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1. Introduction 

Predictive performance models are used increasingly throughout the phases of the 
software engineering lifecycle of distributed systems. However, as systems grow in size 
and complexity, building models that accurately capture the different aspects of their 
behavior becomes a more and more challenging task. The challenge stems from the 
limited model expressiveness on the one hand and the limited scalability of model 
analysis techniques on the other. This chapter presents a novel methodology for modeling 
and performance analysis of distributed systems [Kounev, 2006]. The methodology is 
based on queueing Petri nets (QPNs) which provide greater modeling power and 
expressiveness than conventional modeling paradigms such as queueing networks and 
generalized stochastic Petri nets. Using QPNs, one can integrate both hardware and 
software aspects of system behavior into the same model. In addition to hardware 
contention and scheduling strategies, QPNs make it easy to model software contention, 
simultaneous resource possession, synchronization, blocking and asynchronous 
processing. These aspects have significant impact on the performance of modern 
distributed systems. 
To avoid the problem of state space explosion, our methodology uses discrete event 
simulation for model analysis. We propose an efficient and reliable method for simulation 
of QPNs [Kounev & Buchmann, 2006]. As a validation of our approach, we present a case 
study of a real-world distributed system, showing how our methodology is applied in a 
step-by-step fashion to evaluate the system performance and scalability. The system 
studied is a deployment of the industry-standard SPECjAppServer2004 benchmark. A 
detailed model of the system and its workload is built and used to predict the system 
performance for several deployment configurations and workload scenarios of interest. 
Taking advantage of the expressive power of QPNs, our approach makes it possible to 
model systems at a higher degree of accuracy providing a number of important benefits. 
The rest of this chapter is organized as follows. In Section 2, we give a brief introduction 
to QPNs. Following this, in Section 3, we present a method for quantitative analysis of 
QPNs based on discrete event simulation. The latter enables us to analyze QPN models of 
realistic size and complexity. In Section 4, we present our performance modeling 
methodology for distributed systems. The methodology is introduced in a step-by-step 
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fashion by considering a case study in which QPNs are used to model a real-life system 
and analyze its performance and scalability. After the case study, some concluding 
remarks are presented and the chapter is wrapped up in Section 5. 

2. Queueing Petri nets 

Queueing Petri Nets (QPNs) can be seen as a combination of a number of different 
extensions to conventional Petri Nets (PNs) along several different dimensions. In this 
section, we include some basic definitions and briefly discuss how QPNs have evolved. A 
deeper and more detailed treatment of the subject can be found in [Bause, 1993]. 

2.1 Evolution of queueing Petri nets 
An ordinary Petri net (also called place-transition net) is a bipartite directed graph 
composed of places, drawn as circles, and transitions, drawn as bars. A formal definition 
is given below [Bause and Kritzinger, 2002]: 

Definition 1 An ordinary Petri Net (PN) is a 5-tuple  where:
1. is a finite and non-empty set of places,
2.  is a finite and non-empty set of transitions, 
3. are called backward and forward incidence functions, respectively, 
4. is called initial marking.

The incidence functions and  specify the interconnections between places and 

transitions. If , an arc leads from place p to transition t and place p is called an 

input place of the transition. If , an arc leads from transition t to place p and 

place p is called an output place of the transition. The incidence functions assign natural 

numbers to arcs, which we call weights of the arcs. When each input place of transition t

contains at least as many tokens as the weight of the arc connecting it to t, the transition is 

said to be enabled. An enabled transition may fire, in which case it destroys tokens from its 

input places and creates tokens in its output places. The amounts of tokens destroyed and 

created are specified by the arc weights. The initial arrangement of tokens in the net 

(called marking) is given by the function , which specifies how many tokens are 

contained in each place. 
Different extensions to ordinary PNs have been developed in order to increase the 
modeling convenience and/or the modeling power. Colored PNs (CPNs) introduced by K. 
Jensen are one such extension [Jensen, 1981]. The latter allow a type (color) to be attached 
to a token. A color function C assigns a set of colors to each place, specifying the types of 
tokens that can reside in the place. In addition to introducing token colors, CPNs also 
allow transitions to fire in different modes (transition colors). The color function C assigns 
a set of modes to each transition and incidence functions are defined on a per mode basis. 
A formal definition of a CPN follows [Bause & Kritzinger, 2002]: 

Definition 2 A Colored PN (CPN) is a 6-tuple  where:

1.  is a finite and non-empty set of places, 
2.  is a finite and non-empty set of transitions,
3. C is a color function that assigns a finite and non-empty set of colors to each place and a 

finite and non-empty set of modes to each transition. 
4.  and are the backward and forward incidence functions defined on , such that 
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5. is a function defined on P describing the initial marking such that 
Other extensions to ordinary PNs allow temporal (timing) aspects to be integrated into 
the net description [Bause & Kritzinger, 2002]. In particular, Stochastic PNs (SPNs) attach 
an exponentially distributed firing delay to each transition, which specifies the time the 
transition waits after being enabled before it fires. Generalized Stochastic PNs (GSPNs) 
allow two types of transitions to be used: immediate and timed. Once enabled, immediate 
transitions fire in zero time. If several immediate transitions are enabled at the same time, 
the next transition to fire is chosen based on firing weights (probabilities) assigned to the 
transitions. Timed transitions fire after a random exponentially distributed firing delay as 
in the case of SPNs. The firing of immediate transitions always has priority over that of 
timed transitions. A formal definition of a GSPN follows [Bause & Kritzinger, 2002]: 
Definition 3 A Generalized SPN (GSPN) is a 4-tuple where:
1.  is the underlying ordinary PN, 
2.  is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4. is an array whose entry  is a rate of a negative exponential 

distribution specifying the firing delay, if is a firing weight specifying the relative 
firing frequency, if .

Combining CPNs and GSPNs leads to Colored GSPNs (CGSPNs) [Bause & Kritzinger, 
2002]:
Definition 4 A Colored GSPN (CGSPN) is a 4-tuple  where: 
1.  is the underlying CPN, 
2. is the set of timed transitions, ,
3. is the set of immediate transitions, ,
4.  is an array with  such that 

is a rate of a negative exponential distribution specifying the  firing  delay due to 
color c, if is a firing weight specifying the relative firing frequency due to 

.
While CGSPNs have proven to be a very powerful modeling formalism, they do not 
provide any means for direct representation of queueing disciplines. The attempts to 
eliminate this disadvantage have led to the emergence of Queueing PNs (QPNs). The main 
idea behind the QPN modeling paradigm was to add queueing and timing aspects to the 
places of CGSPNs. This is done by allowing queues (service stations) to be integrated into 
places of CGSPNs. A place of a CGSPN that has an integrated queue is called a queueing 
place and consists of two components, the queue and a depository for tokens which have 
completed their service at the queue. This is depicted in Figure 1. 
The behavior of the net is as follows: tokens, when fired into a queueing place by any of 
its input transitions, are inserted into the queue according to the queue's scheduling 
strategy. Tokens in the queue are not available for output transitions of the place. After 
completion of its service, a token is immediately moved to the depository, where it 
becomes available for output transitions of the place. This type of queueing place is called 
timed queueing place. In addition to timed queueing places, QPNs also introduce 
immediate queueing places, which allow pure scheduling aspects to be described. Tokens 
in immediate queueing places can be viewed as being served immediately. Scheduling in 

                                                                
1 The subscript MS denotes multisets. C(p)ms denotes the set of all finite multisets of C(p).
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Fig. 1. A queueing place and its shorthand notation. 

such places has priority over scheduling/service in timed queueing places and firing of 
timed transitions. The rest of the net behaves like a normal CGSPN. An enabled timed 
transition fires after an exponentially distributed delay according to a race policy. Enabled 
immediate transitions fire according to relative firing frequencies and their firing has 
priority over that of timed transitions. A formal definition of a QPN follows: 
Definition 5 A Queueing PN (QPN) is an 8-tuple 
where: 
1. is the underlying  Colored PN 
2. where

is the set of timed queueing places,

is the set of immediate queueing places, and

qi denotes the description of a queue2 taking all colors of C(pi) into consideration, if pi is 

a queueing place  or equals the keyword  'null',  if pi is an ordinary place. 

3. where

is the set of timed transitions,

is the set of immediate transitions, and

such that is interpreted as a rate of

a negative exponential distribution specifying the firing delay due to color c, if

or a firing weight specifying the relative firing frequency due to color .
Example 1 (QPN) Figure 2 shows an example of a QPN model of a central server system with 
memory constraints based on [Bause and Kritzinger, 2002]. Place p2 represents several terminals, 
where users start jobs (modeled with tokens of color ‘o’) after a certain thinking time. These jobs 
request service at the CPU (represented by a G/C/l/PS queue, where C stands for Coxian 
distribution) and two disk subsystems (represented by G/C/1/FCFS queues). To enter the system 
each job has to allocate a certain amount of memory. The amount of memory needed by each job is 

                                                                
2 In the most general definition of QPNs, queues are defined in a very generic way 
allowing the specification of arbitrarily complex scheduling strategies taking into account 
the state of both the queue and the depository of the queueing place [Bause, 1993]. For the 
purposes of this chapter, it is enough to use conventional queues as defined in queueing 
network theory.
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Fig. 2. A QPN model of a central server with memory constraints (reprinted from [Bause 
& Kritzinger, 2002]). 

assumed to be the same, which is represented by a token of color ‘m’ on place p1. Note that, for 
readability, token cardinalities have been omitted from the arc weights in Figure 2, i.e., symbol o 
stands for 1’o and symbol m for 1’m. According to Definition 5, we have the following: 

 where 

 is the underlying Colored PN as depicted in Figure 2, 

, null, 

, where , so that 

all transition firings are equally likely.

2.2 Hierarchical queueing Petri nets 
A major hurdle to the practical application of QPNs is the so-called largeness problem or
state-space explosion problem: as one increases the number of queues and tokens in a QPN, 
the size of the model's state space grows exponentially and quickly exceeds the capacity 
of today's computers. This imposes a limit on the size and complexity of the models that 
are analytically tractable. An attempt to alleviate this problem was the introduction of 
Hierarchically-Combined QPNs (HQPNs) [Bause et al., 1994]. The main idea is to allow 
hierarchical model specification and then exploit the hierarchical structure for efficient 
numerical analysis. This type of analysis is termed structured analysis and it allows models 
to be solved that are about an order of magnitude larger than those analyzable with 
conventional techniques. 
HQPNs are a natural generalization of the original QPN formalism. In HQPNs, a 
queueing place may contain a whole QPN instead of a single queue. Such a place is called 
a subnet place and is depicted in Figure 3. A subnet place might contain an ordinary QPN 
or again a HQPN allowing multiple levels of nesting. For simplicity, we restrict ourselves 
to two-level hierarchies. We use the term High-Level QPN (HLQPN) to refer to the upper level 
of the HQPN and the term Low-Level QPN (LLQPN) to refer to a subnet of the HLQPN. 
Every subnet of a HQPN has a dedicated input and output place, which are ordinary 
places of a CPN. Tokens being inserted into a subnet place after a transition firing are 
added to the input place of the corresponding HQPN subnet. The semantics of the output 
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place of a subnet place is similar to the semantics of the depository of a queueing place: 
tokens in the output place are available for output transitions of the subnet place. Tokens 
contained in all other places of the HQPN subnet are not available for output transitions 
of the subnet place. Every HQPN subnet also contains actual — population place used to 
keep track of the total number of tokens fired into the subnet place. 

Fig. 3. A subnet place and its shorthand notation. 

3. Quantitative analysis of queueing Petri nets 

In [Kounev & Buchmann, 2003], we showed that QPNs lend themselves very well to 
modeling distributed e-business applications with software contention and demonstrated 
how this can be exploited for performance prediction in the capacity planning process. 
However, we also showed that modeling a realistic e-business application using QPNs 
often leads to a model that is way too large to be analytically tractable. While, HQPNs and 
structured analysis techniques alleviate this problem, they do not eliminate it. This is the 
reason why QPNs have hardly been exploited in the past 15 years and very few, if any, 
practical applications have been reported. The problem is that, until recently, available 
tools and solution techniques for QPN models were all based on Markov chain analysis, 
which suffers the well known state space explosion problem and limits the size of the models 
that can be analyzed. This section3 shows how this problem can be approached by 
exploiting discrete event simulation for model analysis. We present SimQPN - a Java-
based simulation tool for QPNs that can be used to analyze QPN models of realistic size 
and complexity. While doing this, we propose a methodology for simulating QPN models 
and analyzing the output data from simulation runs. SimQPN can be seen as an 
implementation of this methodology. 

                                                                
3 Originally published in Performance Evaluation Journal, Vol. 63, No. 4-5, S. Kounev and               
A. Buchmann, SimQPN-a tool and methodology for analyzing queueing Petri net models by 
means of simulation, pp. 364-394. Copyright Elsevier (2006).
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SimQPN is a discrete-event simulation engine specialized for QPNs. It is extremely 
lightweight and has been implemented 100% in Java to provide maximum portability and 
platform-independence. SimQPN simulates QPNs using a sequential algorithm based on 
the event-scheduling approach for simulation modeling. Being specialized for QPNs, it 
simulates QPN models directly and has been designed to exploit the knowledge of the 
structure and behavior of QPNs to improve the efficiency of the simulation. Therefore, 
SimQPN provides much better performance than a general purpose simulator would 
provide, both in terms of the speed of simulation and the quality of output data provided. 

3.1 SimQPN design and architecture 
SimQPN has an object-oriented architecture. Every element (for e.g. place, transition or 
token) of the simulated QPN is internally represented as object. Figure 4 outlines the main 
simulation routine which drives each simulation run. As already mentioned, SimQPN's 
internal simulation procedure is based on the event-scheduling approach [Law and 
Kelton, 2000]. To explain what is understood by event here, we need to look at the way 
the simulated QPN transitions from one state to another with respect to time. Since only 
immediate transitions are supported, the only place in the QPN where time is involved is 
inside the queues of queueing places. Tokens arriving at the queues wait until there is a 
free server available and are then served. A token's service time distribution determines 
how long its service continues. After a token has been served it is moved to the depository 
of the queueing place, which may enable some transitions and trigger their firing. This 
leads to a change in the marking of the QPN. Once all enabled transitions have fired, the 
next change of the marking will occur after another service completion at some queue. In 
this sense, it is the completion of service that initiates each change of the marking. 
Therefore, we define event to be a completion of a token's service at a queue. 
SimQPN uses an optimized algorithm for keeping track of the enabling status of 
transitions. Generally, Petri net simulators need to check for enabled transitions after each 
change in the marking caused by a transition firing. The exact way they do this, is one of 
the major factors determining the efficiency of the simulation [Gaeta, 1996]. In 
[Mortensen, 2001], it is shown how the locality principle of colored Petri nets can be 
exploited to minimize the overhead of checking for enabled transitions. The locality 
principle states that an occurring transition will only affect the marking on immediate 
neighbor places, and hence the enabling status of a limited set of neighbor transitions. 
SimQPN exploits an adaptation of this principle to QPNs, taking into account that tokens 
deposited into queueing places do not become available for output transitions 
immediately upon arrival and hence cannot affect the enabling status of the latter. Since 
checking the enabling status of a transition is a computationally expensive operation, our 
goal is to make sure that this is done as seldom as possible, i.e., only when there is a real 
possibility that the status has changed. This translates into the following two cases when 
the enabling status of a transition needs to be checked: 
1. After a change in the token population of an ordinary input place of the transition, 

as a result of firing of the same or another transition. Three subcases are 
distinguished: 

(a) Some tokens were added. In this case, it is checked for newly enabled modes by
considering all modes that are currently marked as disabled and that require 
tokens of the respective colors added. 
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(b) Some tokens were removed. In this case, it is checked for newly disabled modes by
considering all modes that are currently marked as enabled and that require 
tokens of the respective colors removed. 

(c) Some tokens were added and at the same time others were removed. In this 
case, both of the checks above are performed. 

2. After a service completion event at a queueing input place of the transition. The 
service completion event results in adding a token to the depository of the queueing 
place. Therefore, in this case, it is only checked for newly enabled modes by considering all 
modes that are currently marked as disabled and that require tokens of the respective 
color added. 

Fig. 4. SimQPN's main simulation routine 

SimQPN maintains a global list of currently enabled transitions and for each transition a 
list of currently enabled modes. The latter are initialized at the beginning of the 
simulation by checking the enabling status of all transitions. As the simulation progresses, 
a transition's enabling status is checked only in the above mentioned cases. This reduces 
CPU costs and speeds up the simulation substantially. 

3.2 Output data analysis 
SimQPN supports two methods for estimation of the steady state mean residence times of 
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tokens inside the queues, places and depositories of the QPN. These are the well-known 
method of independent replications (IR) (in its variant referred to as replication/deletion approach) and 
the classical method of non-overlapping batch means (NOBM). We refer the reader to [Pawlikowski, 
1990; Law and Kelton, 2000; Alexopoulos and Seila, 2001] for an introduction to these 
methods. Both of them can be used to provide point and interval estimates of the steady 
state mean token residence time. In cases where one wants to apply a more sophisticated 
technique for steady state analysis (for example ASAP [Steiger et al, 2005]), SimQPN can 
be configured to output observed token residence times to files (mode 4), which can then 
be used as input to external analysis tools. Both the replication/deletion approach and the 
method of non-overlapping batch means have different variants. Below we discuss some 
details on the way they were implemented in SimQPN. 
Replication/Deletion Approach 
We briefly discuss the way the replication/ deletion approach is implemented in 
SimQPN. Suppose that we want to estimate the steady state mean residence time v of
tokens of given color at a given place, queue or depository. As discussed in [Alexopoulos 
and Seila, 2001], in the replication/deletion approach multiple replications of the 
simulation are made and the average residence times observed are used to derive steady 
state estimates. Specifically, suppose that n replications of the simulation are made, each 
of them generating m residence time observations Yi1,Yi2,• • •,Yim. We delete l
observations from the beginning of each set to eliminate the initialization bias. The 
number of observations deleted is determined through the method of Welch 
[Heidelberger and Welch, 1983]. Let Xi be given by 

(1)

and

(2)

Then the s are independent and identically distributed (IID) random variables with 
is an approximately unbiased point estimator for v. According to 

the central limit theorem [Trivedi, 2002], if m is large, the s are going to be 
approximately normally distributed and therefore the random variable 

will have t distribution with (n — 1) degrees of freedom (df) [Hogg and Craig, 1995] and 
an approximate 100 ) percent confidence interval for v is then given by 

(3)

where  is the upper  critical point for the t distribution with (n — 1)
df [Pawlikowski, 1990; Trivedi, 2002]. 
Method of Non-Overlapping Batch Means 
Unlike the replication/deletion approach, the method of non-overlapping batch means 
seeks to obtain independent observations from a single simulation run rather than from 
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multiple replications. Thus, it has the advantage that it must go through the warm-up 
period only once and is therefore less sensitive to bias from the initial transient. Suppose 
that we make a simulation run of length m and then divide the resulting observations 
Y1,Y2,• • •,Ym into n batches of length q. Assume that and let Xi be the sample 
(or batch) mean of the q observations in the ith batch, i.e. 

(4)

The mean v is estimated by and it can be shown (see for example 

[Law and Kelton, 2000]) that an approximate 100 ) percent confidence interval for v
is given by substituting Xi(q) for Xi in Equations (2) and (3) above. 
SimQPN offers two different stopping criteria for determining how long the simulation 
should continue. In the first one, the simulation continues until the QPN has been simu-
lated for a user-specified amount of model time (fixed-sample-size procedure). In the second one, the 
length of the simulation is increased sequentially from one checkpoint to the next, until 
enough data has been collected to provide estimates of residence times with user-
specified precision (sequential procedure). The precision is defined as an upper bound for the 
confidence interval half length. It can be specified either as an absolute value (absolute 
precision) or as a percentage relative to the mean residence time (relative precision). The 
sequential approach for controlling the length of the simulation is usually regarded as the 
only efficient way for ensuring representativeness of the samples of collected observations 
[Law and Kelton, 1982; Heidelberger and Welch, 1983; Pawlikowski et al, 1998]. Therefore, 
hereafter we assume that the sequential procedure is used. 
The main problem with the method of non-overlapping batch means is to select the batch 
size q, such that successive batch means are approximately uncorrelated. Different 
approaches have been proposed in the literature to address this problem (see for example 
[Chien, 1994; Alexopoulos & Goldsman, 2004; Pawlikowski, 1990]). In SimQPN, we start 
with a user-configurable initial batch size (by default 200) and then increase it 
sequentially until the correlation between successive batch means becomes negligible. 
Thus, the simulation goes through two stages: the first sequentially testing for an 
acceptable batch size and the second sequentially testing for adequate precision of the 
residence time estimates (see Figure 5). The parameters n and p, specifying how often 
checkpoints are made, can be configured by the user. 
We use the jackknife estimators [Miller, 1974; Pawlikowski, 1990] of the autocorrelation coefficients 

to measure the correlation between batch means. A jackknife estimator of the 
autocorrelation coefficient of lag k for the sequence of batch means 

of size q is calculated as follows: 

(5)

where is the ordinary estimator of the autocorrelation coefficient of lag k, 
calculated from the formula [Pawlikowski, 1990]: 

(6)
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and are calculated like , except that is the estimator over 
all n batch means, whereas  are estimators over the first and the 
second half of the analyzed sequence of n batch means, respectively.

Fig. 5. SimQPN's batch means procedure 

We use the algorithm proposed in [Pawlikowski, 1990] to determine when to consider the 
sequence of batch means for approximately uncorrelated: a given batch size is accepted to 
yield approximately uncorrelated batch means if all autocorrelation coefficients of lag k

are statistically negligible at a given significance 
level . To get an acceptable overall significance level we assume that 

(7)

As recommended in [Pawlikowski, 1990], in order to get reasonable estimators of the 
autocorrelation coefficients, we apply the above batch means correlation test only after at 
least 100 batch means have been recorded (i.e., n >= 100). In fact, by default n is set to 200 
in SimQPN. Also to ensure approximate normality of the batch means, the initial batch 
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size (i.e., the minimal batch size) is configured to 200. 
SimQPN Validation 
We have validated the algorithms implemented in SimQPN by subjecting them to a 

rigorous experimental analysis and evaluating the quality of point and interval estimates 

[Kounev and Buchmann, 2006]. In particular, the variability of point estimates provided 

by SimQPN and the coverage of confidence intervals reported were quantified. A number 

of different models of realistic size and complexity were considered. Our analysis showed 

that data reported by SimQPN is very accurate and stable. Even for residence time, the 

metric with highest variation, the standard deviation of point estimates did not exceed 

2.5% of the mean value. In all cases, the estimated coverage of confidence intervals was 

less than 2% below the nominal value (higher than 88% for 90% confidence intervals and 

higher than 93% for 95% confidence intervals). 

4. Performance modeling and analysis of distributed systems 

Queueing Petri nets are a powerful formalism that can be exploited for modeling 

distributed systems and analyzing their performance and scalability. However, building 

models that accurately capture the different aspects of system behavior is a very 

challenging task when applied to realistic systems. In this section4, we present a case 

study in which QPNs are used to model a real-life system and analyze its performance 

and scalability. In parallel to this, we present a practical performance modeling 

methodology for distributed systems which helps to construct models that accurately 

reflect the performance and scalability characteristics of the latter. Our methodology 

builds on the methodologies proposed by Menascé, Almeida & Dowdy in [Menascé et al, 

1994; 1999; Menascé & Almeida, 1998; 2000; Menascé et al, 2004], however, a major 

difference is that our methodology is based on QPN models as opposed to conventional 

queueing network models and it is specialized for distributed component-based systems. 

The system studied is a deployment of the industry-standard SPECjAppServer2004 

benchmark. A detailed model of the system and its workload is built in a step-by-step 

fashion. The model is validated and used to predict the system performance for several 

deployment configurations and workload scenarios of interest. In each case, the model is 

analyzed by means of simulation using SimQPN. In order to validate the approach, the 

model predictions are compared against measurements on the real system. In addition to 

CPU and I/O contention, it is demonstrated how some more complex aspects of system 

behavior, such as thread contention and asynchronous processing, can be modeled. 

4.1 The SPECjAppServer2004 benchmark 

SPECjAppServer2004 is a new industry-standard benchmark for measuring the 

performance and scalability of J2EE hardware and software platforms. It implements a 

representative workload that exercises all major services of the J2EE platform in a 

                                                                
4 Portions reprinted, with permission, from IEEE Transactions on Software Engineering, 
Vol. 32, No. 7, Performance Modeling and Evaluation of Distributed Component-Based Systems using 
Queueing Petri Nets, pp. 486-502. (c) [2006] IEEE.
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complete end-to-end application scenario. The SPECjAppServer2004 workload has been 

specifically modeled after an automobile manufacturer whose main customers are 

automobile dealers [SPEC, 2004]. Dealers use a Web-based user interface to browse an 

automobile catalogue, purchase automobiles, sell automobiles and track their inventory. 

As depicted in Figure 6, SPECjAppServer2004's business model comprises five domains: 

customer domain dealing with customer orders and interactions, dealer domain offering 

Web-based interface to the services in the customer domain, manufacturing domain 

performing "just in time" manufacturing operations, supplier domain handling 

interactions with external suppliers, and corporate domain managing all dealer, supplier 

and automobile information. 

Fig. 6. SPECjAppServer2004 business model. 

The customer domain hosts an order entry application that provides some typical online 

ordering functionality. Orders for more than 100 automobiles are called large orders. The 

dealer domain hosts a Web application (called dealer application) that provides a Web-based 

interface to the services in the customer domain. The manufacturing domain hosts a 

manufacturing application that models the activity of production lines in an automobile 

manufacturing plant. There are two types of production lines, planned lines and large 

order lines. Planned lines run on schedule and produce a predefined number of 

automobiles. Large order lines run only when a large order is received in the customer 

domain. The unit of work in the manufacturing domain is a work order. Each work order 

moves along three virtual stations, which represent distinct operations in the 

manufacturing flow. In order to simulate activity at the stations, the manufacturing 

application waits for a designated time (333 ms) at each station. Once the work order is 

complete, it is marked as completed and inventory is updated. When the inventory of 

parts gets depleted, suppliers need to be located and purchase orders need to be sent out. 

This is done by contacting the supplier domain, responsible for interactions with external 

suppliers. 
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4.2 Motivation 
Consider an automobile manufacturing company that wants to use e-business technology 
to support its order-inventory, supply-chain and manufacturing operations. The company 
has decided to employ the J2EE platform and is in the process of developing a J2EE 
application. Let us assume that the first prototype of this application is 
SPECjAppServer2004 and that the company is testing the application in the deployment 
environment depicted in Figure 7. This environment uses a cluster of WebLogic servers 
(WLS) as a J2EE container and an Oracle database server (DBS) for persistence. We 
assume that all servers in the WebLogic cluster are identical and that initially only two 
servers are available. The company is now about to conduct a performance modeling 
study of their system in order to evaluate its performance and scalability. In the following, 
we present a practical performance modeling methodology in a step-by-step fashion 
showing how each step is applied to the considered scenario.  

Fig. 7. Deployment environment. 

4.3 Step 1: Establish performance modeling objectives 
Let us assume that under peak conditions, 152 concurrent dealer clients (100 Browse, 26 
Purchase and 26 Manage) are expected and the number of planned production lines could 
increase up to 100. Moreover, the workload is forecast to grow by 300% over the next 5 
years. The average dealer think time is 5 seconds, i.e., the time a dealer "thinks" after 
receiving a response from the system before sending a new request. On average 10 
percent of all orders placed are assumed to be large orders. The average delay after 
completing a work order at a planned production line before starting a new one is 10 
seconds. Note that all of these numbers were chosen arbitrarily in order to make our 
motivating scenario more specific. Based on these assumptions, the following concrete 
goals are established: 

Predict the performance of the system under peak operating conditions with 6 
WebLogic servers. What would be the average throughput and response time of 
dealer transactions and work orders? What would be the CPU utilization of the 
servers?

Determine if 6 WebLogic servers would be enough to ensure that the average 
response times of business transactions do not exceed half a second. Predict how 
much system performance would improve if the load balancer is upgraded with 
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a slightly faster CPU. 

Study the scalability of the system as the workload increases and additional 
WebLogic servers are added. Determine which servers would be most utilized 
under heavy load and investigate if they are potential bottlenecks. 

4.4 Step 2: Characterize the system in its current state 
As shown in Figure 7, the system we are considering has a two-tier hardware architecture 
consisting of an application server tier and a database server tier. Incoming requests are 
evenly distributed across the nodes in the application server cluster. For HTTP requests, 
this is achieved using a software load balancer running on a dedicated machine. For RMI 
requests, this is done transparently by the EJB client stubs. Table 1 describes the system 
components in terms of the hardware and software platforms used. This information is 
enough for the purposes of our study. 

Table 1. System component details 

4.5 Step 3: Characterize the workload  
Identify the Basic Components of the Workload 
As discussed in Section 4.1, the SPECjAppServer2004 benchmark application is made up 
of three major subapplications - the dealer application, the order entry application and the 
manufacturing application. The dealer and order entry applications process business 
transactions of three types - Browse, Purchase and Manage. Hereafter, the latter are 
referred to as dealer transactions. The manufacturing application, on the other hand, is 
running production lines which process work orders. Thus, the SPECjAppServer2004 
workload is composed of two basic components: dealer transactions and work orders. 
Partition Basic Components into Workload Classes 
There are three types of dealer transactions and since we are interested in their individual 
behavior we model them using separate workload classes. Work orders, on the other 
hand, can be divided into two types based on whether they are processed on a planned or 
large order line. Planned lines run on schedule and complete a predefined number of 
work orders per unit of time. In contrast, large order lines run only when a large order 
arrives in the customer domain. Each large order generates a separate work order 
processed asynchronously on a dedicated large order line. Thus, work orders originating 
from large orders are different from ordinary work orders in terms of the way their 
processing is initiated and in terms of their resource usage. To distinguish between the 
two types of work orders, they are modeled using two separate workload classes: 
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WorkOrder (for ordinary work orders) and LargeOrder (for work orders generated by large 
orders). Altogether, we end up with five workload classes: Browse, Purchase, Manage, 
WorkOrder and LargeOrder. 
Identify the System Components and Resources Used by Each Workload Class
The following hardware resources are used by dealer transactions: CPU of the load 
balancer machine (LB-C), CPU of an application server in the cluster (AS-C), CPUs of the 
database server (DB-C), disk drive of the database server (DB-D), Local Area Network 
(LAN). WorkOrders and LargeOrders use the same resources with exception of the first 
one, since their processing is driven through direct RMI calls to the EJBs in the WebLogic 
cluster, bypassing the HTTP load balancer. As far as software resources are concerned, all 
workload classes use the WebLogic servers and the Oracle DBMS. Dealer transactions 
additionally use the HTTP load balancer, which is running on a dedicated machine. 

Fig. 8. Execution graphs for Purchase, Manage, Browse, WorkOrder and LargeOrder. 

Describe the Inter-Component Interactions and Processing Steps for Each Workload 
Class
All of the five workload classes identified represent composite transactions. Figure 8 uses 
execution graphs to illustrate the subtransactions (processing steps) of transactions from 
the different workload classes. For every subtransaction (represented as a rectangle) 
multiple system components are involved and they interact to perform the respective 
operation. The inter-component interactions and flow of control during the processing of 
subtransactions are depicted in Figure 9 by means of client/server interaction diagrams. 
Directed arcs show the flow of control from one node to the next during execution. 
Depending on the path followed, different execution scenarios are possible. For example, 
for dealer subtransactions two scenarios are possible depending on whether the database 
needs to be accessed or not. Dealer subtransactions that do not access the database (e.g., 
goToHomePage) follow the path 1 2 3 4, whereas dealer subtransactions that access 



On the Use of Queueing Petri Nets for Modeling and  
Performance Analysis of Distributed Systems 

165

the database (e.g., showlnven-tory) follow the path 1 2 3 5 6 7. Since most 
dealer subtransactions do access the database, for simplicity, it is assumed that all of 
them follow the second path. 
Characterize Workload Classes in Terms of Their Service Demands and Workload 
Intensity
Since the system is available for testing, the service demands can be determined by 
injecting load into the system and taking measurements. Note that it is enough to have a 
single WebLogic server available in order to do this, i.e., it is not required to have a 
realistic production like testing environment. For each of the five workload classes a 
separate experiment was conducted injecting transactions from the respective class and 
measuring the utilization of the various system resources. CPU utilization was measured 
using the vmstat utility on Linux. The disk utilization of the database server was 
measured with the help of the Oracle 9i Intelligent Agent, which proved to have 
negligible overhead. Service demands were derived using the Service Demand Law 
[Menasce and Almeida, 1998]. Table 2 reports the service demand parameters for the five 
workload classes. It was decided to ignore the network, since all communications were 
taking place over 1 GBit LAN and communication times were negligible. 

Fig. 9. Client/server interaction diagrams for Subtransactions. 

Table 2. Workload service demand parameters 

In order to keep the workload model simple, it is assumed that the total service demand 
of a transaction at a given system resource is spread evenly over its subtransactions. Thus, 
the service demand of a subtransaction can be estimated by dividing the measured total 
service demand of the transaction by the number of subtransactions it has. It is also 
assumed that all service demands are exponentially distributed. Whether these 
simplifications are acceptable will become clear later when the model is validated. In case 
the estimation proves to be too inaccurate, one might have to come back and refine the 
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