
8

On the Use of Queueing Petri Nets for
Modeling and Performance Analysis of

Distributed Systems

Samuel Kounev and Alejandro Buchmann
Technische Universität Darmstadt

Germany

1. Introduction

Predictive performance models are used increasingly throughout the phases of the
software engineering lifecycle of distributed systems. However, as systems grow in size
and complexity, building models that accurately capture the different aspects of their
behavior becomes a more and more challenging task. The challenge stems from the
limited model expressiveness on the one hand and the limited scalability of model
analysis techniques on the other. This chapter presents a novel methodology for modeling
and performance analysis of distributed systems [Kounev, 2006]. The methodology is
based on queueing Petri nets (QPNs) which provide greater modeling power and
expressiveness than conventional modeling paradigms such as queueing networks and
generalized stochastic Petri nets. Using QPNs, one can integrate both hardware and
software aspects of system behavior into the same model. In addition to hardware
contention and scheduling strategies, QPNs make it easy to model software contention,
simultaneous resource possession, synchronization, blocking and asynchronous
processing. These aspects have significant impact on the performance of modern
distributed systems.
To avoid the problem of state space explosion, our methodology uses discrete event
simulation for model analysis. We propose an efficient and reliable method for simulation
of QPNs [Kounev & Buchmann, 2006]. As a validation of our approach, we present a case
study of a real-world distributed system, showing how our methodology is applied in a
step-by-step fashion to evaluate the system performance and scalability. The system
studied is a deployment of the industry-standard SPECjAppServer2004 benchmark. A
detailed model of the system and its workload is built and used to predict the system
performance for several deployment configurations and workload scenarios of interest.
Taking advantage of the expressive power of QPNs, our approach makes it possible to
model systems at a higher degree of accuracy providing a number of important benefits.
The rest of this chapter is organized as follows. In Section 2, we give a brief introduction
to QPNs. Following this, in Section 3, we present a method for quantitative analysis of
QPNs based on discrete event simulation. The latter enables us to analyze QPN models of
realistic size and complexity. In Section 4, we present our performance modeling
methodology for distributed systems. The methodology is introduced in a step-by-step

Source: Petri Net,Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.in

te
hw

eb
.c

om

Petri Net: Theory and Applications 150

fashion by considering a case study in which QPNs are used to model a real-life system
and analyze its performance and scalability. After the case study, some concluding
remarks are presented and the chapter is wrapped up in Section 5.

2. Queueing Petri nets

Queueing Petri Nets (QPNs) can be seen as a combination of a number of different
extensions to conventional Petri Nets (PNs) along several different dimensions. In this
section, we include some basic definitions and briefly discuss how QPNs have evolved. A
deeper and more detailed treatment of the subject can be found in [Bause, 1993].

2.1 Evolution of queueing Petri nets
An ordinary Petri net (also called place-transition net) is a bipartite directed graph
composed of places, drawn as circles, and transitions, drawn as bars. A formal definition
is given below [Bause and Kritzinger, 2002]:

Definition 1 An ordinary Petri Net (PN) is a 5-tuple where:
1. is a finite and non-empty set of places,
2. is a finite and non-empty set of transitions,
3. are called backward and forward incidence functions, respectively,
4. is called initial marking.

The incidence functions and specify the interconnections between places and

transitions. If , an arc leads from place p to transition t and place p is called an

input place of the transition. If , an arc leads from transition t to place p and

place p is called an output place of the transition. The incidence functions assign natural

numbers to arcs, which we call weights of the arcs. When each input place of transition t

contains at least as many tokens as the weight of the arc connecting it to t, the transition is

said to be enabled. An enabled transition may fire, in which case it destroys tokens from its

input places and creates tokens in its output places. The amounts of tokens destroyed and

created are specified by the arc weights. The initial arrangement of tokens in the net

(called marking) is given by the function , which specifies how many tokens are

contained in each place.
Different extensions to ordinary PNs have been developed in order to increase the
modeling convenience and/or the modeling power. Colored PNs (CPNs) introduced by K.
Jensen are one such extension [Jensen, 1981]. The latter allow a type (color) to be attached
to a token. A color function C assigns a set of colors to each place, specifying the types of
tokens that can reside in the place. In addition to introducing token colors, CPNs also
allow transitions to fire in different modes (transition colors). The color function C assigns
a set of modes to each transition and incidence functions are defined on a per mode basis.
A formal definition of a CPN follows [Bause & Kritzinger, 2002]:

Definition 2 A Colored PN (CPN) is a 6-tuple where:

1. is a finite and non-empty set of places,
2. is a finite and non-empty set of transitions,
3. C is a color function that assigns a finite and non-empty set of colors to each place and a

finite and non-empty set of modes to each transition.
4. and are the backward and forward incidence functions defined on , such that

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

151

1

5. is a function defined on P describing the initial marking such that
Other extensions to ordinary PNs allow temporal (timing) aspects to be integrated into
the net description [Bause & Kritzinger, 2002]. In particular, Stochastic PNs (SPNs) attach
an exponentially distributed firing delay to each transition, which specifies the time the
transition waits after being enabled before it fires. Generalized Stochastic PNs (GSPNs)
allow two types of transitions to be used: immediate and timed. Once enabled, immediate
transitions fire in zero time. If several immediate transitions are enabled at the same time,
the next transition to fire is chosen based on firing weights (probabilities) assigned to the
transitions. Timed transitions fire after a random exponentially distributed firing delay as
in the case of SPNs. The firing of immediate transitions always has priority over that of
timed transitions. A formal definition of a GSPN follows [Bause & Kritzinger, 2002]:
Definition 3 A Generalized SPN (GSPN) is a 4-tuple where:
1. is the underlying ordinary PN,
2. is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4. is an array whose entry is a rate of a negative exponential

distribution specifying the firing delay, if is a firing weight specifying the relative
firing frequency, if .

Combining CPNs and GSPNs leads to Colored GSPNs (CGSPNs) [Bause & Kritzinger,
2002]:
Definition 4 A Colored GSPN (CGSPN) is a 4-tuple where:
1. is the underlying CPN,
2. is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4. is an array with such that

is a rate of a negative exponential distribution specifying the firing delay due to
color c, if is a firing weight specifying the relative firing frequency due to

.
While CGSPNs have proven to be a very powerful modeling formalism, they do not
provide any means for direct representation of queueing disciplines. The attempts to
eliminate this disadvantage have led to the emergence of Queueing PNs (QPNs). The main
idea behind the QPN modeling paradigm was to add queueing and timing aspects to the
places of CGSPNs. This is done by allowing queues (service stations) to be integrated into
places of CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing
place and consists of two components, the queue and a depository for tokens which have
completed their service at the queue. This is depicted in Figure 1.
The behavior of the net is as follows: tokens, when fired into a queueing place by any of
its input transitions, are inserted into the queue according to the queue's scheduling
strategy. Tokens in the queue are not available for output transitions of the place. After
completion of its service, a token is immediately moved to the depository, where it
becomes available for output transitions of the place. This type of queueing place is called
timed queueing place. In addition to timed queueing places, QPNs also introduce
immediate queueing places, which allow pure scheduling aspects to be described. Tokens
in immediate queueing places can be viewed as being served immediately. Scheduling in

1 The subscript MS denotes multisets. C(p)ms denotes the set of all finite multisets of C(p).

Petri Net: Theory and Applications 152

Fig. 1. A queueing place and its shorthand notation.

such places has priority over scheduling/service in timed queueing places and firing of
timed transitions. The rest of the net behaves like a normal CGSPN. An enabled timed
transition fires after an exponentially distributed delay according to a race policy. Enabled
immediate transitions fire according to relative firing frequencies and their firing has
priority over that of timed transitions. A formal definition of a QPN follows:
Definition 5 A Queueing PN (QPN) is an 8-tuple
where:
1. is the underlying Colored PN
2. where

is the set of timed queueing places,

is the set of immediate queueing places, and

qi denotes the description of a queue2 taking all colors of C(pi) into consideration, if pi is

a queueing place or equals the keyword 'null', if pi is an ordinary place.

3. where

is the set of timed transitions,

is the set of immediate transitions, and

such that is interpreted as a rate of

a negative exponential distribution specifying the firing delay due to color c, if

or a firing weight specifying the relative firing frequency due to color .
Example 1 (QPN) Figure 2 shows an example of a QPN model of a central server system with
memory constraints based on [Bause and Kritzinger, 2002]. Place p2 represents several terminals,
where users start jobs (modeled with tokens of color ‘o’) after a certain thinking time. These jobs
request service at the CPU (represented by a G/C/l/PS queue, where C stands for Coxian
distribution) and two disk subsystems (represented by G/C/1/FCFS queues). To enter the system
each job has to allocate a certain amount of memory. The amount of memory needed by each job is

2 In the most general definition of QPNs, queues are defined in a very generic way
allowing the specification of arbitrarily complex scheduling strategies taking into account
the state of both the queue and the depository of the queueing place [Bause, 1993]. For the
purposes of this chapter, it is enough to use conventional queues as defined in queueing
network theory.

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

153

Fig. 2. A QPN model of a central server with memory constraints (reprinted from [Bause
& Kritzinger, 2002]).

assumed to be the same, which is represented by a token of color ‘m’ on place p1. Note that, for
readability, token cardinalities have been omitted from the arc weights in Figure 2, i.e., symbol o
stands for 1’o and symbol m for 1’m. According to Definition 5, we have the following:

 where

 is the underlying Colored PN as depicted in Figure 2,

, null,

, where , so that

all transition firings are equally likely.

2.2 Hierarchical queueing Petri nets
A major hurdle to the practical application of QPNs is the so-called largeness problem or
state-space explosion problem: as one increases the number of queues and tokens in a QPN,
the size of the model's state space grows exponentially and quickly exceeds the capacity
of today's computers. This imposes a limit on the size and complexity of the models that
are analytically tractable. An attempt to alleviate this problem was the introduction of
Hierarchically-Combined QPNs (HQPNs) [Bause et al., 1994]. The main idea is to allow
hierarchical model specification and then exploit the hierarchical structure for efficient
numerical analysis. This type of analysis is termed structured analysis and it allows models
to be solved that are about an order of magnitude larger than those analyzable with
conventional techniques.
HQPNs are a natural generalization of the original QPN formalism. In HQPNs, a
queueing place may contain a whole QPN instead of a single queue. Such a place is called
a subnet place and is depicted in Figure 3. A subnet place might contain an ordinary QPN
or again a HQPN allowing multiple levels of nesting. For simplicity, we restrict ourselves
to two-level hierarchies. We use the term High-Level QPN (HLQPN) to refer to the upper level
of the HQPN and the term Low-Level QPN (LLQPN) to refer to a subnet of the HLQPN.
Every subnet of a HQPN has a dedicated input and output place, which are ordinary
places of a CPN. Tokens being inserted into a subnet place after a transition firing are
added to the input place of the corresponding HQPN subnet. The semantics of the output

Petri Net: Theory and Applications 154

place of a subnet place is similar to the semantics of the depository of a queueing place:
tokens in the output place are available for output transitions of the subnet place. Tokens
contained in all other places of the HQPN subnet are not available for output transitions
of the subnet place. Every HQPN subnet also contains actual — population place used to
keep track of the total number of tokens fired into the subnet place.

Fig. 3. A subnet place and its shorthand notation.

3. Quantitative analysis of queueing Petri nets

In [Kounev & Buchmann, 2003], we showed that QPNs lend themselves very well to
modeling distributed e-business applications with software contention and demonstrated
how this can be exploited for performance prediction in the capacity planning process.
However, we also showed that modeling a realistic e-business application using QPNs
often leads to a model that is way too large to be analytically tractable. While, HQPNs and
structured analysis techniques alleviate this problem, they do not eliminate it. This is the
reason why QPNs have hardly been exploited in the past 15 years and very few, if any,
practical applications have been reported. The problem is that, until recently, available
tools and solution techniques for QPN models were all based on Markov chain analysis,
which suffers the well known state space explosion problem and limits the size of the models
that can be analyzed. This section3 shows how this problem can be approached by
exploiting discrete event simulation for model analysis. We present SimQPN - a Java-
based simulation tool for QPNs that can be used to analyze QPN models of realistic size
and complexity. While doing this, we propose a methodology for simulating QPN models
and analyzing the output data from simulation runs. SimQPN can be seen as an
implementation of this methodology.

3 Originally published in Performance Evaluation Journal, Vol. 63, No. 4-5, S. Kounev and
A. Buchmann, SimQPN-a tool and methodology for analyzing queueing Petri net models by
means of simulation, pp. 364-394. Copyright Elsevier (2006).

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

155

SimQPN is a discrete-event simulation engine specialized for QPNs. It is extremely
lightweight and has been implemented 100% in Java to provide maximum portability and
platform-independence. SimQPN simulates QPNs using a sequential algorithm based on
the event-scheduling approach for simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge of the
structure and behavior of QPNs to improve the efficiency of the simulation. Therefore,
SimQPN provides much better performance than a general purpose simulator would
provide, both in terms of the speed of simulation and the quality of output data provided.

3.1 SimQPN design and architecture
SimQPN has an object-oriented architecture. Every element (for e.g. place, transition or
token) of the simulated QPN is internally represented as object. Figure 4 outlines the main
simulation routine which drives each simulation run. As already mentioned, SimQPN's
internal simulation procedure is based on the event-scheduling approach [Law and
Kelton, 2000]. To explain what is understood by event here, we need to look at the way
the simulated QPN transitions from one state to another with respect to time. Since only
immediate transitions are supported, the only place in the QPN where time is involved is
inside the queues of queueing places. Tokens arriving at the queues wait until there is a
free server available and are then served. A token's service time distribution determines
how long its service continues. After a token has been served it is moved to the depository
of the queueing place, which may enable some transitions and trigger their firing. This
leads to a change in the marking of the QPN. Once all enabled transitions have fired, the
next change of the marking will occur after another service completion at some queue. In
this sense, it is the completion of service that initiates each change of the marking.
Therefore, we define event to be a completion of a token's service at a queue.
SimQPN uses an optimized algorithm for keeping track of the enabling status of
transitions. Generally, Petri net simulators need to check for enabled transitions after each
change in the marking caused by a transition firing. The exact way they do this, is one of
the major factors determining the efficiency of the simulation [Gaeta, 1996]. In
[Mortensen, 2001], it is shown how the locality principle of colored Petri nets can be
exploited to minimize the overhead of checking for enabled transitions. The locality
principle states that an occurring transition will only affect the marking on immediate
neighbor places, and hence the enabling status of a limited set of neighbor transitions.
SimQPN exploits an adaptation of this principle to QPNs, taking into account that tokens
deposited into queueing places do not become available for output transitions
immediately upon arrival and hence cannot affect the enabling status of the latter. Since
checking the enabling status of a transition is a computationally expensive operation, our
goal is to make sure that this is done as seldom as possible, i.e., only when there is a real
possibility that the status has changed. This translates into the following two cases when
the enabling status of a transition needs to be checked:
1. After a change in the token population of an ordinary input place of the transition,

as a result of firing of the same or another transition. Three subcases are
distinguished:

(a) Some tokens were added. In this case, it is checked for newly enabled modes by
considering all modes that are currently marked as disabled and that require
tokens of the respective colors added.

Petri Net: Theory and Applications 156

(b) Some tokens were removed. In this case, it is checked for newly disabled modes by
considering all modes that are currently marked as enabled and that require
tokens of the respective colors removed.

(c) Some tokens were added and at the same time others were removed. In this
case, both of the checks above are performed.

2. After a service completion event at a queueing input place of the transition. The
service completion event results in adding a token to the depository of the queueing
place. Therefore, in this case, it is only checked for newly enabled modes by considering all
modes that are currently marked as disabled and that require tokens of the respective
color added.

Fig. 4. SimQPN's main simulation routine

SimQPN maintains a global list of currently enabled transitions and for each transition a
list of currently enabled modes. The latter are initialized at the beginning of the
simulation by checking the enabling status of all transitions. As the simulation progresses,
a transition's enabling status is checked only in the above mentioned cases. This reduces
CPU costs and speeds up the simulation substantially.

3.2 Output data analysis
SimQPN supports two methods for estimation of the steady state mean residence times of

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

157

tokens inside the queues, places and depositories of the QPN. These are the well-known
method of independent replications (IR) (in its variant referred to as replication/deletion approach) and
the classical method of non-overlapping batch means (NOBM). We refer the reader to [Pawlikowski,
1990; Law and Kelton, 2000; Alexopoulos and Seila, 2001] for an introduction to these
methods. Both of them can be used to provide point and interval estimates of the steady
state mean token residence time. In cases where one wants to apply a more sophisticated
technique for steady state analysis (for example ASAP [Steiger et al, 2005]), SimQPN can
be configured to output observed token residence times to files (mode 4), which can then
be used as input to external analysis tools. Both the replication/deletion approach and the
method of non-overlapping batch means have different variants. Below we discuss some
details on the way they were implemented in SimQPN.
Replication/Deletion Approach
We briefly discuss the way the replication/ deletion approach is implemented in
SimQPN. Suppose that we want to estimate the steady state mean residence time v of
tokens of given color at a given place, queue or depository. As discussed in [Alexopoulos
and Seila, 2001], in the replication/deletion approach multiple replications of the
simulation are made and the average residence times observed are used to derive steady
state estimates. Specifically, suppose that n replications of the simulation are made, each
of them generating m residence time observations Yi1,Yi2,• • •,Yim. We delete l
observations from the beginning of each set to eliminate the initialization bias. The
number of observations deleted is determined through the method of Welch
[Heidelberger and Welch, 1983]. Let Xi be given by

(1)

and

(2)

Then the s are independent and identically distributed (IID) random variables with
is an approximately unbiased point estimator for v. According to

the central limit theorem [Trivedi, 2002], if m is large, the s are going to be
approximately normally distributed and therefore the random variable

will have t distribution with (n — 1) degrees of freedom (df) [Hogg and Craig, 1995] and
an approximate 100) percent confidence interval for v is then given by

(3)

where is the upper critical point for the t distribution with (n — 1)
df [Pawlikowski, 1990; Trivedi, 2002].
Method of Non-Overlapping Batch Means
Unlike the replication/deletion approach, the method of non-overlapping batch means
seeks to obtain independent observations from a single simulation run rather than from

Petri Net: Theory and Applications 158

multiple replications. Thus, it has the advantage that it must go through the warm-up
period only once and is therefore less sensitive to bias from the initial transient. Suppose
that we make a simulation run of length m and then divide the resulting observations
Y1,Y2,• • •,Ym into n batches of length q. Assume that and let Xi be the sample
(or batch) mean of the q observations in the ith batch, i.e.

(4)

The mean v is estimated by and it can be shown (see for example

[Law and Kelton, 2000]) that an approximate 100) percent confidence interval for v
is given by substituting Xi(q) for Xi in Equations (2) and (3) above.
SimQPN offers two different stopping criteria for determining how long the simulation
should continue. In the first one, the simulation continues until the QPN has been simu-
lated for a user-specified amount of model time (fixed-sample-size procedure). In the second one, the
length of the simulation is increased sequentially from one checkpoint to the next, until
enough data has been collected to provide estimates of residence times with user-
specified precision (sequential procedure). The precision is defined as an upper bound for the
confidence interval half length. It can be specified either as an absolute value (absolute
precision) or as a percentage relative to the mean residence time (relative precision). The
sequential approach for controlling the length of the simulation is usually regarded as the
only efficient way for ensuring representativeness of the samples of collected observations
[Law and Kelton, 1982; Heidelberger and Welch, 1983; Pawlikowski et al, 1998]. Therefore,
hereafter we assume that the sequential procedure is used.
The main problem with the method of non-overlapping batch means is to select the batch
size q, such that successive batch means are approximately uncorrelated. Different
approaches have been proposed in the literature to address this problem (see for example
[Chien, 1994; Alexopoulos & Goldsman, 2004; Pawlikowski, 1990]). In SimQPN, we start
with a user-configurable initial batch size (by default 200) and then increase it
sequentially until the correlation between successive batch means becomes negligible.
Thus, the simulation goes through two stages: the first sequentially testing for an
acceptable batch size and the second sequentially testing for adequate precision of the
residence time estimates (see Figure 5). The parameters n and p, specifying how often
checkpoints are made, can be configured by the user.
We use the jackknife estimators [Miller, 1974; Pawlikowski, 1990] of the autocorrelation coefficients

to measure the correlation between batch means. A jackknife estimator of the
autocorrelation coefficient of lag k for the sequence of batch means

of size q is calculated as follows:

(5)

where is the ordinary estimator of the autocorrelation coefficient of lag k,
calculated from the formula [Pawlikowski, 1990]:

(6)

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

159

and are calculated like , except that is the estimator over
all n batch means, whereas are estimators over the first and the
second half of the analyzed sequence of n batch means, respectively.

Fig. 5. SimQPN's batch means procedure

We use the algorithm proposed in [Pawlikowski, 1990] to determine when to consider the
sequence of batch means for approximately uncorrelated: a given batch size is accepted to
yield approximately uncorrelated batch means if all autocorrelation coefficients of lag k

are statistically negligible at a given significance
level . To get an acceptable overall significance level we assume that

(7)

As recommended in [Pawlikowski, 1990], in order to get reasonable estimators of the
autocorrelation coefficients, we apply the above batch means correlation test only after at
least 100 batch means have been recorded (i.e., n >= 100). In fact, by default n is set to 200
in SimQPN. Also to ensure approximate normality of the batch means, the initial batch

Petri Net: Theory and Applications 160

size (i.e., the minimal batch size) is configured to 200.
SimQPN Validation
We have validated the algorithms implemented in SimQPN by subjecting them to a

rigorous experimental analysis and evaluating the quality of point and interval estimates

[Kounev and Buchmann, 2006]. In particular, the variability of point estimates provided

by SimQPN and the coverage of confidence intervals reported were quantified. A number

of different models of realistic size and complexity were considered. Our analysis showed

that data reported by SimQPN is very accurate and stable. Even for residence time, the

metric with highest variation, the standard deviation of point estimates did not exceed

2.5% of the mean value. In all cases, the estimated coverage of confidence intervals was

less than 2% below the nominal value (higher than 88% for 90% confidence intervals and

higher than 93% for 95% confidence intervals).

4. Performance modeling and analysis of distributed systems

Queueing Petri nets are a powerful formalism that can be exploited for modeling

distributed systems and analyzing their performance and scalability. However, building

models that accurately capture the different aspects of system behavior is a very

challenging task when applied to realistic systems. In this section4, we present a case

study in which QPNs are used to model a real-life system and analyze its performance

and scalability. In parallel to this, we present a practical performance modeling

methodology for distributed systems which helps to construct models that accurately

reflect the performance and scalability characteristics of the latter. Our methodology

builds on the methodologies proposed by Menascé, Almeida & Dowdy in [Menascé et al,

1994; 1999; Menascé & Almeida, 1998; 2000; Menascé et al, 2004], however, a major

difference is that our methodology is based on QPN models as opposed to conventional

queueing network models and it is specialized for distributed component-based systems.

The system studied is a deployment of the industry-standard SPECjAppServer2004

benchmark. A detailed model of the system and its workload is built in a step-by-step

fashion. The model is validated and used to predict the system performance for several

deployment configurations and workload scenarios of interest. In each case, the model is

analyzed by means of simulation using SimQPN. In order to validate the approach, the

model predictions are compared against measurements on the real system. In addition to

CPU and I/O contention, it is demonstrated how some more complex aspects of system

behavior, such as thread contention and asynchronous processing, can be modeled.

4.1 The SPECjAppServer2004 benchmark

SPECjAppServer2004 is a new industry-standard benchmark for measuring the

performance and scalability of J2EE hardware and software platforms. It implements a

representative workload that exercises all major services of the J2EE platform in a

4 Portions reprinted, with permission, from IEEE Transactions on Software Engineering,
Vol. 32, No. 7, Performance Modeling and Evaluation of Distributed Component-Based Systems using
Queueing Petri Nets, pp. 486-502. (c) [2006] IEEE.

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

161

complete end-to-end application scenario. The SPECjAppServer2004 workload has been

specifically modeled after an automobile manufacturer whose main customers are

automobile dealers [SPEC, 2004]. Dealers use a Web-based user interface to browse an

automobile catalogue, purchase automobiles, sell automobiles and track their inventory.

As depicted in Figure 6, SPECjAppServer2004's business model comprises five domains:

customer domain dealing with customer orders and interactions, dealer domain offering

Web-based interface to the services in the customer domain, manufacturing domain

performing "just in time" manufacturing operations, supplier domain handling

interactions with external suppliers, and corporate domain managing all dealer, supplier

and automobile information.

Fig. 6. SPECjAppServer2004 business model.

The customer domain hosts an order entry application that provides some typical online

ordering functionality. Orders for more than 100 automobiles are called large orders. The

dealer domain hosts a Web application (called dealer application) that provides a Web-based

interface to the services in the customer domain. The manufacturing domain hosts a

manufacturing application that models the activity of production lines in an automobile

manufacturing plant. There are two types of production lines, planned lines and large

order lines. Planned lines run on schedule and produce a predefined number of

automobiles. Large order lines run only when a large order is received in the customer

domain. The unit of work in the manufacturing domain is a work order. Each work order

moves along three virtual stations, which represent distinct operations in the

manufacturing flow. In order to simulate activity at the stations, the manufacturing

application waits for a designated time (333 ms) at each station. Once the work order is

complete, it is marked as completed and inventory is updated. When the inventory of

parts gets depleted, suppliers need to be located and purchase orders need to be sent out.

This is done by contacting the supplier domain, responsible for interactions with external

suppliers.

Petri Net: Theory and Applications 162

4.2 Motivation
Consider an automobile manufacturing company that wants to use e-business technology
to support its order-inventory, supply-chain and manufacturing operations. The company
has decided to employ the J2EE platform and is in the process of developing a J2EE
application. Let us assume that the first prototype of this application is
SPECjAppServer2004 and that the company is testing the application in the deployment
environment depicted in Figure 7. This environment uses a cluster of WebLogic servers
(WLS) as a J2EE container and an Oracle database server (DBS) for persistence. We
assume that all servers in the WebLogic cluster are identical and that initially only two
servers are available. The company is now about to conduct a performance modeling
study of their system in order to evaluate its performance and scalability. In the following,
we present a practical performance modeling methodology in a step-by-step fashion
showing how each step is applied to the considered scenario.

Fig. 7. Deployment environment.

4.3 Step 1: Establish performance modeling objectives
Let us assume that under peak conditions, 152 concurrent dealer clients (100 Browse, 26
Purchase and 26 Manage) are expected and the number of planned production lines could
increase up to 100. Moreover, the workload is forecast to grow by 300% over the next 5
years. The average dealer think time is 5 seconds, i.e., the time a dealer "thinks" after
receiving a response from the system before sending a new request. On average 10
percent of all orders placed are assumed to be large orders. The average delay after
completing a work order at a planned production line before starting a new one is 10
seconds. Note that all of these numbers were chosen arbitrarily in order to make our
motivating scenario more specific. Based on these assumptions, the following concrete
goals are established:

Predict the performance of the system under peak operating conditions with 6
WebLogic servers. What would be the average throughput and response time of
dealer transactions and work orders? What would be the CPU utilization of the
servers?

Determine if 6 WebLogic servers would be enough to ensure that the average
response times of business transactions do not exceed half a second. Predict how
much system performance would improve if the load balancer is upgraded with

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

163

a slightly faster CPU.

Study the scalability of the system as the workload increases and additional
WebLogic servers are added. Determine which servers would be most utilized
under heavy load and investigate if they are potential bottlenecks.

4.4 Step 2: Characterize the system in its current state
As shown in Figure 7, the system we are considering has a two-tier hardware architecture
consisting of an application server tier and a database server tier. Incoming requests are
evenly distributed across the nodes in the application server cluster. For HTTP requests,
this is achieved using a software load balancer running on a dedicated machine. For RMI
requests, this is done transparently by the EJB client stubs. Table 1 describes the system
components in terms of the hardware and software platforms used. This information is
enough for the purposes of our study.

Table 1. System component details

4.5 Step 3: Characterize the workload
Identify the Basic Components of the Workload
As discussed in Section 4.1, the SPECjAppServer2004 benchmark application is made up
of three major subapplications - the dealer application, the order entry application and the
manufacturing application. The dealer and order entry applications process business
transactions of three types - Browse, Purchase and Manage. Hereafter, the latter are
referred to as dealer transactions. The manufacturing application, on the other hand, is
running production lines which process work orders. Thus, the SPECjAppServer2004
workload is composed of two basic components: dealer transactions and work orders.
Partition Basic Components into Workload Classes
There are three types of dealer transactions and since we are interested in their individual
behavior we model them using separate workload classes. Work orders, on the other
hand, can be divided into two types based on whether they are processed on a planned or
large order line. Planned lines run on schedule and complete a predefined number of
work orders per unit of time. In contrast, large order lines run only when a large order
arrives in the customer domain. Each large order generates a separate work order
processed asynchronously on a dedicated large order line. Thus, work orders originating
from large orders are different from ordinary work orders in terms of the way their
processing is initiated and in terms of their resource usage. To distinguish between the
two types of work orders, they are modeled using two separate workload classes:

Petri Net: Theory and Applications 164

WorkOrder (for ordinary work orders) and LargeOrder (for work orders generated by large
orders). Altogether, we end up with five workload classes: Browse, Purchase, Manage,
WorkOrder and LargeOrder.
Identify the System Components and Resources Used by Each Workload Class
The following hardware resources are used by dealer transactions: CPU of the load
balancer machine (LB-C), CPU of an application server in the cluster (AS-C), CPUs of the
database server (DB-C), disk drive of the database server (DB-D), Local Area Network
(LAN). WorkOrders and LargeOrders use the same resources with exception of the first
one, since their processing is driven through direct RMI calls to the EJBs in the WebLogic
cluster, bypassing the HTTP load balancer. As far as software resources are concerned, all
workload classes use the WebLogic servers and the Oracle DBMS. Dealer transactions
additionally use the HTTP load balancer, which is running on a dedicated machine.

Fig. 8. Execution graphs for Purchase, Manage, Browse, WorkOrder and LargeOrder.

Describe the Inter-Component Interactions and Processing Steps for Each Workload
Class
All of the five workload classes identified represent composite transactions. Figure 8 uses
execution graphs to illustrate the subtransactions (processing steps) of transactions from
the different workload classes. For every subtransaction (represented as a rectangle)
multiple system components are involved and they interact to perform the respective
operation. The inter-component interactions and flow of control during the processing of
subtransactions are depicted in Figure 9 by means of client/server interaction diagrams.
Directed arcs show the flow of control from one node to the next during execution.
Depending on the path followed, different execution scenarios are possible. For example,
for dealer subtransactions two scenarios are possible depending on whether the database
needs to be accessed or not. Dealer subtransactions that do not access the database (e.g.,
goToHomePage) follow the path 1 2 3 4, whereas dealer subtransactions that access

On the Use of Queueing Petri Nets for Modeling and
Performance Analysis of Distributed Systems

165

the database (e.g., showlnven-tory) follow the path 1 2 3 5 6 7. Since most
dealer subtransactions do access the database, for simplicity, it is assumed that all of
them follow the second path.
Characterize Workload Classes in Terms of Their Service Demands and Workload
Intensity
Since the system is available for testing, the service demands can be determined by
injecting load into the system and taking measurements. Note that it is enough to have a
single WebLogic server available in order to do this, i.e., it is not required to have a
realistic production like testing environment. For each of the five workload classes a
separate experiment was conducted injecting transactions from the respective class and
measuring the utilization of the various system resources. CPU utilization was measured
using the vmstat utility on Linux. The disk utilization of the database server was
measured with the help of the Oracle 9i Intelligent Agent, which proved to have
negligible overhead. Service demands were derived using the Service Demand Law
[Menasce and Almeida, 1998]. Table 2 reports the service demand parameters for the five
workload classes. It was decided to ignore the network, since all communications were
taking place over 1 GBit LAN and communication times were negligible.

Fig. 9. Client/server interaction diagrams for Subtransactions.

Table 2. Workload service demand parameters

In order to keep the workload model simple, it is assumed that the total service demand
of a transaction at a given system resource is spread evenly over its subtransactions. Thus,
the service demand of a subtransaction can be estimated by dividing the measured total
service demand of the transaction by the number of subtransactions it has. It is also
assumed that all service demands are exponentially distributed. Whether these
simplifications are acceptable will become clear later when the model is validated. In case
the estimation proves to be too inaccurate, one might have to come back and refine the

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

