be split into two subproblems, i.e., a bandwidth distribution problem
in the aggregate resource allocator and a scheduling problem in class schedulers. Yet there is
sufficient coupling between the allocator and the schedulers as the allocator is aware of the
performance of the schedulers. An advantage of this two-level hierarchical resource alloca-
tion architecture is that the algorithms for the allocator and the schedulers can be developed
independently of each other. As an example, if the scheduling algorithm of a class scheduler
is changed from, let’s say, maximum SNR to proportional fairness, this will affect the way
of BRU assignment in that class scheduler, but the bandwidth distribution algorithm in the
aggregate resource allocator can be kept the same, as long as the design objective remains
unchanged.
Fig. 3 depicts the proposed downlink resource management framework for IEEE 802.16 sys-
tems. When an application initiates a connection, it sends the connection request to the CAC
module with connection type, traffic parameters, and QoS requirements. Then the CAC mod-
ule interacts with the DRA module to get the current network state and commits admission
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decisions. All arriving packets from the application layer are classified by the connection clas-
sifier according to their connection identifications (CID) and traffic types, and are sent to the
corresponding service class and get queued. The DRA module is responsible for scheduling
packets of all admitted connections. It consists of an aggregate resource allocator (ARA) and
four class schedulers. The ARA distributes bandwidth to each class scheduler based on some
criterion. Once the class scheduler receives bandwidth from the ARA, it schedules packets
in its queues. In each class scheduler, because the incoming flows have similar traffic pat-
terns and QoS requirements, the class scheduler has the freedom to independently choose its
own scheduling algorithm which can best meet the QoS requirements. Therefore, this two-
level hierarchical resource allocation module can have multiple scheduling criteria and better
schedule packets in each service class than its one-level flat counterpart.

4. Hierarchical Resource Allocation

In this section, we first describe the scheduling algorithms employed in each class sched-
uler, then an adaptive estimation-based bandwidth distribution algorithm for the aggregate
resource allocator is proposed.

4.1 Scheduling Algorithms for Class Schedulers

Class scheduler in each service class receives bandwidth from the ARA and involves in the
allocation of subchannels and time slots among different users in its service queues. Schedul-
ing algorithms designed for class schedulers should have the goal of maximizing the spectral
efficiency with satisfied QoS performance. In this section, we apply the appropriate packet
scheduling algorithm to each class scheduler.

4.1.1 Scheduling UGS connections

The scheduling of UGS connections is well defined by the standard. In UGS, the transmission
mode at the PHY layer is fixed during the whole service time (2). The AMC is not employed
for UGS connections. The time slots allocated for UGS connections per frame are fixed, based
on their constant bit-rate requirements negotiated in the initial service access phase.

4.1.2 Scheduling rtPS and nrtPS connections

The rtPS connection is delay-sensitive and has strict delay requirement. The nrtPS connection
can tolerate longer delays, but requires a minimum throughput. We propose a novel priority-
based scheduling algorithm for rtPS and nrtPS class schedulers. The basic idea behind the
proposed algorithm is that the transmission is scheduled in a packet-by-packet fashion based
on its priority value. Specifically, at each scheduling interval, if a PDU was scheduled for
transmission on a specific subchannel, it is assigned a priority value based on the instanta-
neous channel condition (PHY layer issue), as well as the QoS constraint (MAC layer issue).
Then we can formulate the scheduling problem into a mathematical optimization problem
with the objective to maximize the total achievable priority values.
We apply an extended EXP algorithm as our priority function for both rtPS and nrtPS con-
nections. The EXP rule was proposed to provide QoS guarantees over a shared wireless link
in terms of the average packet delay for RT traffic and a minimum throughput for NRT traf-
fic (19).
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For rtPS connections, if the ith PDU from the kth connection is scheduled for transmission on
subchannel n, its priority is calculated as:

P(k, i, n) = ak ·
µk,n(t)

µk(t)
· exp

( akWk,i(t) − aW

1 +
√

aW

)

(1)

where aW = 1
K ∑k akWk,1(t), and ak = − log δk/Tk,max. Wk,i(t) is the ith PDU delay of connec-

tion k at time t, Tk,max is the maximum allowable delay of connection k, δk is the maximum
outage probability of connection k, µk,n(t) is the instantaneous channel rate with respect to the
signal-to-noise ratio (SNR) and a predetermined target error probability if subchannel n is as-
signed to connection k at time t, and µk(t) is the exponential moving average (EMA) channel
rate of connection k with a smoothing factor tc, calculated as:

µk(t) = (1 − 1

tc
)µk(t − 1) +

1

tc
µk(t) (2)

where µk(t) = ∑
N
n=1 ck,n · µk,n(t) is the total channel rate of connection k at time t. If subchan-

nel n is assigned to connection k, ck,n = 1, otherwise ck,n = 0.
For nrtPS connections, the extended EXP algorithm is used in conjunction with a token bucket
control to guarantee a minimum throughput (19). We associate each nrtPS queue with a vir-
tual token bucket. Tokens in each bucket arrive at a constant rate rk,req, which is the required
minimum throughput of connection k. After a PDU is scheduled for transmission, the number
of tokens in the corresponding token queue is reduced by the actual amount of data transmit-
ted. The calculation of the priority for an nrtPS PDU is similar to Exp. (1), with the exception
that Wk,i(t) in nrtPS is defined as the virtual waiting time of the ith PDU from connection k:

Wk,i(t) =
max

{

0, Qk(t) − (i − 1) · d
}

rk,req
k ∈ nrtPS (3)

where Qk(t) is the number of tokens associated with connection k at time t, and d is the fixed
size of a MAC PDU.
Let u(k, i, n) be defined as a binary random variable indicating subchannel allocation. That
is, u(k, i, n) = 1 means that the ith PDU from connection k is allocated for transmission on
subchannel n, and u(k, i, n) = 0 otherwise. Also let us define m(k, i, n) be the number of time
slots occupied on subchannel n if the ith PDU from connection k is scheduled for transmission
on subchannel n, calculated as:

m(k, i, n) =
⌈ d

µk,n(t)

⌉

(4)

where ⌈x⌉ denotes the smallest integer larger than x.
Then, the scheduling problem can be mathematically formulated as follows:

arg max
u(k,i,n)

K

∑
k=1

L

∑
i=1

S

∑
n=1

u(k, i, n) · P(k, i, n) (5)

subject to:
K

∑
k=1

L

∑
i=1

u(k, i, n) · m(k, i, n) ≤ N ∀n (6)
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S

∑
n=1

u(k, i, n) ≤ 1 ∀k, i (7)

u(k, i, n) ∈ {0, 1} ∀k, i, n (8)

where S denotes the total number of subchannels, N denotes the total number of time slots, K
denotes the total number of connections, and L denotes the maximum queue size.
The first constraint ensures that the allocated bandwidth does not exceed the total available
bandwidth in terms of time slots on each subchannel. The second constraint says that a PDU
can only be transmitted via one subchannel. The instantaneous channel conditions and the
QoS related parameters are embodied into the priority function P(k, i, n) with the objective of
maximizing the total achievable priority values, thus improving the spectral efficiency while
maintaining QoS guarantees.
The above optimization problem can be solved by determining the values of binary variable
u(k, i, n) through standard linear integer programming (LIP)1. The solution to the problem
provides an optimal resource allocation. However, the computation complexity of the op-
timal solution is too high to be applied in practical systems. To reduce the computational
complexity, we propose a suboptimal algorithm with low complexity.
In the suboptimal algorithm, we allocate radio resources on a packet-by-packet basis. The
general idea is that, at each scheduling interval, the packet with the highest priority value
from all queues is scheduled for transmission, and this procedure continues until either there
is no radio resource left or there is no packet remaining unscheduled in the queue. A detailed
description of the proposed scheduling algorithm is listed in pseudocode 1, where Ωk

s is the
set of subchannels that are available for data transmission of connection k, tn is the number
of residual time slots on subchannel n, qk is the current queue size of connection k, and ik is a
pointer to the next PDU to be scheduled of connection k.

1 The optimal solution of the LIP problem formulated in this chapter is obtained by using the General
Algebraic Modeling System (GAMS).
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Algorithm 1 Suboptimal Scheduling Algorithm for rtPS and nrtPS Class Schedulers

1: Set tn ← N for ∀n {initialize tn}
2: Set ik ← 1 for ∀k {initialize ik}
3: Get qk for ∀k {get the queue size of connection k}
4: for k = 1 to K do
5: if qk > 0 then
6: Set Ωk

s ← {1, · · · , S} {initialize Ωk
s }

7: else
8: Set Ωk

s ← φ {set Ωk
s to be null}

9: end if
10: end for
11: while ∃x, Ωx

s �= φ do
12: for k = 1 to K do
13: while Ωk

s �= φ do
14: Select n ← arg maxn∈Ωk

s
µk,n(t) {assign the best subchannel from the available sub-

channel set}
15: if tn ≥ ⌈ d

µk,n(t)
⌉ then

16: Calculate P(k, ik, n) in Exp. (1)
17: BREAK
18: else
19: Ωk

s ← Ωk
s − {n} {remove n from the available subchannel set if there is not

enough capacity left}
20: CONTINUE
21: end if
22: end while
23: end for
24: Schedule the ik∗ th PDU of connection k∗ on subchannel n∗, where (k∗, ik∗ , n∗) ←

arg max P(k, ik, n)

25: tn∗ ← tn∗ − ⌈ d
µk∗ ,n∗ (t)

⌉ {update the residual time slots}

26: if ik∗ = qk then
27: Ωk∗

s ← φ {set Ωk∗
s to be null when all pending PDUs of connection k∗ have been

scheduled for transmission}
28: else
29: ik∗ ← ik∗ + 1 {point to the next pending PDU}
30: end if
31: end while

It works as follows: If connection k has pending traffic in the queue, the proposed algorithm
first pre-allocates the best subchannel n in terms of the instantaneous channel quality to con-
nection k from its available subchannel set Ωk

s (see Step 14). If there is not enough capacity left
on the best subchannel n to accommodate one PDU from connection k’s queue, subchannel n
will be removed from connection k’s available subchannel set, and the second best subchannel
n′ will be selected. This procedure continues until a best possible subchannel is pre-allocated
to connection k (see Step 13-22). Otherwise, connection k is removed from the scheduling
list. After the subchannel pre-allocation process for all connections is complete, the algorithm
calculates the priority value of the head-of-line (HOL) PDU in each non-empty queue, and
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schedule the PDU with the highest priority value for transmission on subchannel n∗ (see Step
16 & 24). The scheduled PDU is removed from the corresponding queue and the consumed
radio resources in terms of time slots are subtracted on subchannel n∗ (see Step 25 & 26-30).
Then it starts from the beginning and continues until either there is no radio resource left or
there is no PDU pending in the queue. A detailed description of the proposed suboptimal
algorithm is listed in pseudocode 1.

4.1.3 Scheduling BE connections

Since there are no QoS guarantees for BE connections, we simply apply the Proportional Fair
(PF) algorithm to schedule BE traffic. The PF algorithm attempts to serve each user at its peak
channel condition. Hence the PF algorithm can utilize the radio resource efficiently and give
proportional fairness among users (20). At each scheduling point, the PF algorithm selects
connection k for transmission on subchannel n as follows:

(k, n) = arg max
k

µk,n(t)

µk(t)
∀n (9)

where µk,n(t) and µk(t) are defined as the same in (1).

4.2 Scheduling Algorithm for the Aggregate Resource Allocator

The aggregate resource allocator (ARA) is responsible for distributing the total available band-
width among class schedulers. If the ARA does not allocate enough bandwidth to the class
scheduler, the QoS requirements in the corresponding service class may not be guaranteed.
On the other hand, if the ARA allocates too much bandwidth to the class scheduler, the allo-
cated radio resource may not be utilized efficiently or even be wasted. Therefore, the resource
distribution algorithm of ARA is a critical factor on the performance of class schedulers and
has to be carefully designed.

4.2.1 Conventional Bandwidth Distribution Algorithms

One possible solution is that the ARA distributes bandwidth among service classes following
strict class priority, from highest to lowest, i.e., UGS, rtPS, nrtPS and BE. After all connections
in high priority class have been served, connections in low priority class are scheduled for
transmission. By doing so, the ARA can differentiate different service classes based on their
class priority. The priority-based scheme is simple, but one disadvantage of this algorithm is
that higher priority classes may starve the bandwidth for lower priority classes.
To overcome this problem, the ARA may partition the total bandwidth into several portions
to satisfy proportional fairness among service classes. This method can prevent the starva-
tion of low priority classes. There are static and dynamic bandwidth distribution schemes in
this method. In the static scheme, the ARA distributes a fixed amount of bandwidth to each
class scheduler at every scheduling interval. This approach has the advantage of simplicity
and works well when the traffic pattern in each service class is regular and stable, which un-
fortunately is not always the case in data communications. Therefore, a dynamic bandwidth
distribution scheme which can adapt to the traffic pattern and the performance of class sched-
ulers is believed to be a better solution.

4.2.2 Proposed Adaptive Bandwidth Distribution Algorithm

The design objective of our proposed resource allocation algorithm is to adaptively allocate
bandwidth to each service class in order to increase the spectral efficiency while satisfying the
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diverse QoS requirements. In designing the proposed adaptive resource allocation algorithm,
we have taken the following aspects into account: (i) the backlogged traffic; (ii) the average
modulation efficiency; (iii) the QoS satisfaction. The general idea is that, in the scheduling
interval, the ARA first estimates the amount of bandwidth required in each class scheduler
based on the backlogged traffic and the average modulation efficiency. Then depending on
the QoS performance in each class scheduler, the estimation is further increased or decreased
to maintain the guaranteed performance.
We separate the bandwidth allocation of UGS class from the others as it has been defined
by the standard. At the beginning of each frame, the ARA allocates a fixed amount of time
slots NUGS = ∑i∈{UGS} θi to UGS connections based on their constant bit-rate requirements
negotiated in the initial service access phase, where θi is the number of time slots required by
UGS connection i. Let Ntotal be the total number of time slots in each frame, then the residual
time slots after serving UGS class Nrest = Ntotal − NUGS are distributed among rtPS, nrtPS and
BE classes, which employ AMC scheme at the PHY layer.
For rtPS class, since each packet has a rigid delay requirement, the total sum of the cur-
rent queue size in rtPS class is an appropriate measure for the backlogged traffic BrtPS(t) =
∑i∈{rtPS} qi(t), where qi(t) is the number of bits in queue i at time t. The average modulation

efficiency µrtPS(t) is defined as the average number of bits carried per OFDM symbol over a
sliding time window tc. γ is a QoS related parameter (i.e., maximum allowable delay in rtPS)
representing the proportion of backlogged traffic that has to be transmitted within each frame.
Then the estimated number of time slots required for rtPS class can be expressed as follows:

ErtPS(t) = α(t) · γBrtPS(t)

µrtPS(t)
(10)

where α(t) is a QoS-aware adjustment factor that is updated according to the performance of
the class scheduler on a frame by frame basis. The basic idea is that when the class scheduler
experiences good QoS satisfaction, the value of α(t) is decreased to save bandwidth for other
classes. Otherwise, the value of α(t) is increased to guarantee the required QoS. Towards this
end, an exponentially smoothed curve is applied to adjust the value of α(t). The adjustment,
which is |∆α(t)| = |α(t) − α(t − 1)|, is minor if the QoS outage probability is around a pre-
defined target threshold. Otherwise, |∆α(t)| is exponentially increased to either increase or
decrease the allocated bandwidth to the class scheduler, as illustrated in Fig. 4. The calcula-
tion of ∆α(t) is specified as follows:

∆α(t) =

⎧

⎨

⎩

ξmax · exp(β·d(t))−1
exp(β·Dmax)−1

if Pr(t) ≥ Th

−ξmax · exp(β·d(t))−1
exp(β·Dmax)−1

if Pr(t) < Th

(11)

where d(t) is the truncated difference between the current outage probability and the outage
probability threshold:

d(t) = min{|Pr(t) − Th|, Dmax}
where Pr(t) is the delay outage probability at time t, Th is the outage probability threshold,
Dmax is the truncated maximum value of |d(t)|, β is a shape factor which is used to tune
the adaptation degree, and ξmax is the maximum value of |∆α(t)|. Term (exp(β · d(t)) −
1)/(exp(β · Dmax) − 1) is a normalization function of (Pr(t) − Th). When Pr(t) is close to
Th, the normalized value is close to zero. Otherwise it increases exponentially to one. The
overall bandwidth estimation procedure for rtPS class can be described as follows:
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Fig. 4. An exponentially smoothed curve with respect to QoS satisfaction is applied to adjust
the estimated amount of bandwidth in the class scheduler

• Step 1: At each scheduling instant, calculate the backlogged traffic BrtPS(t), the average
modulation efficiency µrtPS(t), and the current delay outage probability Pr(t). Update
the value of α(t):

α(t) =

{

min{α(t − 1) + ∆α(t), αmax} if Pr(t) ≥ Th

max{α(t − 1) + ∆α(t), αmin} if Pr(t) < Th

(12)

where αmax and αmin are the maximum and minimum values of α(t), respectively.

• Step 2: Calculate the estimated bandwidth for rtPS class according to Exp. (10).

For nrtPS class, the bandwidth estimation procedure is the same as in rtPS class, except the
definition of the backlogged traffic and the outage probability. Here we take the total number
of virtual tokens associated with each queue as a measure for the backlogged traffic BnrtPS =
∑i∈{nrtPS} vi(t), where vi(t) is the number of virtual tokens in bucket i at time t. Pr(t) in nrtPS
is the throughput outage probability.
The proposed adaptive bandwidth distribution algorithm works as follows: At each schedul-
ing instant, the ARA first allocates the amount of required bandwidth to UGS class (NUGS)
and a minimum amount of bandwidth to BE class (Nmin

BE ). Once the ARA has estimated the
amount of required bandwidth for rtPS and nrtPS classes (i.e., ErtPS and EnrtPS), it checks the
remaining bandwidth. If the remaining bandwidth is larger than the estimated sum of ErtPS

and EnrtPS, the ARA first allocates ErtPS and EnrtPS to rtPS and nrtPS class schedulers respec-
tively. Then the residual bandwidth is distributed among rtPS, nrtPS and BE class schedulers
proportional to their queue size QrtPS, QnrtPS, and QBE. Otherwise, if the remaining band-
width is smaller than the estimated sum of ErtPS and EnrtPS, the ARA first allocates ErtPS to
rtPS class, then the residual bandwidth is allocated to nrtPS class. It is worth mentioning that
in order to satisfy proportional fairness among class schedulers, each class scheduler is re-
served a minimum amount of bandwidth. A detailed description of the proposed algorithm
is listed in pseudocode 2.
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Algorithm 2 Adaptive bandwidth distribution algorithm for the Aggregate Resource Alloca-
tor (ARA)

1: Set initial Ntotal at the beginning of each frame
2: NUGS ← ∑i∈{UGS} θi

3: Set Nmin
BE

4: Nresidual ← Ntotal − NUGS − Nmin
BE

5: Estimate the number of time slots required in rtPS class scheduler ErtPS by Exp.(10)
6: Estimate the number of time slots required in nrtPS class scheduler EnrtPS by Exp. (10)
7: if Nresidual ≥ (ErtPS + EnrtPS) then
8: Nresidual ← Nresidual − ErtPS − EnrtPS

9: NrtPS ← ErtPS + Nresidual · QrtPS
QrtPS+QnrtPS+QBE

10: NnrtPS ← EnrtPS + Nresidual · QnrtPS
QrtPS+QnrtPS+QBE

11: NBE ← Nmin
BE + Nresidual · QBE

QrtPS+QnrtPS+QBE

12: if NrtPS < Nmin
rtPS or NnrtPS < Nmin

nrtPS then

13: Adjust the values of NrtPS, NnrtPS and NBE so that NrtPS ≥ Nmin
rtPS and NnrtPS ≥ Nmin

nrtPS
14: end if
15: else
16: NrtPS ← min{ErtPS, Nresidual}
17: NnrtPS ← Nresidual − NrtPS

18: NBE ← Nmin
BE

19: if NrtPS < Nmin
rtPS or NnrtPS < Nmin

nrtPS then

20: Adjust the values of NrtPS and NnrtPS so that NrtPS ≥ Nmin
rtPS and NnrtPS ≥ Nmin

nrtPS
21: end if
22: end if

5. Connection Admission Control

Connection admission control is a key component of QoS provisioning for wireless systems
supporting multiple types of applications. It aims at maintaining the delivered QoS to dif-
ferent users at the target level by limiting the number of ongoing connections in the system.
In this chapter, we propose a measurement-based approach as our CAC policy, of which a
CAC decision is made depending on the current resource utilization of the network. When a
new connection request is initiated, it informs the CAC module of the connection type (i.e.,
rtPS or nrtPS), the traffic parameters (i.e., arrival rate and service rate), and the QoS require-
ments (i.e., maximum delay or minimum throughput). Then the CAC module estimates the
required amount of bandwidth ∆N to accommodate the incoming connection and performs a
CAC decision based on the following conditions.
For UGS connections, as the transmission mode and the number of time slots allocated per
connection per frame are negotiated in the initial service access phase and are fixed during
the whole service time, a simple threshold-based CAC is applied:

Ncurrent
UGS + ∆NUGS ≤ Nmax

UGS (13)

where Ncurrent
UGS is the number of time slots occupied by the ongoing UGS connections, and

Nmax
UGS is the maximum number of time slots that can be allocated to the UGS class scheduler.

If this condition is satisfied, the incoming connection is accepted; otherwise, it is rejected.
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For rtPS and nrtPS connections, when a new connection arrives, the CAC module interacts
with ARA in the DRA module and gets the current estimated bandwidth occupied by the on-
going rtPS and nrtPS connections, ErtPS(t) and EnrtPS(t), which are the exponential moving
average of ErtPS(t) and EnrtPS(t) mentioned in Eqn. (10). If the sum of the estimated band-
width used by the ongoing rtPS and nrtPS connections (ErtPS(t), EnrtPS(t)) and the estimated
bandwidth to be used by the incoming connection (∆NrtPS or ∆NnrtPS) is larger than a prede-
fined upper threshold, the incoming connection is rejected; otherwise, the connection is ac-
cepted with certain probability depending on the estimated bandwidth usage and the connec-
tion priority. Specifically, when the estimated bandwidth occupancy is high or the priority of
the incoming connection is low, the acceptance probability is small, and vice versa. A detailed
description of the proposed CAC algorithm for rtPS connections is listed in pseudocode 3,
where Nmax

th and Nmin
th are the maximum and minimum capacity threshold respectively, and

ρrtPS ∈ (0, 1] is a parameter that is used to differentiae class priorities. The same CAC algo-
rithm is applied for nrtPS connections.

Algorithm 3 Connection admission control algorithm for rtPS connections

1: if ErtPS(t) + EnrtPS(t) + ∆NrtPS > Nmax
th then

2: Reject the incoming connection
3: else if ErtPS(t) + EnrtPS(t) + ∆NrtPS < Nmin

th then
4: Accept the incoming connection with probability ρrtPS

5: else
6: Accept the incoming connection with probability

ρrtPS ·
Nmax

th −(ErtPS(t)+EnrtPS(t)+∆NrtPS)

Nmax
th −Nmin

th

7: end if

For BE connections, they are always accepted since they do not impose any QoS constraints.

6. Simulation Results and Discussions

To evaluate the performance of the proposed downlink resource management framework for
QoS scheduling in OFDMA based WiMAX networks, a system-level simulation is performed
in OPNET.

6.1 System Model

We consider the downlink of a single-cell IEEE 802.16 system with OFDMA TDD operation.
The cell radius is 2 km, where subscriber stations are randomly placed in the cell with uniform
distribution. The total bandwidth is set to be 5 MHz, which is divided into 10 subchannels.
The BS transmit power is set to 20W (43 dBm) which is evenly distributed among all subchan-
nels. The duration of a frame is set to be 1 ms so that the channel quality of each connection
remains almost constant within a frame, but may vary from frame to frame. The propagation
model is derived from IEEE 802.16 SUI channel model (30). Path loss is modeled according to
terrain Type A suburban macro-cell. Large-scale shadowing is modeled by log-normal distri-
bution with zero mean and standard deviation of 8 dB. Small-scale shadowing is modeled by
Rayleigh fading.
Table 1 summarizes the system parameters used in the simulation. We assume that all MAC
PDUs are transmitted and received without errors and the transmission delay is negligible.
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Parameters Value

System OFDMA/TDD

Central frequency 3500 MHz

Channel bandwidth 5 MHz

Number of subchannels 10

User distribution Uniform

Beam pattern Omni-directional

Cell radius 2 km

Frame duration 1 ms

BS transmit power 20 W

Thermal noise density −174 dBm/Hz

Propagation model 802.16 SUI-5 Channel model

Maximum MAC PDU size 256 bytes

Table 1. A summary of system parameters

Modulation Coding bits/symbol Target SNR for
scheme rate 1% PER (dB)

BPSK 1/2 0.5 1.5

QPSK 1/2 1 6.4

QPSK 3/4 1.5 8.2

16QAM 1/2 2 13.4

16QAM 3/4 3 16.2

64QAM 1/2 4 21.7

64QAM 3/4 4.5 24.4

Table 2. Modulation and coding schemes for 802.16 (27)

The modulation order and coding rate in AMC is determined by the instantaneous SNR of
each user on each subchannel. We follow the AMC table shown in Table 2, which specifies the
minimum SNR required to meet a target packet error rate, e.g., 1%.

6.2 Traffic Model

In the simulation, different types of traffic sources are generated: VoIP, videoconference, and
Internet traffic. VoIP and videoconference are served in UGS class and rtPS class, respectively.
Internet traffic is served in nrtPS class and BE class. Each user alternates between the states of
idle and busy, which are both exponentially distributed, and generates one or several traffic
types independently during the busy period. VoIP traffic is modeled as a two-state Markov
ON/OFF source (16). A videoconference consists of a VoIP source and a video source (16).
Internet traffic can be web browsing that requires large bandwidth and generates bursty data
of variable size. We apply the Web browsing model for the Internet traffic (17). A summary of
traffic parameters for different traffic types are listed in Table 3.

6.3 Performance Evaluation

Since the performance of fixed bandwidth allocation for UGS connections is well defined by
the standard and BE connections do not have any specific QoS requirements, here we only
focus on the performance evaluation of rtPS and nrtPS connections. The delay constraint for
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