
3

Petri Net Based Modelling of
Communication in Systems on Chip

Holger Blume, Thorsten von Sydow, Jochen Schleifer and Tobias G. Noll
Chair of Electrical Engineering and Computer Systems

RWTH Aachen University
Germany

1. Motivation

Due to the progress of modern microelectronics the complexity of integrated electronic
systems is steadily increasing. For example, the number of transistors which can be
integrated on a single piece of silicon doubles every 18 months according to Moore’s Law
(Moore, 1965). At the same time, the costs for manufacturing deep-sub-μ devices with
feature sizes down to 45 nm are dramatically increasing.
Due to this progress, today, complete systems are integrated on a single silicon die as so-
called Systems on Chip (SoCs). The huge complexity of these SoCs and the very high
manufacturing costs demand sophisticated design strategies as it is not possible to simulate
a sufficiently large number of implementation alternatives in advance. Furthermore, errors
within the design process lead to dramatically increased costs.
Therefore, the field of model based design space exploration (DSE) is of increasing
importance. Model based DSE allows a reduction of the number of implementation
alternatives in an early stage of the design process by quantitative analysis of possible
implementation alternatives (Blume, 2005).
Especially, the design of a sophisticated communication structure on a SoC is of great
interest. For SoCs with moderate complexity mainly bus based communication structures
are applied, but this is not sufficient for modern high complex SoCs, since bus based
communication provides only very limited scalability, reduced bandwidth and no
guaranteed latencies. Furthermore, with a high number of system components the need for
simultaneous communication between different communicating units increases. All these
requirements are already known from multi computer networks. Therefore, for complex on-
chip communication requirements also network-like structures are considered. Hence, the
concept of multi computer networks is transferred and adapted to on-chip communication
problems building so-called Networks on Chip (NoCs) featuring in future the
communication infrastructure for many processor cores.
Generally, NoCs consist of

network-interfaces (NI), where clients like e.g. processor cores can access the NoC,

routing-switches (RS), which route the data through the NoC and

links, through which the data is transported (see Fig. 1).

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 42

Fig. 1. Network-on-Chip (NI: Network-Interface, RS: Routing-Switch)

These NoCs imply a huge parameter space featuring parameters like network topology,
routing strategy, link properties, arbitration mechanisms etc.. Some of these parameters are
roughly sketched in the following:
Topology in this case is the way of connecting the various network components to each other,
common examples (see Fig. 2) are networks based on mesh, torus and ring topologies
(Bjerregaard, 2006), besides further regular topologies also heterogeneous and/or
hierarchical topologies as well as completely irregular ones (for example optimized for
specialized signal processing tasks) are discussed.

Fig. 2. Common NoC topologies: mesh (a), torus (b), ring (c)

The switching concept defines the way information is sent through the network. Concepts for
this are line and packet switching. In a line switched network a complete route from source
to destination is established before information is passed along this route. In the packet
switching approach information is divided into small packets that are delivered

Petri Net Based Modelling of Communication in Systems on Chip 43

independently of each other. While line switching generates a considerable overhead for
route establishment there is no need to send destination information along with each
message and vice versa for packet switching. Furthermore, concepts such as wormhole
routing combine characteristics of both approaches (Duato, 2003).
In any of the cases described before, the actual route through the network is determined by
the routing algorithm. In each network node, information is routed from an input to an
output port according to the routing algorithm. These algorithms can be divided into static
and adaptive algorithms as well as minimal-path and non-minimal-path ones. When using a
static routing algorithm there is only a single route for each possible pair of source and
destination. Adaptive algorithms allow for different routes dependent on the current
network state and generally tend to reduce congestion for the cost of higher complexity.
Minimal-path routing algorithms only consider those routes with minimum possible length
while non-minimal-path algorithms also regard further routes featuring non-minimal path
lengths.
Arbitration mechanisms define the way to resolve resource conflicts; this can range from
simple first-come-first-serve or Round Robin schemes to complex schemes including
priority access and disruption of routes.
All of these parameters have a significant influence on congestion, latency and network
load, thereby affecting and possibly limiting SoC and NoC performance.
It is a key task of modern SoC and NoC design to efficiently explore the design space
regarding aspects like performance, flexibility and power consumption presumably in an
early stage of the design flow in order to reduce design time and design costs.
Different approaches for exploring the design space concerning performance aspects have
been proposed:

Emulation on FPGA based platforms (Neuenhahn, 2006)

Simulative approaches, e.g. applying SystemC (Kogel, 2003), (Madsen, 2004),
(Sonntag, 2005)

Combined simulative-analytic approaches (Lahiri, 2001)

formal communication modelling and refinement systems applying dedicated
modelling languages like the Action Systems Formalism (Plosila, 2004)

stochastic approaches applying Markov Models (Mickle, 1998), Queuing Theory
(Kleinrock, 1975) or different forms of Petri Nets incl. deterministic and stochastic Petri
Nets (DSPN) (Ciardo, 1995), (Blume, 2006), (Blume, 2007) and Coloured Petri Nets
(CPN) (Zaitsev, 2004)

Each of these techniques provides its individual advantages and disadvantages. For
example, simulative approaches based on SystemC like (Kogel, 2003) provide highly
accurate results but suffer from long simulation times, making them not appropriate for an
early stage of communication modelling and evaluation. Emulation of communication
architectures and scenarios on FPGA based platforms (Neuenhahn, 2006) provides on one
hand the possibility to quickly acquire results for different aspects. If a suitable FPGA based
model is available it is much faster to attain results than using a simulation based method.
On the other hand the modelling and realization effort of the emulation (incl. the synthesis
of the NoC on the FPGA) is very high. The complexity of the modelled scenarios is limited
by the capacity of the used FPGA. Recently, communication modelling approaches which
are based on so-called deterministic and stochastic Petri Nets (DSPNs) have been presented.
In (Blume, 2006), (Blume, 2007) it could be shown that with the application of these DSPN

Petri Net: Theory and Applications 44

modelling techniques it is possible to efficiently trade modelling effort and modelling
accuracy. Basic but exemplary test scenarios like resource conflicts in state-of-the-art DSP
architectures, basic bus based communication test cases and basic NoC structures
demonstrate a very good modelling accuracy at low modelling effort.
In this chapter the usability of different Petri Net based modelling techniques like DSPNs
and CPNs for modelling complex NoC communication scenarios is investigated and their
specific properties are discussed. This chapter is structured as follows: section 2 provides an
introduction into the Petri Net variants DSPN and CPN. In section 3 these modelling
techniques are applied in order to model different forms of on-chip communication. The
corresponding accuracy of the models compared to values which were derived using FPGA
and DSP based testbeds are provided and discussed. Furthermore, the related modelling
effort is analyzed. Section 4 provides a conclusion and a short outlook to possible future
applications of Petri Net based techniques in the domain of design space exploration for
NoC-architectures.

2. Introduction to Petri nets

In the following section a short introduction to the Petri Net methods which have been
applied in context of this chapter is given. The modelling with these specific methods will be
illustrated by means of descriptive basic examples. First of all, the design with so called
deterministic and stochastic Petri Nets (DSPNs) is sketched. Afterwards, coloured Petri Nets
which extend the possibilities of DSPNs are briefly presented.

2.1 Deterministic and stochastic Petri nets

Deterministic and stochastic Petri Nets have been introduced in 1987 by Ajmone Marslan
and Chiola (Ajmone Marslan, 1987) as an extension of classical Petri Nets. DSPNs extend the
modelling possibilities of classical Petri Nets by introducing the concept of deterministic
transition times. In the following, only a subset of all features provided by DSPNs is
discussed. For a thorough overview see e.g. (Lindemann, 1998).
Petri Nets consist of so-called places, arcs and transitions. Places, depicted as circles in the
graphical representation, correspond to states of e.g. system components. E.g. a place could
be named copy word to illustrate that this place represents the state of copying a word. Places
can be unmarked or marked with one or even more tokens. This illustrates that the
corresponding place is currently allocated. E.g. if a place called copy word is marked, the
associated component is in the state of copying a word.
In Petri Nets a state change is modelled by means of so called (timed) transitions. Three
types are differentiated in DSPNs: immediate transitions, transitions with a probability
density function of their delay (e.g.: negative exponential) or deterministic transitions with a
fixed delay.
Transitions and places are connected via arcs. There are two types of arcs, regular or
inhibitor arcs. Inhibitor arcs are identified by a small inversion circle instead of an
arrowhead at the destination end of it (see Fig. 3). If more than one input place is connected
to a transition via regular arcs, the transition will only be activated when all connected
places are marked. In case of one or more of these arcs being inhibitor arcs the transition will
not fire if the corresponding place is marked. Furthermore, a numeric weight can be

Petri Net Based Modelling of Communication in Systems on Chip 45

assigned to each arc. A weighted arc is only activated if the number of tokens, located in the
place the arc is originating from, is greater or equal than the assigned weight.
The form of graphical representation is often used to build DSPNs. The underlying
mathematical representation of DSPNs can be specified as a nine-tuple

WDMHOITPDSPN ,,,,,,,, 0

with

P, a finite number of places,

T, a finite number of transitions,

HOI ,, denote the input-, output- and inhibitor-functions, which connect

transitions and places,

 denotes the firing-priority-function (specifying firing-priority-levels) for all

immediate transitions,

0M denotes the initial marking of the DSPNs,

D denotes the firing-delay-function (specifying the average delay) for timed

transitions,

W denotes the firing-weight-function, which specifies the weights which are

associated to each transition.
When a Petri Net model has been implemented by use of a graphical design tool or by
directly defining the characteristic DSPN nine-tuple, the belonging mathematical models of
the implemented Petri Net can be analyzed. Then, this analysis yields for example

the static expectation value of the marking of places (occurrence of tokens at a given
place),

the stationary probability for the occurrence of a specific marking of a place,

the average number of tokens passing a transition per unit of time, i.e. the throughput
of a transition.

For the acquisition of results three different approaches exist:

mathematical analysis, within which a closed equation system is deduced from the
Petri Net and this equation system can be solved in order to acquire the desired results,

mathematical approximation, which is based on numeric methods of calculation being
suited for Petri Nets, which cannot be solved in the form of closed equation systems,

simulation, within which the flow of tokens through the net is simulated. This
simulation is carried out until the desired results can be computed according to a
specified confidence bound. Therefore, the relative occurrences of tokens within the
single places are acquired.

Each alternative provides its specific advantages and disadvantages regarding required
computational effort, achievable accuracy etc.. In case of two or more concurrently enabled
deterministic transitions, mathematical analysis is not possible and simulative or
approximative methods have to be applied (Lindemann, 1998).
A further advantage of Petri Nets is the availability of comfortable mathematical methods in
order to determine features of Petri Nets such as the so-called liveness or the absence of
deadlocks (non-resolvable blockades) (Lindemann, 1998). The associated mathematical
methods are often included in the modelling tools and therefore allow a fast verification of
features like absence of deadlocks.

Petri Net: Theory and Applications 46

In order to demonstrate the application of DSPNs to model communication structures a
basic DSPN is depicted in Fig. 3. A simplified arbitration scheme which handles the
competition of a DMA controller and a CPU for the critical resource memory interface is
modelled here. The DSPN consists of two components: a section of a CPU and a DMA-
controller.
In the following, two aspects of the current state and their implications for the following
state of this simple net will be explained. As can be seen in Fig. 3 the memory request place of
the CPU and the memory access granted place are connected to the immediate transition via
regular arcs. These two places are the only places which are connected to this transition and
both are marked with tokens. Thus, the transition is going to fire immediately. The
mentioned places are going to be cleared and the memory access place of the CPU is marked.
This transition example describes the situation where the CPU requests the memory at a
time where the memory access is available. The CPU accesses the memory and transfers data
from or to the memory. The resource memory is therefore busy until the deterministic
transition fires and the place memory access granted is marked again. Thus, access to the
memory by another device (here the DMA-controller) cannot be granted.

Fig. 3. Basic DSPN example (depicted here for a specific state)

The upper immediate transition of the DSPN depicted in Fig. 3 behaves differently
compared to transition as one of the three places connected to transition is connected
via an inhibitor arc. Therefore, this transition is not going to fire as long as all three
connected places are marked. In case that the memory request place of the CPU is not marked
and the other ones are marked, transition will fire immediately. Thus, the DMA-controller
only gets access to copy a word if the CPU is not having or requesting memory access.
Therefore, in this arbitration scheme the CPU has higher priority than the DMA.
The described DSPN requires input parameters such as the memory access delay time T
etc. to determine probabilities and expectations of previously defined places as mentioned
above.
A variety of DSPN modelling environments is available today (Petri Nets World, 2007). For
the DSPN modelling experiments described in this chapter, the modelling environment
DSPNexpress (DSPNexpress, 2003) has been applied. DSPNexpress provides a graphical
editor for DSPN models, as well as a solver backend for analysis of DSPNs. Experiments can

Petri Net Based Modelling of Communication in Systems on Chip 47

be performed for a fixed parameter set and for a parameter sweep across a user-defined
range of values. The package supports the computation of the transient response e.g. the
distribution of tokens (using Picards Iteration Algorithm) as well as computation of the
steady state behaviour of the DSPN model. The latter can be determined by iteratively using
the Generalized Minimal Residual Method, by employing the direct quadrature method or
by utilizing the discrete event simulator backend (Lindemann, 1998). These methods
correspond to the DSPN computation methods mentioned in the beginning of this section.

2.2 Coloured Petri nets

In this section a short introduction to Coloured Petri Nets (CPN) and to the software
CPNtools (Ratzer, 2006) that has been used for the modelling examples discussed here, is
given. First, the basic features of this modelling approach are presented then it is explained
using a basic application example.
Coloured Petri Nets have been developed by K. Jensen in course of his PhD thesis (Jensen,

1980) to expand the modelling possibilities of classical Petri Nets. Like other forms of Petri

Nets a CPN consists of places, tokens, transitions and arcs. The primary feature unique to

CPNs is the inclusion of data structures into tokens. These data structures are called

coloursets and resemble data structures in high level programming languages; they can

range from simple data types such as integers to complex structures like structs or unions in

C/C++. Similar to programming languages it is possible to define variables associated with

these coloursets. Some examples of colourset and variable definitions are shown in Fig 4.a.

Tokens as well as places of a CPN are always associated with a colourset and a place may

only contain tokens of the same colourset as its own. Places in a CPN are depicted as ellipses

(Fig 4. b) with the name of the place written into it and the associated colourset (word)

below. A token in a CPN is represented by a circle (Fig 4. b). Its value (the data stored in the

token) is shown in a rectangle attached to the circle. A number in the circle denotes the

number of tokens with the same value. Fig 4. b for example shows a place called link

associated with the colourset word and holding three tokens, two storing the value (ack, 5)

one with a value of (req, 13). Tokens associated with the predefined colourset unit do not

store any data and thus resemble tokens in an ordinary Petri Net or a DSPN.

Fig. 4. Colourset and variable definitions (a) and graphical representation of a place in a
CPN (b)

Transitions in a CPN are represented by rectangles (Fig. 5) and can access the data
stored in tokens by mapping tokens to variables. There are two possibilities to access
this data:

Petri Net: Theory and Applications 48

Guard conditions: The transition is enabled only if a specific condition – called a guard
condition – regarding one or more variables is met. Guard conditions are encased in
brackets and written above the transition (Fig. 5a).

Transfer function: The transition reads and writes variables according to a specified
function that can range from simple addition of values to complex conditional
commands. Transfer functions consist of the definition of input() variables, output()
variables and the commands to be carried out (action()) and are attached below the
transition (Fig. 5b).

The examples depicted in Fig. 5 show a transition that only fires if the variable ctrl has the
value req (Fig. 5a) and a transition that generates an output variable dest without taking any
input variables (Fig. 5b), the variable dest is filled with the return value of the function
defined in the action part which in this case is a uniformly distributed random number
between 0 and 15.

Fig. 5. Transitions with guard condition (a) and transfer function (b)

Places and transitions in a CPN are linked by arcs. Arcs in a CPN can be unidirectional like
in a DSPN or bidirectional. Unidirectional arcs transfer tokens from a place to a transition or
vice versa (Fig. 6 a), bidirectional arcs transfer the same token from a place to a transition
and back (Fig. 6 b). Arc inscriptions define the mapping of tokens to variables. An
inscription can either be a constant value (Fig. 6 a) or a variable of the colourset that is
associated to the place the arc is connected to (Fig. 6 b). In case of complex coloursets an
inscription can also contain a set of variables. The word colourset defined in Fig. 4 a for
example consists of two parts, a control and an address part. A token of the colourset word can
be either mapped to a single variable of word or to a set (var1, var2) with var1 having the
colourset control and var2 being of the colourset address.
If all places connected to a transition by unidirectional input arcs or by bidirectional arcs
hold tokens and its (optional) guard condition is met, the transition is said to be enabled. In
case of more than one enabled transition in a CPN the one to fire is chosen randomly. Upon
firing a transition deletes the appropriate tokens from input places and generates tokens in
its output places. Places linked to the transition by bidirectional arcs are treated as both
input and output places.

Fig. 6. Unidirectional arc with mapping to value 3 (a), bidirectional arc with mapping to
variable dest (b)

Petri Net Based Modelling of Communication in Systems on Chip 49

For an analysis of clocked systems it is possible to define timed coloursets, defined by the
keyword timed (Fig. 7a) and transition delays marked by the characters @+ (Fig. 7b). If a
colourset is defined as timed, a timestamp is added to the tokens of this colourset. The
timestamp cannot be accessed by guard conditions or transfer functions. When using timed
coloursets the firing of transitions depends on a global clock counter. Transitions can only
fire if the clock value is the same as the largest timestamp of its input tokens. When a timed
transition fires, the timestamp of its output tokens is the sum of the current clock value and
the transition delay, in the example in Fig. 7b this delay is 100 clock cycles.

Fig. 7. Timed colourset definition (a) and transition with associated delay (b)

As an introductory example to CPN modelling a basic model of NoC communication is
presented in the following paragraph. Clients in the NoC are identified by their addresses
(here, integers ranging from 0 to 15). Since the communication in this NoC is based on line
switching a route from source to destination has to be established before starting data
transmission. The coloursets and variables used in this example are those shown in Fig. 7 a
as well as the colourset unit. Messages sent through the NoC are represented by tokens of
the colourset word. This colourset contains a part with the colourset control that designates
how the message is to be handled and a destination address. Possible values for the control
colourset are req (request route), ack (acknowledge route) and rel (release route).
In the beginning, the data source in the modelling example depicted in Fig. 8 is idle – no
data is to be sent. The global clock (clock counter) is supposed to be 0. The place idle is
marked, thus the transition request is enabled. This transition then fires and generates a
token in the place wait – the source is now waiting for establishing of the route. At the same
time the transition generates a token (req, dest) @ 100 in the place link, with @ 100 denoting
the timestamp. This is a request to the network to make a route available from the source to
the client with the address dest. The value of dest is a random number between 0 and 15
generated by the transfer function of the transition request (input (); … discrete(0, 15));) (see
Fig. 8). With a token (req, dest) in link the transition routing becomes enabled. It fires as
soon as the clock reaches 100 and generates an acknowledgement to notify the source of
successful routing. Supposing the routing takes Troute = 30 clock cycles the token generated
in link is (ack, empty) @ 130. Transition ack is now enabled and fires at a clock value of 130
generating a token in the place send. This means that the source switches from wait to the
send mode (data transmission). Because the colourset associated with send is unit timed
rather than unit like for idle and wait the token generated in send receives a time stamp of
130+Tburst, where Tburst describes the duration of a data burst. The transition release
therefore cannot fire until the clock value is 130+Tburst. Transmission of a data burst is
modelled only by setting the source to send mode for Tburst clock cycles. After sending the
data burst (global clock at 130+Tburst) the transition release fires. Firing of this transition

Petri Net: Theory and Applications 50

resets the source state to idle and generates a token (rel, empty) in the place link, signalling
the network to release the route as it is no longer needed. The rel token enables transition
relNet that handles the actual release of the route, which is not modelled explicitly.

Fig. 8. CPN model of communication between a network and an attached data source

This example shows that the inclusion of data structures into CPN modelling increases the
modelling capabilities compared to DSPNs. Both, the inclusion of data structures and the
related use of transfer functions allow for greater functionality and smaller models that
are easier to handle. With a DSPN model for example it would not be possible to store
destination address information in a token or generate random addresses. In a DSPN it
would be necessary to store the address in a binary format in a number of places while
random generation of an address needs a sophisticated DSPN for modelling this process.
The software tool CPNtools (Ratzer, 2006), which has been used for NoC performance
analysis, is a package for modelling and simulation with CPN. It consists of a graphical user
interface for composition of CPN models and a simulator. CPN models are described in a
format derived from Standard Markup Language (SML) called CPNml. Furthermore,
CPNtools allows hierarchical definition of CPNs to facilitate reuse and simplify handling of
large models. Parts of a model that are used multiple times can be encapsulated in a
submodel. These submodels are included in higher hierarchy levels as substitute transitions
with a defined mapping of input and output places of the transition to places in the
submodel. In contrast to DSPNexpress CPNtools does not provide a means of analytical or

Petri Net Based Modelling of Communication in Systems on Chip 51

iterative solution but is centred on simulation. In principle it is possible to generate an
ordinary Petri Net with the same functionality as a CPN that can then in turn be solved
analytically. Due to the complex data structures (coloursets) and transfer functions included
in a CPN the equation system describing such an underlying Petri Net would be very large.
Model parameters can be measured by definition of monitors that collect data relating to
different parts of the CPN such as occupation of places or the number of times a specific
transition fires. The markup language used for model description also allows to use more
complex monitors, including for example conditional data collection.

3. Petri net modelling of exemplary communication scenarios

In this section the exemplary application of Petri Nets for modelling communication
scenarios is presented. The modelling possibilities span from simple bus based processor
communication scenarios to complex NoC examples.

3.1 DSPN based processor communication model

The TMS320C6416 (Texas Instruments, 2007) (see
Fig. 9) is a high performance digital signal processor (DSP) based on a VLIW-architecture.
This DSP features a couple of interfaces, an Enhanced DMA-controller (EDMA) handling
data transfers and two dedicated coprocessors (Viterbi and Turbo decoder coprocessor).
Exemplary communication scenarios on this DSP have been modelled. The C6416 TEB (Test
Evaluation Board) platform including the C6416 DSP has been utilized to measure
parameters of these modelled communication scenarios described in the following. Thus,
modelling results have been proved and verified by comparison with measured values.

Fig. 9. Basic block diagram of the TMS320C6416 DSP

In Fig. 10 a block diagram of the C6416 and different communication paths of basic
communication processes (, and) are depicted.
In the first scenario two operators compete for one critical resource, the external memory
interface (EMIF). Requests for the external memory and with it the memory interface are
handled and arbitrated by the enhanced direct memory access controller (EDMA) applying
an arbitration scheme which is based on priority queues including four different priorities.

Petri Net: Theory and Applications 52

Fig. 10. Communication paths on the C6416 of different analysis scenarios

An FFT (Fast Fourier Transformation) operator runs on the CPU and reads and stores data
from the external memory (e.g. for a 64-point FFT, 1107 read and 924 write operations are
required which can be determined by analysis of the corresponding C-code). The
corresponding communication path of this operator is illustrated on top of the simplified
schematic of the C6416. The communication path of the copy operator is also depicted in
Fig. 10. This operator utilizes the so called Quick Direct Memory Access mechanism
(QDMA) which is a part of the EDMA. It copies data from the internal to the external
memory section. Here, it requests a copy operation every CPU cycle. Since both operators
run concurrently, both aim to access the critical external memory interface resource.
Requests are queued in the assigned transfer request queue according to their priority. If the
CPU and the QDMA both simultaneously request the memory with the same priority, the
CPU request will be handled at first. In all modelled communication scenarios the priority
of request initiated by the CPU and the QDMA were both assigned to the same priority
which means that a competition situation for this waiting queue has been forced. The
maximal number of waiting requests of this queue is 16.
The DSPN depicted in Fig. 11 represents the concurring operators and the arbitration of
these two operators for the memory resource. It is separable into three subnets
(see dashed boxes: Arbitration, FFT on CPU and QDMA-copy operator). The QDMA-copy
operator works similar to the DMA-controller device depicted in Fig. 3.
The proprietary transfer request queue is modelled by the place TransferRequestQueue. The
depth of the queue is modelled by inhibiting arcs with the weight 16 (the queue capacity)
originating from this place. This means that these arcs inhibit the firing of transitions they
are connected to if the corresponding place (TransferRequestQueue) is marked with 16 tokens.
These inhibiting arcs are linked to subnets representing components of the system which
apply for the transfer request queue. The deterministic transition T6 repetitively removes a
token with a delay which corresponds to the duration of an external memory access (see
parameterization in the following).
The QDMA copy operator is modelled by a subnet which produces a memory request to the
EDMA every CPU cycle. The delay of deterministic transition T5 corresponds to the CPU
cycle time. The places belonging to this subnet are COPY_Start and COPY_Submitted. The
token of the place COPY_Start is removed after the deterministic delay assigned to

Petri Net Based Modelling of Communication in Systems on Chip 53

transition T5. The places COPY_Submitted and TransferRequestQueue are then both marked
with a token. If no FFT request initiated by the CPU is pending this process recurs.

Fig. 11. DSPN of FFT / copy operator resource conflict scenario

The subnet representing the FFT operator executed on the CPU (FFT on CPU) is depicted in
the upper left of Fig. 11. If one of the places FFT_Ready2Read (connected to stochastic
transition T1) or FFT_Ready2Write (connected to stochastic transition T2) is marked the place
FFT_RequestPending is also marked by a token. Hereby, a part of the model is activated
which represents the queuing of the CPU requests and the assignment of the associated
memory access. Places belonging to this part are: FFT_RequestPending, BackingUpQueue,
BackupOfQueue, CopyingQueue, CopyOfQueue and FFT_RequestSubmitted. The place
CopyOfQueue is a copy of the place TransferRequestQueue. That means that these places are
marked identically. This copy proceeds by firstly removing every token in
TranferRequestQueue and transferring it via an immediate transition to the place
BackUpQueue. This procedure is controlled by the place BackingUpQueue. As soon as every
token is transferred the place CopyingQueue is marked. Now every token in the BackUpQueue
place is transferred simultaneously to TransferRequestQueue as well as to CopyOfQueue. Thus,
the original marking of TransferRequestQueue is restored and also copied in the CopyOfQueue
place. Now the FFT_RequestSubmitted is marked and an additional token is added to the
TransferRequestQueue representing a further CPU request. The transitions between
FFT_RequestSubmitted and FFT_Reading as well as FFT_Writing remove the token from the
first mentioned place as soon as the CPU request is granted. The deterministic transition T7

Petri Net: Theory and Applications 54

detracts tokens from CopyOfQueue in the same way T6 does in context with
TransferRequestQueue. The external memory access requested by the CPU is granted when
the CopyOfQueue is not marked by any token. The inhibiting arcs between CopyOfQueue and
the transitions connected to FFT_Reading and FFT_Writing ensure that only then the
duration of a read and respectively a write access is modelled with the aid of deterministic
transitions T3 and T4. During memory access initiated by the CPU no further request to the
memory is processed. This is modelled by the inhibiting arcs originating in FFT_Reading and
FFT_Writing (connected to T6). Thus, no further token from the TransferRequestQueue is
removed.
The required parameters of the deterministic and stochastic transitions T1-T7 of this DSPN
model are given in Table 1.
Here, it holds:

transitionspecificaoftimedelaytheoffunctiondensityyprobabilit:

memoryexternalthefrom/towordaread/writetorequiredtime:

operationFFTperaccessesread/writememoryofnumber:

operation)copyparallelwithoutlength,FFTondependent(

operationFFTblocksingleaofduration:

tp

T

N

T

i

ext.mem,Read/Write

Read/Write

FFT

Transition Transition type Formula and parameters

T1

stochastic
(negative

exponential
distributed)

t
1 etp 1

1 for t > 0 with

memextWriteWritememextReadReadFFT

Read
1

TNTNT

N

.,.,

T2

stochastic
(negative

exponential
distributed)

t
2 etp 2

2 for t > 0 with

memextWriteWritememextReadReadFFT

Write
2

TNTNT

N

.,.,

T3 deterministic s188.03 Readmemext.Read, NTt

T4 deterministic s088.04 Writememext.Write, NTt

T5 deterministic ns2MHz50011 Pr5 ocft

T6 deterministic ns5.7MHz13311 .6 memextft

T7 deterministic ns5.7MHz13311 .7 memextft

Table 1. Transition type and transition parameters of the DSPN model of Fig. 11

The required input parameters for the DSPN model like the duration of a single block FFT
without running the concurrent copy operator (TFFT) have been determined by

Petri Net Based Modelling of Communication in Systems on Chip 55

measurements performed on a DSP board. In order to verify the assumptions e.g. for

TRead,ext.mem and TWrite,ext.mem, several experiments with a variation of external factors have

been performed. For example, the influence of the refresh frequency has been studied. By
modification of the value within the so-called EMIF-SDTIM register the refresh frequency of
the external SDRAM could be set. Through different measurements it could be verified that
the resulting influence on the read and write times is below 0.3 % and therefore negligible.
For the final measurements a refresh frequency of 86.6 kHz (what is equal to a refresh
period of 1536 memory cycles and therefore an EMIF-SDTIM register value of 1536) has
been applied.

The influence of the parameter NRead will be explained exemplarily in the following. The

probability density function p1(t) which is a function of NRead characterizes the probability

for each possible delay of the stochastic transition T1. NRead directly influences the expected

delay respectively the firing probability of T1. Here, high values for NRead correspond to a

low firing probability respectively a large expected delay and vice versa.
The modelling results of the DSPN for the duration of the FFT are depicted in Fig. 12. Here,
the calculation time of the FFT operator determined by simulation with the DSPN model has
been plotted against different FFT lengths. In order to attain a quantitative evaluation of the
computed FFT's duration, reference measurements have been made again on a DSP board.
As can be seen from Fig. 12 the model yields a good estimation of the duration for the FFT
operator. The maximum error is less than 10 % (occurring in case of an FFT length of 1024
points).

DSPN model

measured values

measured values

(without parallel

copy operator)

0

2e3

4e3

6e3

8e3

10e3

12e3

14e3

16e3

64 128 256 512 1024

d
u
ra

ti
o
n
 o

f
F

F
T

 c
a
lc

u
la

ti
o
n
 [
µ

s
]

length of FFT [Samples]

Fig. 12. Comparison of measured values with DSPN (FFT vs. copy operator)

Another example based on this DSP was analyzed in order to consolidate the suitability of
using DSPNs for modelling in terms of on-chip communication: Now, the Viterbi
Coprocessor (VCP) and the copy operator compete for the critical external memory interface
resource. The VCP also communicates with the internal memory via the EDMA (commu-

Petri Net: Theory and Applications 56

nication path in Fig. 10). Arbitration is handled by a queuing mechanism configured here
in that way that only a single queue is utilized. This is accomplished by assigning the same
priority to all EDMA requestors i.e. memory access is granted to the VCP and the copy
operator according to a first-come-first-serve policy.
For this experiment the VCP has been configured in the following way. The constraint

length of the Viterbi decoder is 5, the number of states is 16 and the rate is 1/2. In the VCP

configuration inspected here, the VCP communicates with the memory by getting 16 data

packages of 32x32 bit in order to perform the decoding. Both, EDMA and VCP are clocked

with a quarter of the CPU clock frequency (fCPU = 500 MHz). The results are transferred

back to the memory with a package size of 32x32 bit. Performing two parallel operations

(Viterbi decoding and copy operation), the two operators have to wait for their

corresponding memory transfers. The EDMA mechanism of the C6416 always completes

one memory block transfer before starting a new one. Hence, there is a dependency of the

Viterbi decoding duration on the EDMA frame length. This situation has been modelled and

the results have been compared to the measured values as depicted in Fig. 13.

0

50

100

150

200

250

0 1000 2000 3000 4000

V
it
e
rb

i
d

e
c
o

d
in

g
 t

im
e
 [
µ

s
]

EDMA-Frame length [64 Bit words]

DSPN model

measured values

measured values

(without parallel

copy operator)

DSPN model

measured values

measured values

(without parallel

copy operator)

Fig. 13. Comparison of measured values with DSPN (Viterbi vs. copy operator)

Performing only the Viterbi decoding, there is of course no dependency on the EDMA frame

length. If a copy operation is carried out, the Viterbi decoding time significantly increases. In

detail not the decoding process itself is concerned but the duration of data package transfers

between VCP and internal memory. Again the maximum error is less than 10 %.

Petri Net Based Modelling of Communication in Systems on Chip 57

3.2 DSPN based switch fabric communication model

The second DSPN modelling example deals with communication via a switch fabric based

structure. The modelled scenario is a resource sharing conflict. This scenario has been

evaluated on an APEX based FPGA development board (Altera, 2007).

A multi processor network has been implemented on this development board by

instantiating Nios soft core processors on the corresponding FPGA. The synthesizable Nios

embedded processor is a general-purpose load/store RISC CPU that can be combined with

a number of peripherals, custom instructions, and hardware acceleration units to create

custom system-on-a-programmable-chip solutions. The processor can be configured to

provide either 16 or 32 bit wide registers and data paths to match given application

requirements. Both data width versions use 16 bit wide instruction words. Version 3.2 of the

Nios core typically features about 1100 logic elements (LEs) in 16 bit mode and up to 1700

LEs in 32 bit mode including hardware accelerators like hardware multipliers.

More detailed descriptions can be found in (Altera, 2001). A processor network consisting of

a general communication structure that interfaces various peripherals and devices to

various Nios cores can be constructed. The Avalon (Avalon, 2007) communication structure

is used to connect devices to the Nios cores. Avalon is a dynamic sizing communication

structure based on a switch fabric that allows devices with different data widths to be

connected with a minimal amount of interfacing logic. The corresponding interfaces of the

Avalon communication structure are based on a proprietary specification provided by

Altera (Avalon, 2007). In order to realize a processor network on this platform the so-called

SOPC (system on a programmable chip) Builder (SOPC, 2007) has been applied. SOPC is a

tool for composing heterogeneous architectures including the communication structure out

of library components such as CPUs, memory interfaces, peripherals and user-defined

blocks of logic. The SOPC Builder generates a single system module that instantiates a list of

user-specified components and interfaces incl. an automatically generated interconnect

logic. It allows to modify the design components, to add custom instructions and

peripherals to the Nios embedded processor and to configure the connection network.

The analyzed system is composed of two Nios soft cores which compete for access to an

external shared memory (SRAM) interface. Each core is also connected to a private memory

region containing the program code and to a serial interface which is used to ensure

communication with the host PC. The proprietary communication structure used to

interconnect all components of a Nios based system is called Avalon which is based on a

flexible crossbar architecture. The block diagram of this resource sharing experiment is

depicted in Fig. 14. Whenever multiple masters can access a slave resource, SOPC Builder

automatically inserts the required arbitration logic. In each cycle when contention for a

particular slave occurs, access is granted to one of the competing masters according to a

Round Robin arbitration scheme. For each slave, a share is assigned to all competing

masters. This share represents the fraction of contention cycles in which access is granted to

this corresponding master. Masters incur no arbitration delay for uncontested or acquired

cycles. Any masters that were denied access to the slave automatically retry during the next

cycle, possibly leading to subsequent contention cycles.

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

