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1. Introduction 
 

Nowadays in modern industries, the scale and complexity of process systems are increased 
continuously. These systems are subject to low productivity, system faults or even hazards 
because of various conditions such as mis-operation, equipment quality change, external 
disturbance, and control system failure. In these systems, many elements are interacted, so a 
local fault can be propagated and probably spread to a wide range. Thus it is of great 
importance to find the possible root causes and consequences according to the current 
symptom promptly. Compared with the classic fault detection for local systems, the fault 
detection for large-scale complex systems concerns more about the fault propagation in the 
overall systems. And this demand is much close to hazard analysis for the system risks, 
which is a kind of qualitative analysis in most cases prior to quantitative analysis.  
The signed directed graph (SDG) model is a kind of qualitative graphical models to describe 
the process variables and their cause-effect relations in continuous systems, denoting the 
process variables as nodes while causal relations as directed arcs. The signs of nodes and arc 
correspond to variable deviations and causal directions individually. The SDG obtained by 
flowsheets, empirical knowledge and mathematical models is an expression of deep 
knowledge. Based on the graph search, fault propagation paths can be obtained and thus 
certainly be helpful for the analysis of root causes and sequences (Yang & Xiao, 2005a). And 
with development of the computer-aided technology, graph theory has been implemented 
successfully by some graph editors, some of which, like Graphviz (2009), can transform text 
description into graphs easily. Hence the SDG technology can be easily combined with the 
other design, analysis and management tools. 
The SDG definition and its application in fault diagnosis were firstly presented by Iri et al. 
(1979). Ever since then, many scholars have contributed to this area, including modeling, 
inference, software development and applications. Many efforts have been particularly 
made to implement the methods and to overcome the disadvantages, such as spurious 
solutions. Here we recognize some representatives among them. Kramer & Palowitch (1987) 
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used rules to describe SDG arcs, which shows that expert systems can be employed as a tool 
in this problem. Oyeleye & Kramer (1988) took into account the qualitative simulation for 
the SDG inference. Shiozaki et al. (1989) improved the SDG model by adding fault revealing 
time. Yu et al. (Chang & Yu, 1990; Yu & Lee, 1991) introduced fuzzy information for arc 
signs to describe the steady state gains. Maurya et al. (2003a, 2003b, 2006) described the 
modeling method based on differential equations (DEs) and algebraic equations (AEs), 
analyzed the initial and final responses based on SDGs, and studied the description and 
analysis of control loops. SDG method has been combined with other data-driven methods 
to improve the diagnosis accuracy (Vedam & Venkatasubramanian, 1999; Lee et al., 2006). 
At first, the inference is based on single fault assumption, but multiple fault cases attract 
more and more attention (Vedam & Venkatasubramanian, 1997; Zhang et al. 2005; Chen & 
Chang, 2007). Up to now, SDG method has been implemented in some software tools 
(Mylaraswamy & Venkatasubramanian, 1997; McCoy et al. 1999; Zhang et al., 2005) and 
applied in various industrial systems.  
Aiming at SDG applications in the area of fault detection and hazard analysis, the problems 
of description and inference are most important. As the system extends, the time 
consumption of graph search is heavy, so the single-level SDG model should be transformed 
into hierarchical model to improve the search efficiency. The root cause can be searched in 
this model level by level according to the initial response of the system. In control systems 
and many other cases, cycles exist in the graph, resulting in the truncation or misleading to 
the search. Thus the theoretic fundamentals and dynamic features of SDGs should be 
studied. We have analyzed the fault propagation principles by operations of corresponding 
qualitative matrices and obtained some typical rules of control systems. 
Moreover, fault detection is performed based on sensor readings, thus the sensor location 
strategy affects the performance of fault detection. Due to the economical or technical 
limitations, the number of sensors should be limited while meeting the demands of fault 
detection. This can be considered in the SDG framework. We analyze main criteria such as 
detectability, identifiability and reliability in the framework of SDGs and presented 
algorithms, in order to guarantee that the faults can be detected and identified, and to 
optimize the fault detection ability.  
This chapter is organized as follows: first, the SDG description is reviewed and hierarchical 
model is indicated; then the fault propagation rules and inference approaches are 
summarized to lead to the successful application of fault detection and hazard analysis; 
some considerations about sensor location are introduced next; finally a generator set 
process in a power plant is modeled and analyzed to illustrate the proposed model and 
method. 

 
2. Model Description of Signed Directed Graph 
 

2.1 Basic Form of SDG Model 
SDGs are established by representing the process variables as graph nodes and representing 
causal relations as directed arcs. An arc from node A to node B implies that the deviation of 
A may cause the deviation of B. For convenience, “+”, “-” or “0” is assigned to the nodes in 
comparison with normal operating value thresholds to denote higher than, lower than or 
within the normal region respectively. Positive or negative influence between nodes is 

distinguished by the sign “+” (promotion) or “-” (suppression), assigned to the arc (Iri et al., 
1979). The definition is as follows: 
Definition 1: An SDG model    is the composite ( , )G   of (1) a digraph G  which is the 
quadruple ( , , , )N A     of (a) a set of nodes 1 2{ , , , }nN v v v  , (b) a set of arcs 

1 2{ , , , }mA a a a  , (c) a couple of incidence relations : A N   and : A N   which make 
each arc correspond to its initial node  ka  and its terminal node  ka , respectively; and (2) 
a function : { , }A    , where ( ) ( )k ka a A   is called the sign of arc ka . 
Usually we use aij to denote the arc from vi to vj. 
Definition 2: A pattern on the SDG model ( , )G   is a function :  { ,0, }N    . ( )v  
( )v N  is called the sign of node v , i.e. 

( ) 0v   for v v vx x    

( )v     for v v vx x    

( )v     for v v vx x    
where vx  is the measurement of the variable v , vx  is the normal value, and v  is the 
threshold. 
Definition 3: Given a pattern   on a SDG model ( , )G  , an arc a  is said to be consistent 
(with  ) if ( ) ( ) ( )a a a       . A path, which is consisted of arcs 1 2, , , ka a a  linked 
successively, is said to be consistent (with  )  if 1 1( ) ( ) ( ) ( )k ka a a a        . 

 
2.2 Modeling Methods of SDGs 
 

2.2.1 SDG modeling by mathematical equations 
In general, SDGs can be obtained either from operational data and process knowledge, or 
mathematical models. If we have the differential algebraic equations (DAEs), then we can 
derive the structure and signs of the graph by specific methods (Maurya, 2003a).  
A typical dynamic system can be expressed as a set of DEs 
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1 , , nx x  are normal states. Eq. (2) can be written as the following matrix form 
 

www.intechopen.com



Qualitative Fault Detection and Hazard Analysis Based on  
Signed Directed Graphs for Large-Scale Complex Systems 17
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to improve the diagnosis accuracy (Vedam & Venkatasubramanian, 1999; Lee et al., 2006). 
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can be described by an SDG whose signs of arcs are defined as 
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if the nodes correspond to the state variables. Thus the SDG actually describes the direct 
influences or sensitivities between state variables. 
In practical problems, the systems often have the following form as DEs:  
      2 2

2 1 0d d d d d dn n
na x t a x t a x t a x e      (6) 

 
where x is the state and e is the disturbance. When 1n  , it is a first-order system:  
      0 1 1d d 1t x a a x a e    (7) 

 
The step response is shown as Fig. 1(a). An arc is constructed from the node e to x with a 
sign sgn[1/a1] and a self-cycle on the node x with a sign -sgn[a0/a1]. For high-order systems, 
simplification can be made because the corresponding DE includes different order 
derivatives of the same variable, which can be avoided for the explicit physical meaning of 
the model. They can be approximated as first-order systems with delays:  
      0 1 1d d ( ) ' ' ( ) 1 ' ( )t x t a a x t a e t     (8) 

 
where   is the equivalent pure delay. Its step response is shown as Fig. 1(b). The method of 
constructing SDGs is the same as the former one, and the delay can be embodied in dynamic 
SDGs (Yang & Xiao, 2006a).  
 

Fig. 1. Step response of different systems. (a) First-order system, (b) High-order system 
 
Algebraic equations are usually included in the mathematical models as constraints which 
can also be transformed into SDGs (Maurya et al., 2003a) although they are noncausal in 
nature. Because there may be multiple perfect matchings between equations and variables, 
the corresponding SDGs may not be unique. Some treatment should be made to screen the 
unsteady or spurious SDGs (Oyeleye & Kramer, 1988; Maurya et al., 2003a). 
For example, a tank system is shown as Fig. 2(a) where L is the level in the tank, R is 
resistance in the outlet pipe (can be manipulated by a valve), F1 and F2 are inlet and outlet 
flowrates respectively. The system is described as following DAEs: 
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where A is the cross sectional area of the tank, and   is a constant. By the above method, 
the SDG is set up as Fig. 2(b). 
 

 
(a)                                                                      (b) 

Fig. 2. Tank system and its SDG. (a) Schematic, (b) SDG 

 
2.2.2 SDG modeling by qualitative process knowledge 
In more cases, the SDG is established by qualitative process knowledge and experience. Fig. 
3(a) shows a tank with one inlet and two outlets with control. The arcs from F2 to V2 and L to 
V3 in Fig. 3(b) describe the flowrate control and level control respectively. Each control loop 
can be expressed by a negative cycle in SDG because of the negative feedback action. This 
qualitative SDG can be obtained directly from process knowledge and does need the exact 
mathematical equations. Sometimes the qualitative simulation and sensitivity experiments 
may also help. The SDGs obtained by this method often include indirect causalities besides 
direct ones, so the graph should be simplified and transformed so that all the arcs stand for 
direct causalities. Some rules are summarized by Yang & Xiao (2005b).  
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 (a)                                                                            (b) 

Fig. 3. Schematic and SDG of tank system with controlled flowrates. (a) Schematic, (b) SDG 
 
Besides, P&ID diagrams and other flowsheets are very important topological process 
knowledge expression that can be standardized in XML (extensible markup language) 
format. It has been implemented in some commercial software products such as SmartPlant 
P&ID from Intergraph. The topology or connectivity obtained here includes both material 
flow and information flow, which are needed for SDG modeling. Although the granularity 
is entity-based, which is not enough for the variable-based SDG modeling, this kind of 
topological information is the fundamental of SDG and can be used as references as well 
(Thambirajah et al., 2009).  
The SDG set up by the above methods can be validated by process data. For example, 
correlation is a necessary condition of causality, so the cross-correlation between every two 
measured variables can be used to validate the arcs in SDGs, and the directions can also be 
obtained by shifting the time series to find the maximal cross-correlation. Alternatively, 
probabilistic measure such as transfer entropy can be used to obtain the causality and 
directionality (Bauer et al., 2007).  
In summary, the main steps of SDG modeling are: (1) Collect process knowledge, especially 
P&ID diagram and equations. (2) Set up the material flow diagraph by connectivity 
information between entities. (3) Choose the key variables and give them signs according to 
the process knowledge. (4) Add control arcs on the diagraph to constitute the SDG skeleton. 
(5) Add other variables and arcs to form the entire SDG. (6) Simplify and verify the SDG by 
graph theory. (7) Validate the SDG with process data and sensitivity experiments. 

 
2.3 Hierarchical SDG Description of Large-Scale Complex Systems 
Based on the decomposition-aggregation approach, a single-level SDG model can be 
transformed into a hierarchical model (Gentil & Montmain, 2004; Preisig, 2009). With this 
model, it is clear and easy to understand the system inherently. As such, the fault analysis 
method should also be modified from a centralized one to a distributed one. 
The whole SDG model can be classified into 3 levels. If the scale of the whole system is too 
large, then more levels can be established, but 3-level model is enough for most cases. So we 
take it as a typical pyramid structure. The top level is called system level, where the system 
is divided into several sub-systems. Sometimes a large-scale system may include several 
independent sub-systems which can be dealt with separately. Also, in many cases, several 
components are operated in sequence or in parallel, with no recycle or other kind of 
interactions existed across the different components, then these components can also be 
regarded as sub-systems. Of course, if the SDG of the whole system is connected and cannot 
be separated, then it composes the only sub-system itself.  
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In the middle level, each control system is regarded as a super-node and the relations 
between control systems are expressed by arcs among controlled variables and a few 
important manipulated variables or other variables. The signs of arcs are determined 
according to the propagation rules to assure the consistency of the paths. The variables in 
some control loop and not appeared in other part of the system are usually invisible here. 
The SDG in this level is the backbone of the system which shows the main connectivity in 
the system flowsheet.  
The bottom-level SDGs are the SDG units of all the control systems. The description is the 
most detailed qualitative expression because it shows the causalities between variables. 
Since most of the control systems are based on feedback actions, each SDG in this level 
usually contains at least a loop with various bias nodes attached on them.  

 
2.4 Matrix Explanation of SDG Model 
In this section, we look at the SDG model from another viewpoint. An SDG can be also 
described as an adjacency matrix X with the element 1/0 denoting the direct adjacency and 
direction between two variables. Actually it is the transpose of Jaccobian matrix in Eq. (4) 
with unsigned elements. By matrix computations, reachability matrix R can be obtained 
from X, which shows the directed reachability from one variable to another, in which the 
element 1 means there are at least a path in the corresponding SDG (Jiang et al., 2008). It can 
be observed that the computation is just another form of graph traversal.  
By simultaneous permutation of row and column (with variable order changed), X can be 
block triangulated as follows: 
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Each block in the diagonal denotes a sub-system with a partial order meaning that the sub-
system with larger number can not reach the one with smaller number. It can also be 
explained by the reachability matrix which is definitely also block triangulated with the 
same order as: 
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where the sign # is the Boolean equivalent (Mah, 1989). If the intersection block Bij is a zero 
matrix, then the corresponding two sub-systems are independent (no arcs between them), 
otherwise they are in sequence. Thus we explain the decomposition between the top and 
middle level. 
When we look at the relationship among control systems, we take a control loop as a super-
node and add an arc from node i to node j, if the controller output of controller i can directly 

www.intechopen.com



Qualitative Fault Detection and Hazard Analysis Based on  
Signed Directed Graphs for Large-Scale Complex Systems 21

 
 (a)                                                                            (b) 

Fig. 3. Schematic and SDG of tank system with controlled flowrates. (a) Schematic, (b) SDG 
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components are operated in sequence or in parallel, with no recycle or other kind of 
interactions existed across the different components, then these components can also be 
regarded as sub-systems. Of course, if the SDG of the whole system is connected and cannot 
be separated, then it composes the only sub-system itself.  
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In the middle level, each control system is regarded as a super-node and the relations 
between control systems are expressed by arcs among controlled variables and a few 
important manipulated variables or other variables. The signs of arcs are determined 
according to the propagation rules to assure the consistency of the paths. The variables in 
some control loop and not appeared in other part of the system are usually invisible here. 
The SDG in this level is the backbone of the system which shows the main connectivity in 
the system flowsheet.  
The bottom-level SDGs are the SDG units of all the control systems. The description is the 
most detailed qualitative expression because it shows the causalities between variables. 
Since most of the control systems are based on feedback actions, each SDG in this level 
usually contains at least a loop with various bias nodes attached on them.  

 
2.4 Matrix Explanation of SDG Model 
In this section, we look at the SDG model from another viewpoint. An SDG can be also 
described as an adjacency matrix X with the element 1/0 denoting the direct adjacency and 
direction between two variables. Actually it is the transpose of Jaccobian matrix in Eq. (4) 
with unsigned elements. By matrix computations, reachability matrix R can be obtained 
from X, which shows the directed reachability from one variable to another, in which the 
element 1 means there are at least a path in the corresponding SDG (Jiang et al., 2008). It can 
be observed that the computation is just another form of graph traversal.  
By simultaneous permutation of row and column (with variable order changed), X can be 
block triangulated as follows: 
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Each block in the diagonal denotes a sub-system with a partial order meaning that the sub-
system with larger number can not reach the one with smaller number. It can also be 
explained by the reachability matrix which is definitely also block triangulated with the 
same order as: 
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where the sign # is the Boolean equivalent (Mah, 1989). If the intersection block Bij is a zero 
matrix, then the corresponding two sub-systems are independent (no arcs between them), 
otherwise they are in sequence. Thus we explain the decomposition between the top and 
middle level. 
When we look at the relationship among control systems, we take a control loop as a super-
node and add an arc from node i to node j, if the controller output of controller i can directly 
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affect the controlled variable of controller j without going through controller output of any 
other nodes. This SDG as a part of the middle-level SDG is also named as control loop 
diagraph (Jiang, 2008). 
For a feedback control system, there exists a loop in the corresponding SDG. Thus according 
to the controllability concept, all the variables within the loop are strongly connected, which 
can be found in the reachability matrix as a block with all the elements are ones. 
Let us look at the tank example as Fig. 3 and get the adjacency matrix and reachability 
matrix by Eq. (12) as follows, both of which are block triangulated. 
 

0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

            

X , 

0 1 0 0 1 1 1
0 0 0 0 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

            

R  (13) 

 
where the variable order is V1, F1, V2, F2, V3, F3, L. They are divided into 3 groups: inlet (V1 
and F1), one outlet with flowrate control (V2 and F2) and another outlet with level control 
(V3, F3 and L). The elements of R22 and R33 are all ones because they are control loops, and 
the elements of R23 are ones showing the flowrate controller influences the level controller. 
Hence the control loop diagraph is consisted of two nodes corresponding to the two 
controllers and an arc corresponding to the influence between them. Moreover, if the 
variable order is changed to put V1 and V2 meaning the two controller outputs at the last, 
the corresponding block is just the adjacency matrix of the control loop diagraph. This is a 
useful property that links the concepts of SDG, control loop digraph and the matrices. 
Matrix explanation helps us understand the SDG concept and its potential in applications. In 
fact, some results, such as propagation rules, are derived from matrix description. 

 
3. Inference Approaches Based on SDGs 
 

3.1 Fault Propagation Rules 
Based on the SDG description, the fault propagation can be described qualitatively. There 
are two basic principles: 
Proposition 1: The fault is propagated along the consistent paths. 
Proposition 2: The node signs are determined by nodal balance, i.e. the sign on each node 
must be equal to the net influence on the node: 
 

( ) ( ) ( )j ij i
i

v a v     (14) 

 
where the qualitative operation rules are as Table 1. Due to the loss of quantitative 
information, some signs can not be determined shown as ‘?’ in the table, which causes the 
uncertainty in the solutions. 
 

No. sgn[x] sgn[y] sgn[x]+sgn[y] sgn[x]·sgn[y] 
1 0 sgn[y] sgn[y] 0 
2 ± sgn[x] sgn[x] + 
3 ± -sgn[x] ? - 

Table 1. Qualitative operation rules 
 
The logic on a node in SDGs is OR in nature because any input deviation can result in the 
node sign. In some cases, however, there are other types of logics, for example, the logic is 
AND, XOR or high/low-selective, or arcs or nodes are conditional, some necessary logic 
nodes should be added to the SDG (Yang & Xiao, 2007). 
Proposition 1 can be easily understood. By testing the consistency one can find the fault 
propagation paths based on the measurements, which form a sub-graph of the original SDG, 
called cause-effect graph (Iri et al., 1979). On the other hand, one can predict the next step 
response based on the measured and assumed variables. 
Proposition 2, however, may have some limitations because it is only suitable for the 
dynamic trends near the initial state. When a fault occurs, the response of variables can be 
divided into three stages – initial, intermediate, and final responses. In large-scale complex 
systems, the intermediate response is very complex, but in most cases, we concentrate only 
on the initial and final stages. For stable systems with fixed input, the final response is a 
steady state. Thus the input and exogenous disturbances are assumed as step functions to 
show abrupt changes.  
Initial response is the first response just after the exogenous input changes. In dynamic 
systems expressed by DAEs, initial response is the nonzero response of system variables 
predicted by propagation through all the shortest paths in the corresponding SDG if we 
define the length of arcs in AE and DE portion by 0 and 1 respectively (Maurya, 2003a). Final 
response is the steady states of variables obtained after the dynamic period ends. It can be 
solved simply by setting the derivatives as zeros in DE portion of DAE. For the obtained 
AEs, the final response can be predicted by propagation through all the directed (acyclic) 
paths in the corresponding SDG. However, there may exist more than one perfect matching 
between equations and variables, thus there may exist more than one SDG corresponding to 
the AEs. If there is only one perfect matching, the above method is correct; otherwise, the 
result may be wrong because the results based on different perfect matchings are 
inconsistent. There is an exception, however, if an SDG corresponding to a perfect matching 
contains only negative cycles, then any perfect matching (for which the SDG contains only 
negative cycles) can be chosen and the final response can be decided using the above 
method (Maurya, 2003a). 

 
3.2 Control Action Influences on Fault Propagation 
 

3.2.1 SDG description and fault propagation analysis of single control loop 
Control actions should be considered particularly because they are forced actions that are 
different from process property itself and they may cause the truncation or misleading of 
fault propagation. We discuss this problem using the general methods and obtain some 
special results (Maurya, 2003b, 2006). 
In the bottom level, SDG models are established for all kinds of control systems among
which the most common and basic one is single PID loop shown as Fig. 4. The deviation e of 
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affect the controlled variable of controller j without going through controller output of any 
other nodes. This SDG as a part of the middle-level SDG is also named as control loop 
diagraph (Jiang, 2008). 
For a feedback control system, there exists a loop in the corresponding SDG. Thus according 
to the controllability concept, all the variables within the loop are strongly connected, which 
can be found in the reachability matrix as a block with all the elements are ones. 
Let us look at the tank example as Fig. 3 and get the adjacency matrix and reachability 
matrix by Eq. (12) as follows, both of which are block triangulated. 
 

0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 1 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0

            

X , 

0 1 0 0 1 1 1
0 0 0 0 1 1 1
0 0 1 1 1 1 1
0 0 1 1 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1
0 0 0 0 1 1 1

            

R  (13) 

 
where the variable order is V1, F1, V2, F2, V3, F3, L. They are divided into 3 groups: inlet (V1 
and F1), one outlet with flowrate control (V2 and F2) and another outlet with level control 
(V3, F3 and L). The elements of R22 and R33 are all ones because they are control loops, and 
the elements of R23 are ones showing the flowrate controller influences the level controller. 
Hence the control loop diagraph is consisted of two nodes corresponding to the two 
controllers and an arc corresponding to the influence between them. Moreover, if the 
variable order is changed to put V1 and V2 meaning the two controller outputs at the last, 
the corresponding block is just the adjacency matrix of the control loop diagraph. This is a 
useful property that links the concepts of SDG, control loop digraph and the matrices. 
Matrix explanation helps us understand the SDG concept and its potential in applications. In 
fact, some results, such as propagation rules, are derived from matrix description. 

 
3. Inference Approaches Based on SDGs 
 

3.1 Fault Propagation Rules 
Based on the SDG description, the fault propagation can be described qualitatively. There 
are two basic principles: 
Proposition 1: The fault is propagated along the consistent paths. 
Proposition 2: The node signs are determined by nodal balance, i.e. the sign on each node 
must be equal to the net influence on the node: 
 

( ) ( ) ( )j ij i
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where the qualitative operation rules are as Table 1. Due to the loss of quantitative 
information, some signs can not be determined shown as ‘?’ in the table, which causes the 
uncertainty in the solutions. 
 

No. sgn[x] sgn[y] sgn[x]+sgn[y] sgn[x]·sgn[y] 
1 0 sgn[y] sgn[y] 0 
2 ± sgn[x] sgn[x] + 
3 ± -sgn[x] ? - 

Table 1. Qualitative operation rules 
 
The logic on a node in SDGs is OR in nature because any input deviation can result in the 
node sign. In some cases, however, there are other types of logics, for example, the logic is 
AND, XOR or high/low-selective, or arcs or nodes are conditional, some necessary logic 
nodes should be added to the SDG (Yang & Xiao, 2007). 
Proposition 1 can be easily understood. By testing the consistency one can find the fault 
propagation paths based on the measurements, which form a sub-graph of the original SDG, 
called cause-effect graph (Iri et al., 1979). On the other hand, one can predict the next step 
response based on the measured and assumed variables. 
Proposition 2, however, may have some limitations because it is only suitable for the 
dynamic trends near the initial state. When a fault occurs, the response of variables can be 
divided into three stages – initial, intermediate, and final responses. In large-scale complex 
systems, the intermediate response is very complex, but in most cases, we concentrate only 
on the initial and final stages. For stable systems with fixed input, the final response is a 
steady state. Thus the input and exogenous disturbances are assumed as step functions to 
show abrupt changes.  
Initial response is the first response just after the exogenous input changes. In dynamic 
systems expressed by DAEs, initial response is the nonzero response of system variables 
predicted by propagation through all the shortest paths in the corresponding SDG if we 
define the length of arcs in AE and DE portion by 0 and 1 respectively (Maurya, 2003a). Final 
response is the steady states of variables obtained after the dynamic period ends. It can be 
solved simply by setting the derivatives as zeros in DE portion of DAE. For the obtained 
AEs, the final response can be predicted by propagation through all the directed (acyclic) 
paths in the corresponding SDG. However, there may exist more than one perfect matching 
between equations and variables, thus there may exist more than one SDG corresponding to 
the AEs. If there is only one perfect matching, the above method is correct; otherwise, the 
result may be wrong because the results based on different perfect matchings are 
inconsistent. There is an exception, however, if an SDG corresponding to a perfect matching 
contains only negative cycles, then any perfect matching (for which the SDG contains only 
negative cycles) can be chosen and the final response can be decided using the above 
method (Maurya, 2003a). 

 
3.2 Control Action Influences on Fault Propagation 
 

3.2.1 SDG description and fault propagation analysis of single control loop 
Control actions should be considered particularly because they are forced actions that are 
different from process property itself and they may cause the truncation or misleading of 
fault propagation. We discuss this problem using the general methods and obtain some 
special results (Maurya, 2003b, 2006). 
In the bottom level, SDG models are established for all kinds of control systems among
which the most common and basic one is single PID loop shown as Fig. 4. The deviation e of 
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the set point r and the measurement xm of the controlled variable x, is inputted into the 
controller whose output u goes to the actuator and thus effects the controlled plant through 
the manipulated variable q. Hence they compose a closed loop. Because the controlled 
variable may be affected by some disturbances or be coupled with other system variables, 
the exogenous plant and variable xj are also added. Assume that controlled plant and the 
controller are both linear amplifiers, i.e. proportion elements, with the positive gain k and kv 
respectively. The control law of PID controller is: 
 

 
 

P I D
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I c I

D c D
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d d

u u u u
u k e

t u k e

u k e t




      
 (15) 

 
where, kP is the positive proportion parameter, I  and D  are integral and differential time 
constant respectively. 
 

Fig. 4. Block diagram of a feedback control loop 
 
According to the control law, the DAEs of the system are as follows: 
 

m mbx x x   (16) 

me r x   (17) 
P cu k e  (18)   I c Id dt u k e   (19) 

D c D d du k e t   (20) 

P I D bu u u u u     (21) 

v bq k u q   (22) 

j jx kq a x   (23) 
 
where subscript ‘b’ denotes bias. There are two perfect matchings between the equations 
and variables in AE portion, shown as Table 2, whose corresponding SDGs are shown as 
Fig. 5, in which the nodes with shadow are deviation nodes, arrows with solid and dotted 
lines denote signs “+” and “-” respectively. It is noted that the node d de t  is an individual 
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node with special function, although it is the derivative of e. In applications, we generally 
assume that all changes on nodes are step functions, because the SDGs are only used to 
analyze the qualitative trends. Hence d de t  can be also replaced by e , but its effect is 
limited in initial response. Here the effect of d de t  on Du  is the same as the effect of e  on 

Pu , but with shorter duration. 
 

Equations Matched variables in 
perfect matching No. 1 

Matched variables in 
perfect matching No. 2 

(16) xm x
(17) e xm
(18) uP e
(20) uD uD
(21) u uP
(22) q u
(23) x q

Table 2. Perfect matchings between the AEs and variables 
 

        
(a)                                                                              (b) 

Fig. 5. Two SDGs of the PID control loop. (a) Case 1 (corrected), (b) Case 2 (spurious) 
 
Eq. (23) describes the controlled plant, thus the arc direction should be from q to x according 
to the physical meaning, which shows the cause-effect relationship, so the case of Fig. 5(b) is 
removed. Moreover, if the plant shows some dynamic characteristic, for example, the left-
hand of the equation is d dx t , then the equation becomes a DE, hence there is only one 
perfect matching, and the case of Fig. 5(b) does not exist any more. Using Fig. 5(a), the initial 
response can be analyzed, for example, if the set point r increases, e, uP, u, q, x and xm will 
become “+” immediately, and uI will become “+” gradually because the arc from e to uI is a 
DE arc. This propagation path r→e→uP→u→q→x→xm is consistent with the actual 
information transfer relations. Thus when we only consider the initial response of the 
system, the SDG of this control loop is obtained by transforming the blocks and links in 
block diagram into nodes and arcs while keeping the direction. However, in this example, 
no matter whether the case of Fig. 5(b) is reasonable, the analysis results of initial response 
by the two SDGs are the same because there are no positive cycles within them. We 
summarize the following rule: 
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the set point r and the measurement xm of the controlled variable x, is inputted into the 
controller whose output u goes to the actuator and thus effects the controlled plant through 
the manipulated variable q. Hence they compose a closed loop. Because the controlled 
variable may be affected by some disturbances or be coupled with other system variables, 
the exogenous plant and variable xj are also added. Assume that controlled plant and the 
controller are both linear amplifiers, i.e. proportion elements, with the positive gain k and kv 
respectively. The control law of PID controller is: 
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where, kP is the positive proportion parameter, I  and D  are integral and differential time 
constant respectively. 
 

Fig. 4. Block diagram of a feedback control loop 
 
According to the control law, the DAEs of the system are as follows: 
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where subscript ‘b’ denotes bias. There are two perfect matchings between the equations 
and variables in AE portion, shown as Table 2, whose corresponding SDGs are shown as 
Fig. 5, in which the nodes with shadow are deviation nodes, arrows with solid and dotted 
lines denote signs “+” and “-” respectively. It is noted that the node d de t  is an individual 
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node with special function, although it is the derivative of e. In applications, we generally 
assume that all changes on nodes are step functions, because the SDGs are only used to 
analyze the qualitative trends. Hence d de t  can be also replaced by e , but its effect is 
limited in initial response. Here the effect of d de t  on Du  is the same as the effect of e  on 

Pu , but with shorter duration. 
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(20) uD uD
(21) u uP
(22) q u
(23) x q
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Fig. 5. Two SDGs of the PID control loop. (a) Case 1 (corrected), (b) Case 2 (spurious) 
 
Eq. (23) describes the controlled plant, thus the arc direction should be from q to x according 
to the physical meaning, which shows the cause-effect relationship, so the case of Fig. 5(b) is 
removed. Moreover, if the plant shows some dynamic characteristic, for example, the left-
hand of the equation is d dx t , then the equation becomes a DE, hence there is only one 
perfect matching, and the case of Fig. 5(b) does not exist any more. Using Fig. 5(a), the initial 
response can be analyzed, for example, if the set point r increases, e, uP, u, q, x and xm will 
become “+” immediately, and uI will become “+” gradually because the arc from e to uI is a 
DE arc. This propagation path r→e→uP→u→q→x→xm is consistent with the actual 
information transfer relations. Thus when we only consider the initial response of the 
system, the SDG of this control loop is obtained by transforming the blocks and links in 
block diagram into nodes and arcs while keeping the direction. However, in this example, 
no matter whether the case of Fig. 5(b) is reasonable, the analysis results of initial response 
by the two SDGs are the same because there are no positive cycles within them. We 
summarize the following rule: 
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Rule 1: The fault propagation path of the initial response in a control loop is the longest 
acyclic path starting from the fault origin in the path “set point → error → manipulated 
variable → controlled variable → measurement value → error”, which is consistent with the 
information flow in the block diagram. 
Final response is easier. The left-hand side of Eq. (19) is zero, so 0e   in the steady state, 
which can be obtained from the concept. Hence uP and uD are both zeros. The above DAEs 
can be transformed into: 
 

m mbx x x   (24) 

mx r  (25) 

I bu u u   (26) 

v bq k u q   (27) 

j jx kq a x   (28) 
 
Now the perfect matching is exclusive and the corresponding SDG is shown as Fig. 6 that is 
the simplification of Fig. 5(b). There are two fault propagation paths: r→xm→x→q and 
xj→q→u→uI. If the set point r increases, then xm, x, q, u and uI will all increase in the steady 
state as long as the control action is effective. However, if only xmb increases, then xm will 
not be affected, but x will increase, that is the action of the control loop. We find that the Fig. 
5(b) also makes sense for it reflects the information transfer relation in steady state. From the 
viewpoint of physical meaning, when control loop operates, the controlled variable is 
determined by the set point, and the controller looks like an amplifier with infinite gain, 
whose input equals to zero and whose output is determined by the demands. This logical 
transfer relation is opposite to the actual information relation. 

Fig. 6. Steady-state SDG of a PID control loop 
 
Because the D action is only effective in the initial period, the fault propagation path of PI 
control is the same as the above one. Because of I action, some variables show compensatory 
response, for example, the response of xm due to xmb is limited in the initial stage. If there is 
only P action, then e is not zero in the steady state, thus uI and related arcs in Fig. 5(a) are 
deleted, and both the initial response and steady-state response can be analyzed with this 
graph. 
The rule of fault propagation analysis in steady state can be summarized as follows: 
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Rule 2: The fault propagation path of the steady-state response in a control loop is the path 
“set point → measurement value → controlled variable → manipulated variable” and 
“exogenous variable → manipulated variable”. 
When control loop operates, the above analysis shows the fault propagation principles due 
to the output deviation of sensor, controller, actuator and other exogenous variables. When 
control loop does not operate, there are two cases: (1) structural faults, e.g. the failure of 
sensor, controller or actuator causes the break of some arcs and the control loop becomes 
open, (2) excessive deviation causes the controller saturation, leading to the I action cannot 
eliminate the residual and let 0e  , which is similar with the P action case. 

 
3.2.2 SDG description and fault propagation analysis of various control systems 
Based on the above analysis of PID control loop, other control loops can be modeled as 
SDGs by the extension, combination, or transformation of the above SDG. Fault nodes are 
added according to the actual demands. Based on these models, fault propagation can also 
be shown explicitly. 
Feedforward control is a supplement of feedback control. It is very familiar in actual cases, 
but it is easy to be treated according to the foregoing methods because it composes paths but 
not cycles, not leading to multiple perfect matchings.  
Split-range control means the different control strategies are adopted in different value 
intervals. Here the sign of the arcs or even the graph structure may change with the variable 
values, which is realized by several controllers in parallel connection. This case is very hard 
for SDG to deal with. We have to do some judgments as making inference, and modify the 
structure or use conditional arcs to cover all the cases (Shiozaki et al., 1989). 
Cascade control can be regarded as the extension of single loop case. It can be solved 
directly by AEs, or by the combination of two single loops. For example, the cascade control 
system in Fig. 7 has the steady-state SDG as shown in Fig. 8, where the controlled variable of 
the outer loop u1 is the set point of the inner loop r2. 

Fig. 7. Block diagram of a cascade control system 
 

Controller 
No.2 

Actuator Controlled 
Plant No.2

Sensor No.2 

-
x1r1

e1

xm2

u2

ub2 qb2

q2

xmb2

Exogenous 
Plant No 1 

xj2

kc2 kv2 k2

Controller 
No.1 

xm1 Sensor No.1 

Controlled 
Plant No.1 

Exogenous 
Plant No.2

- q1=x2

xj1
ub1

xmb1

kc1 k1

e2

u1=r2

www.intechopen.com



Qualitative Fault Detection and Hazard Analysis Based on  
Signed Directed Graphs for Large-Scale Complex Systems 27

Rule 1: The fault propagation path of the initial response in a control loop is the longest 
acyclic path starting from the fault origin in the path “set point → error → manipulated 
variable → controlled variable → measurement value → error”, which is consistent with the 
information flow in the block diagram. 
Final response is easier. The left-hand side of Eq. (19) is zero, so 0e   in the steady state, 
which can be obtained from the concept. Hence uP and uD are both zeros. The above DAEs 
can be transformed into: 
 

m mbx x x   (24) 

mx r  (25) 

I bu u u   (26) 

v bq k u q   (27) 

j jx kq a x   (28) 
 
Now the perfect matching is exclusive and the corresponding SDG is shown as Fig. 6 that is 
the simplification of Fig. 5(b). There are two fault propagation paths: r→xm→x→q and 
xj→q→u→uI. If the set point r increases, then xm, x, q, u and uI will all increase in the steady 
state as long as the control action is effective. However, if only xmb increases, then xm will 
not be affected, but x will increase, that is the action of the control loop. We find that the Fig. 
5(b) also makes sense for it reflects the information transfer relation in steady state. From the 
viewpoint of physical meaning, when control loop operates, the controlled variable is 
determined by the set point, and the controller looks like an amplifier with infinite gain, 
whose input equals to zero and whose output is determined by the demands. This logical 
transfer relation is opposite to the actual information relation. 

Fig. 6. Steady-state SDG of a PID control loop 
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3.2.2 SDG description and fault propagation analysis of various control systems 
Based on the above analysis of PID control loop, other control loops can be modeled as 
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Fig. 7. Block diagram of a cascade control system 
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Fig. 8. Steady-state SDG of a cascade control system 
 
Similar control methods are ratio control, averaging control, etc. Fig. 9 is a dual-element 
averaging control system whose objective is to balance two variables – level and flow, the 
block diagram of which is shown as Fig. 10. Px=PL –PF +PS +c, where Px is the pressure signal 
of the adder output, PL is the level measurement signal, PF is the flow measurement signal, 
PS is a tunable signal of the adder. In the simplest case, flow process and its measurement 
are both positive linear elements, and the level process is a negative linear element, so the 
steady-state SDG is shown as Fig. 11. Although there are several perfect matchings, SDG has 
only a negative cycle, thus we can analyze the fault propagation principle through the 
directed paths. 

Fig. 9. A dual-element averaging control system 
 
Thus we conclude: 
Rule 3: The fault propagation path in a control system in steady state can be combined from 
the ones of single-loop by combining the same nodes and adding arcs by transforming AEs. 
In an industrial system, control systems play a special but important role. They compose 
information flow cycles in initial response but result in different flow in steady state 
response. Fig. 12 shows a system with a control loop. According to the above rules, the bias 
in x1 propagates along the forward path (blue) in initial response while against the feedback 
path in steady state response. 
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Fig. 11. Steady-state SDG of a dual-element averaging control system 
 
The bias in x2 propagates along two paths until x3 and x4 in initial response, while PV and 
x4 restore to normal in the steady state because the steady state SDG changes the structure 
and directionality of the graph and thus PV becomes a compensatory variable. 
 

Fig. 13. Control system’s effect on fault propagation in a system. (a) Bias in x1, (b) Bias in x2 

 
3.2.3 Example 
In a boiler system, the three-element control of the boiler water level is widely used, in 
which the main controlled variable is water level. If we take steam flow and inlet flow into 
account, the control system is a feedforward-cascade system, as shown in Fig. 13. In the 
initial stage of the disturbance, the SDG is shown as Fig. 14(a), which can be derived by 
original DAEs. Certainly the initial fault influence follows this SDG. The control action, 
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however, is enrolled and some deviations are restored to the normal region after a complex 
intermediate process. If the control action is successful, the fault may be blocked in the 
control loop and does not spread any more. But for some kinds of faults, the situation is 
different, because the control action makes the fault propagation path change. According to 
the method in the foregoing sections, we can construct the backbone (ignoring the bias 
nodes) of the steady-state SDG model as Fig. 14(b) which is quite different from Fig. 14(a). 
Similar with Fig. 9, other fault nodes can be added to Fig. 14(b) and thus we can find the 
steady-state fault propagation paths. 
 

Fig. 13. Three-element control system 
 

(a)                                                                    (b) 
Fig. 14. SDGs of the three-element control system. (a) Initial response, (b) Steady state 

 
3.3 Inference Approaches 
In safety area, fault diagnosis and hazard assessment, especially hazard and operability 
analysis (HAZOP) are two different tasks. The former is to correctly find and identify the 
fault origin that is the cause leading to the symptom when fault occurs. It is based on 
measurements and is real-timed. While the latter, hazard assessment is to an off-line 
analysis whose purpose is to find the possible hazards due to all various causes. For this 
reason, we assume a series of departure nodes as fault origins, then analyze the possible 
consequences that are all the triggered departure nodes. Both fault diagnosis and hazard 
assessment need the interior mechanism of the system to express how the faults propagate. 
Thus the SDG model can be employed.  
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3.3.1 Graph traversal approach 
The most common algorithm for searching the fault origin is depth-first traversal on the 
graph (Iri et al., 1979), which is a kind of efficient fault inference for both the single and 
multiple fault origin cases (Zhang et al., 2005). Its theoretical basis is nodal balance in Eq. 
(14). A depth-first traversal algorithm constructs a path by moving each time to an adjacent 
node until no further arcs can be found that have not yet been visited, the implementation of 
which is a recursive procedure. 
For HAZOP purpose, forward traversal is applied from the assumed origin to predict all the 
variables based on consistency, which is deductive reasoning (Venkatasubramanian et al., 
2000; Yang & Xiao, 2006b). For the fault detection purpose, backward traversal is applied 
within the causal-effect graph to find the maximal strongly connected component (Iri et al., 
1979), which is abductive reasoning. Actually, the whole procedure includes two steps: 
Step 1: Trace the possible fault origins back along the arcs. 
Step 2: Make forward inference from these nodes to screen the candidates to choose which 
one is the real or most probable fault origin. 
The time complexity of a traversal search is O(n2) in which n denotes the node number in the 
graph. When the system scale increases, the time for a traversal is too long to meet the 
demands of fault detection. Thus the model structure should be transformed from a single-
level one to a hierarchical one. By this way, the search is first performed in the higher level 
to restrict the fault origin in a sub-system. Then the search is performed in the sub-graph of 
this sub-system. 
For the hierarchical model, hierarchical inference from top to bottom is obtained naturally. 
The graph traversal is performed firstly in the higher level finding the possible super-node 
that includes the fault origin. Next perform the graph traversal in the lower level to restrict 
the possible location of the root cause. Assume the sub-system contains m control systems, 
and each control system contains k variables, then the time complexity of a traversal in a 
single-level model is O(m2k2), and the time complexity in a 2-level model is 
O(m2+k2)<<O(m2k2). Thus the fault analysis in a hierarchical model has much higher 
efficiency.  
Here the number of fault origin is assumed to be only one, that is, the reason that leads to 
the fault is only one (Iri et al., 1979). This is reasonable because multiple faults seldom 
appear at the same time (Shiozaki et al., 1985). For multiple fault origin cases, minimal cut 
sets diagnosis algorithm was presented (Vedam & Venkatasubramanian, 1997), where all 
possible combinations of overall bottom events should be input into the computer to explore 
and those which make the top events appear are the cut sets. This algorithm has the distinct 
disadvantage of low efficiency because of exponential explosion. 

 
3.3.2 Other improved approaches 
In order to utilize the system information more sufficiently, Han et al. (1994) used fuzzy set 
to improve the existing models and methods, but their method is not so convenient for on-
line inference and is not applicable for dynamical systems. Some scholars introduced 
temporal evolution information such as transfer-delay (Takeda et al., 1995; Yang & Xiao, 
2006a) and other kind of information into SDG for dynamic description. Probability is also 
proposed to model the system, which uses conditional probabilities of fault events to 
describe causes and effects among variables (Yang & Xiao, 2006c). Hence the inference is 
respect to the fault probability. 
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this sub-system. 
For the hierarchical model, hierarchical inference from top to bottom is obtained naturally. 
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the possible location of the root cause. Assume the sub-system contains m control systems, 
and each control system contains k variables, then the time complexity of a traversal in a 
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Here the number of fault origin is assumed to be only one, that is, the reason that leads to 
the fault is only one (Iri et al., 1979). This is reasonable because multiple faults seldom 
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possible combinations of overall bottom events should be input into the computer to explore 
and those which make the top events appear are the cut sets. This algorithm has the distinct 
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