
7 

Multidimensional Texture Analysis for 
Unsupervised Pattern Classification 

K. Hammouche1  and J.-G. Postaire2 

1Université Mouloud Mammeri, Département d’Automatique Tizi Ouzou 
2Université des Sciences et Technologies de Lille – 

 LAGIS 59655 VILLENEUVE D’ASCQ Cedex 
1Algeria 
2 France 

1. Introduction 

Clustering techniques aim to regroup a set of multidimensional observations, represented as 

data points scattered through a N-dimensional data space, into groups, or clusters, 

according to their similarities or dissimilarities. Each point corresponds to a vector of 

observed features measured on the objects to be classified. Among the different approaches 

that have been developed for cluster analysis [Jain et al., 1999; Theodoridis & Koutroumbas, 

2003; Tran et al., 2005; Xu & Wunsch, 2005; Filipone et al., 2008], we consider the statistical 

approach [Devijver & Kittler, 1983]. In this framework, many clustering procedures have 

been proposed, based on the analysis of the underlying probability density function (pdf). 

The high density of data points within the clusters gives rise to modal regions 

corresponding to the modes of the pdf that are separated by valleys of low densities 

[Parzen, 1962]. 

Independently from cluster analysis, a large amount of research effort is devoted to image 

segmentation. Starting from an unstructured collection of pixels, we generally agree about 
the different regions constituting an image due to our visual grouping capabilities. The most 
important factors that lead to this perceptual grouping are similarity, proximity and 
connectedness. More precisely, segmentation can be considered as a partitioning scheme 
such that: 

- Every pixel of the image must belong to a region, 

- The regions must be composed of contiguous pixels, 

- The pixels constituting a region must share a given property of similarity. 

These three conditions can be easily adapted to the clustering process. Indeed, each data 

point must be assigned to a cluster, and the clusters must be composed of neighbouring data 

points since the points assigned to the same cluster must share some properties of similarity. 

Considering this analogy between segmentation and clustering, several image segmentation 

procedures based on the gray-level function analysis have been successfully adapted to 

detect the modes or to seek the valleys of the pdf for pattern classification purpose [Botte-

Lecocq et al., 2007]. 

In this framework, the underlying pdf is generally estimated on a regular discrete array of 

sampling points [Postaire & Vasseur, 1982]. The idea of using a pdf estimation for mode O
pe
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seeking is not new [Parzen, 1962] and in very simple situations, the modes can be detected 

by thresholding the pdf at an appropriate level, using a procedure similar to image 

binarization [Weszka, 1978]. A “mode”  label is associated with each point where the 

underlying pdf is above the threshold. Otherwise, the corresponding point is assigned a 

“valley”  label. 

However, in practical situations, it can be difficult, or even impossible, to select an 

appropriate global threshold to detect the significant modes. A solution for improving this 

simple scheme is to consider the spatial relationships among the sampling points where the 

underlying pdf is estimated, rather than making a decision at each point independently of 

the decisions at other points. Probabilistic labeling, or relaxation, is a formalism through 

which object labels are iteratively updated according to a compatibility measure defined 

among the neighboring labels. This approach, which has been successfully applied to image 

processing [Dankner, 1981], has been adapted to cluster analysis to reduce local ambiguities 

in the mode/ valley discrimination process [Touzani & Postaire, 1988]. 

The segmentation of an image can also be considered as a problem of edge detection [Davis, 

1975]. Similarly, in the clustering context, a mode boundary can be localized at important 

local changes in the pdf. It can be detected by means of generalized gradient operators 

designed to perform a discrete spatial differentiation of the estimated pdf [Touzani & 

Postaire, 1989]. Although these spatial operators enhance substantially the discontinuities 

that delineate the modes, a relaxation labeling process, similar to the one used for 

thresholding, can be necessary for mode boundary extraction [Postaire & Touzani, 1989]. 

Beside procedures based on the concepts of similarity and discontinuity, mathematical 

morphology has proven to be a valuable approach for image segmentation. This theory has 

been adapted to cluster analysis by considering the sets of multidimensional observations as 

mathematical discrete binary sets [Postaire et al., 1993]. Binary erosions and dilations of 

these discrete sets eliminate irrelevant details in the shapes of the clusters without geometric 

distortions [Botte-Lecocq & Postaire, 1991]. Multivalue morphological operations, such as 

numerical erosions, dilations and homotopic thinnings have also been defined for 

processing multidimensional pdf using the umbra concept [Sbihi & Postaire, 1995]. With 

these operators, the clusters are delineated by means of the watershed transform 

[Benslimane et al., 1996]. 

Modeling spatial relationships between pixels by means of Markov random fields has 

proved to be relevant to the image segmentation problem [Manjunath & Chellappa, 1991; 

Panjwani & Healey, 1995]. The Markovian approach has been adapted to the mode detection 

problem in cluster analysis. The hidden field containing the “mode”  and the “valley”  labels 

is derived from the observable field representing the data set by means of the estimation-

maximisation algorithm combined with the maximum a posteriori mode criterion [Sbihi et 

al., 2000; Moussa et al., 2008] . 

All the above-mentioned clustering methods tend to generalize bi-dimensional procedures 

initially developed for image processing purpose. But, even though texture properties have 

been intensively used to solve image segmentation problems, they have not been extended 

to pattern classification problems. Following the main idea of adapting image processing 

techniques to cluster analysis, the objective of this chapter is to show how the texture 

concept can be used in the framework of clustering. The basic idea behind this new 

approach is the characterization of the local spatial distribution of the data points in the 

multidimensional data space in terms of textures [Hammouche et al., 2006]. 
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Similarly to texture segmentation, the approach consists first in selecting a set of texture 

features that characterize the local multidimensional texture around each sampling point of 

the data space. These multidimensional textures, which reflect the spatial arrangement of 

the data points, are then classified on the basis of these features. The data points with similar 

local textures are aggregated in the data space to define compact connected components of 

homogeneous textures. Some of these multidimensional domains of uniform texture are 

finally considered as the cores of the clusters. 

The chapter is organized as follows. We first describe the discretization process of the input 

data that yields an array of sampling points well conditioned for multidimensional texture 

analysis (Section 2). We then introduce the multidimensional texture concept itself, as an 

alternative to describe the spatial distribution of observations through the data space 

(Section 3). Such textures are locally characterized by a number of parameters that can be 

extracted from co-occurrence matrices or from sum and difference histograms, defined as 

straightforward generalizations of the tools used in textured image processing. 

The mode detection strategy is based on the assumption that the texture is homogeneous 

within the modes of the data distribution, and different from the texture in the valleys 

between the clusters. Hence, similarly to segmentation of textured images, the sampling 

points where the local underlying texture is evaluated are classified into different texture 

classes in order to partition the data space into domains with homogeneous texture 

properties (Section 4). The determination of the set of the most discriminating texture 

parameters among all those that are available is based on a performance-dependent feature 

selection scheme (Section 5). 

Many examples are presented to demonstrate the efficiency of this clustering strategy based 

on multidimensional texture analysis (Section 6). As the computational load could to be 

prohibitive for data sets of high dimensionality and large size, a specific attention is devoted 

to the implementation of the clustering procedure in order to improve the computation 

speed (Section 7). 

2. Discretization of the data set 

In order to adapt texture analysis tools to clustering, it is necessary to introduce a discrete 

array of sampling points [Postaire & Vasseur, 1982]. Let us consider Q observations 
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Let 
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,1 ,2 , ,
[ , , ..., , ..., ] , 1, 2, ..., ,T

q q q q n q N
X x x x x q Q= = be the Q  new observations in the 

normalized data space. Each axis of this space is partitioned into S  exclusive and adjacent 

intervals of unit width. This discretization defines an array of 
N

S  hypercubes of unit side 

length. The centers of these hypercubes constitute a regular lattice of sampling points 
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denoted 
r
P , 1,2,..., N

r S= . The unit hypercubic cell centered at point 
r
P  is denoted ( )

r
H P . 

It is defined by its coordinates 
,1 ,2 , ,
, ,..., ,...,

r r r n r N
h h h h , which are the integer parts of the 

coordinates of its center 
r
P . The qth normalized observation 

'

q
X  falls into the unit cell 

( )
r

H P  of coordinates 
'

, ,
int ( ) , 1, 2, ...,

r n q n
h x n N= = , where 

'

,
int ( )

q n
x  denotes the integer 

part of the real number
'

,q n
x . 

Taking the integer parts of the coordinates of all the available normalized observations 

yields the list of the non-empty cells whose coordinates are defined on the set 
N

Z
+

. If 
several observations fall into the same cell, this one appears many times in the list of non-

empty cells. It is easy to determine the number [ ]( )
r

q H P  of observations that fall into the 

hypercubic cell of center 
r
P  by counting the number of times the cell ( )

r
H P  appears in that 

list. As this number can be considered as proportional to a rough estimate of the local 

density of observations, it will be referred as the “density”  [ ]( ) ( )
r r

W P q H P=  associated to 

the point 
r
P   in what follows. Subsequently, the distribution of the data points can be 

approximated on the discrete multi-dimensional array of points 
r
P  . The result of this 

sampling procedure is a multidimensional regular array of discrete integers in the range [ ]0,G , where G is the maximum value of ( ) , 1,2,..., N

r
W P r S=  , that is well conditioned 

for multidimensional texture analysis. Fig. 1 shows a raw data set of bi-dimensional 
observations (cf. Fig 1(a)) and the corresponding array of discrete densities obtained for  

S =25 (cf. Fig 1(b)). 

3. Multidimensional texture characterization 

To illustrate the basic ideas behind the proposed approach, let us consider the bi- and three-

dimensional uniform random distributions of data points of Fig. 2. A close visual attention 

to this figure shows that the arrangement of the observations appears to be more or less 

coarse and more or less sparse, depending on the density of data points in the bi- or the 

three-dimensional data spaces. Thanks to the capacities of perception of the human visual 

system, it is easy to distinguish various random textures associated with these distributions. 

These considerations led to consider the texture as a property of the data points distribution. 

In this chapter, it is assumed that the texture tends to be uniform within the core associated 

with each cluster, so that these cores can be searched as domains of the data space 

characterized by a relative homogeneity of suitable texture descriptors. 

When considering the examples of Fig. 2, it is clear that structural models based on 

primitive placement rules cannot satisfactorily describe the texture of the distribution of the 

data points. Therefore, one is led to consider the textural properties in terms of statistical 

models and the main difficulty is the selection of a set of relevant features to describe the 

properties of the spatial distribution of the data. A number of textural parameters have been 

proposed in the image processing literature, derived from autoregressive models [Comer & 

Delp, 1999], Markov random fields models [Cross & Jain, 1983], Gabor filters [Jain & 

Farrokhnia, 1991], wavelet coefficients [Porter & Canagarajah, 1996], fractal geometry [Keller 

& Crownover, 1989] and spatial gray-level dependence analysis [Haralick, 1978]. We have 

chosen to generalize the concepts of co-occurrence matrices and of sum and difference 
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histograms to multidimensional data spaces since a large variety of features can be derived 

from such texture models that combine spatial information with statistical properties [Reed 

& Hans du Buf, 1993]. 

3.1 Co-occurrence matrices 

In the framework of image processing, an element T(i,j)  of a co-occurrence matrix is a 

count of the number of times a pixel 
' ,1 ,2

[ , ]T
r r r
P x x= with gray-level  i   is positioned with 

respect to a pixel 
',1 ',2

[ , ]T
r r r
P x x=  with gray level  j   such as: 

'

cos

sin
r r

d
P P

d

θ
θ

⎡ ⎤= + ⎢ ⎥⎣ ⎦  

where  d   is the distance in the direction  θ   between the two pixels. 

A similar co-occurrence matrix is determined to characterize the local distribution of the 

data points in a given neighborhood of each sampling point 
r
P  where the “density”  value is 

not null. We use a classical hypercubic neighborhood. As directionality and periodicity are 

obviously irrelevant characteristics of the data point distributions, it is not necessary to 

determine co-occurrence matrices for different values of the distance d  and the orientation θ  between the pairs of sampling points taken into account. Hence, only one co-occurrence 

matrix is determined for each sampling point. Furthermore, the use of a small neighborhood 

reduces the computational load, while yielding local information on the distribution of the 

data points. The co-occurrences T(i,j)  of any given pair ( ),i j  of “density”  values are 

simply counted for all the couples of adjacent sampling points encountered within a 

hypercubic neighborhood of side length equal to 3, without constraints on their orientations. 

Two sampling points are considered as adjacent if they are the centers of two hypercubes 

that have at least one point in common. As the “densities”  are quantized on a set of 1G +  

discrete values, the co-occurrence matrices have 1G +  rows and 1G +  columns. 

As in [Haralick et al., 1973], several local texture features can be extracted from these specific 

co-occurrence matrices (COM) which accumulate information on the data distribution in the 

neighborhood of each sampling point (cf. Table 1). These features are expected to 

characterize such textural properties as roughness, smoothness, homogeneity, randomness 

or coarseness rather than properties such as directionality or periodicity, since each co-

occurrence matrix summarizes the number of occurrences of pairs of histogram values for 

all possible pairs of adjacent sampling points lying within a given neighborhood, without 

constraints on their orientations. 

Fig. 3 shows the spatial variations of the 7 first features of table 1 for the data set of Fig.1 that is 

composed of observations drawn from three normal distributions of equal weights. The values 

of the features 
4
f ,

6
f  and 

7
f decrease from the centers of the clusters to their peripheries. 

On the contrary, the values of 
1
f ,

2
f , 3

f  and
5
f  increase from the centers to the peripheries 

of the clusters. Although these seven texture features reflect the local distribution of the data 

points, they can be more or less correlated and more or less relevant for the detection of the 

cluster cores. Furthermore, it would be unrealistic to believe that the performance of the 

cluster core detection scheme will grow with an increasing number of features. 
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3.2 Sum and difference histograms 
In the image processing framework, statistical texture features can also be extracted from gray-

level sum and difference histograms [Unser, 1986]. These histograms are associated to couples 

of pixels 
r
P  and 

'r
P , separated by specific distances d  along a set of directions θ . For each 

couple ( ),d θ , the value ( )h iΔ  of the ith bin of a difference histogram indicates the number of 

times such pixels have a gray-level difference ( )'r r
g g−  equal to i , where 

r
g  and 

'r
g  are the 

gray-levels at 
r
P  and 

'r
P , respectively. Similarly, the value ( )h j∑  of the jth bin of a sum 

histogram represents the number of occurrences of pairs of pixels 
r
P  and 

'r
P  which, in the 

same geometrical configuration, have a sum of gray-levels ( )'r r
g g+  equal to j .  

This gray-level sum and difference histogram concept can be easily extended to summarize 
the distribution of the sums and differences of densities between pairs of sampling points. In 

this case, the ith bin ( )h iΔ  of the density difference histogram is equal to the number of times 

two sampling points 
r
P  and 

'r
P  of the discretized data space, separated by the displacement 

defined by the couple ( ),d θ , have a difference between their densities equal to i , i.e. 

( ) ( )'r r
W P W P i− = , ,...,i G G= − . Similarly, the jth bin ( )h j∑  of the density sum histogram 

is equal to the number of times two sampling points 
r
P  and 

'r
P  have the sum of their 

densities equal to j , i.e. ( ) ( )'r r
W P W P j+ = , 0,..., 2j G= .  As the values of the densities 

are quantized on a set of integers in the range [0,G ], the sum and difference histograms 

have ( )2 1G +  bins each. 

As when using the co-occurrence matrices, the multidimensional texture of the spatial 

distribution of the observations is analyzed locally around each sampling point Pr  of the 

data space where the density is not null. For this purpose, the density sum and difference 

histograms (density SDH) are determined in a hypercubic neighborhood of side length 

equal 3, centered at point Pr , and without constraints on their orientations  

In the image processing framework, several features can be computed from the gray-level 

sum and difference histograms [Unser, 1986; Clausi & Zhao, 2003]. Nine of the most 

commonly used texture features, denoted 
m
f  , 1,2,...,9m =  , are described in table 2. 

Analogously, the texture at Pr can be evaluated by means of some of the nine features of 

table 2 derived from the density sum and difference histograms. 

Fig. 4 shows the spatial variations of the 8 first features of table 2 for the data set of Fig.1. 

The values of the features 
1
f ,

4
f ,

5
f , 7

f ,
8
f  and 

9
f   decrease from the centers of the clusters 

to their peripheries. On the contrary, the values of 
2
f , 

3
f  and

6
f  increase from the centers 

to the peripheries of the clusters. As for the features extracted from co-occurrence matrices, 
these features could be more or less suitable to describe the structure of the distribution.  

A specific problem that must be addressed is now the selection of meaningful features 

among those of table 1 or table 2 to describe the textural information that will be used to 

identify the cluster cores in the data space. Each sampling point will then be characterized 

by a feature vector ( ) [ ]1 2
( ), ( ),..., ( ),..., ( )

T

r r r m r M r
F P f P f P f P f P= , in a M-dimensional 

feature space. The selection of the M  most relevant features, specifically adapted to each 

data set, will be discussed in section 5. 
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4. Cluster core extraction 

4.1 Texture classification 
Similarly to image segmentation, it is expected that sampling points with similar texture 

properties could be aggregated in the data space to detect the clusters in the data. 

When the sampling points are characterized by a set of texture features, they can be 

represented as feature vectors in a multidimensional feature space. Texture classification 

consists in assigning the sampling points of the discrete data space to different texture 

classes defined in the feature space. This is an unsupervised classification problem since no a 
priori knowledge about the feature vectors associated with the textures to be identified is 

available. A simple solution is to use the basic K-means algorithm where the desired 

number of classes of feature vectors has to be specified [Macqueen, 1967]. The ability of 

varying the number of expected classes makes it possible to give some insight into the 

significance of the clusters that can be identified within the data.  

Fig. 5 shows the domains of homogeneous textures associated with the discrete data set of 

Fig.1(b) when the K-means algorithm requires 2, 3 and 4 classes of different textures 

characterized by means of co-occurrence matrices. The texture discrimination is performed in a 

2-dimensional feature space defined by two features, namely the homogeneity f3 and the 

correlation f4 of table 1, with S=25. When two classes are required, the two domains 

correspond to the cluster cores and the valleys, respectively (cf. Fig. 5(a)). When the sampling 

points are assigned to 3 classes of textures, one of them corresponds to the cores; the second to 

their boundaries and the last one to the valleys (cf. Fig. 5(b)). In the case of 4 classes, Fig. 5(c) 

shows that the cores are surrounded by concentric domains corresponding to different 

distribution characteristics that are obviously linked to the local data point densities. 

We have kept the parameter  S  and the two texture features unchanged in order to show the 

influence of the required number of texture classes on the resulting domains of homogeneous 

textures. A procedure to optimize the value of  S, to select an appropriate set of texture 

features and to determine the number of texture classes will be presented in section 5. 

4.2 Core extraction 
Under the assumption that the cluster cores are multidimensional domains with 

homogeneous textures, it is expected that the hypercubes centered on the sampling points 

assigned to the same class of texture give rise to connected components in the data space. 

These components can be extracted by means of an aggregation procedure where two 

hypercubes whose centers belong to the same class of texture are assigned to the same 

component if they have at least one point in common. Small components resulting from this 

aggregation procedure may correspond to non significant domains with only a few data 

points. Therefore any domain containing less than 5% of the total number Q of observations 

is discarded. 

Among the remaining components, those corresponding to the cores of the clusters are 

expected to be more compact than those corresponding to their boundaries or to the valleys 

between them. Hence, they can be discriminated from other components by analyzing their 

compactness defined as: 

[ ][ ]N

total number of hypercubes
C   

number of boundary hypercubes  
=  
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This compactness, which is as much as high as the component is compact, depends mainly 

on the dimensionality and on the structure of the data. In practice, the selection of the 

domains with a compactness higher than 50% of the highest compactness value among all 

the detected domains has proved to be a good strategy to identify the cluster cores 

[Hammouche et al., 2006].  

Table 3 indicates the compactness of the domains resulting from the aggregation of the 
connected sampling points of Fig. 5. It is clear that the cluster cores are much more compact 
than the other domains. Cluster core detection is straightforward by simple thresholding of 
the compactness. Fig. 6 shows the cores identified among the domains of homogeneous 
texture of Fig. 5. 

Due to irregularities in the distribution of the data points, especially for small data sets, the 

boundaries of the selected domains may present irrelevant details. In such situations, 

multidimensional binary morphology has proved to be an efficient solution to eliminate 

details in the data structure without changing the global shape of unsuppressed domains 

[Botte-Lecocq & Postaire, 1991]. A classical closing-opening operation, using a hypercubic 

structuring element of side length equal to 3, generally yields regularly shaped cluster cores. 

Finally, many supervised classification procedures can be used to assign the observations to 

the clusters attached to the detected cores. One solution is to use the observations falling 
into the cores as prototypes. The remaining observations are assigned to the cluster attached 
to their nearest neighbor among these prototypes. They are assigned one by one to the 
clusters in a specific order depending on their distances to the prototypes. At each step of 
this procedure, we consider the distances between all the unassigned observations and all 
the prototypes. The smallest among these distances indicates the specific observation that 
must be assigned to the cluster attached to its nearest neighbor. It is integrated within the set 
of prototypes defining this cluster. This updating rule is iterated until all the observations 
are classified [Botte-Lecocq & Postaire, 1994]. 

5. Algorithm tuning and feature selection 

The performance of the above described algorithm depends mainly on the adjustment of the 
discretization parameter S and on the relevance of the chosen texture features. 

5.1 Discretization tuning 
Let us first consider the effect of the resolution of the discretization process. In fact, the 
adjustment of S depends on the sample size  Q, on the dimensionality N of the data and on 
the structure of the distribution of the observations. It can be expected that, when true 

clusters exist, stable connected subsets of data points with similar texture properties appear 
for a wide range of values of S. Based on this assumption, the adjustment of S can be 
governed by the concept of cluster stability [Eigen et al., 1974]. Choosing such a parameter 
in the middle of the largest range where the number of detected clusters remains constant, 
and different from one, has proved to be a good procedure to optimize a number of 
clustering algorithms when nothing is a priori known about the structure of the distribution 
of the observations [Postaire & Vasseur, 1981]. Note that the larger the range, the more 
reliable is the tuning procedure. 

5.2 Feature selection 
In the framework of multidimensional texture analysis, the key problem is the selection of a 

set of suitable texture features. For choosing relevant features while reducing the 
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dimensionality of the texture classification problem, we propose a performance-dependent 

feature selection scheme which is directly related to the above mentioned concept of cluster 

stability. The effectiveness of a subset of features is evaluated by means of the width of the 

largest range of values of the discretization parameter S leading to the appropriate number 

of detected cluster cores. As mentioned at the end of § 5.1, the larger this range, the more 

reliable is the number of detected cores. This criterion is used to select a set of relevant 

features among the available ones by means of a sequential forward selection technique 

[Siedlecki & Sklansky, 1988]. 

To evaluate the relative relevance of M  features  
1
,..., ,...,

m M
f f f , we consider the feature 

subspaces 
1 ,..., ,...,m M

R R R , taking into consideration an increasing number of texture 

features, from one to M . The algorithm starts with the M  possible 
1

R  spaces. The feature 

which maximizes the range of values of S  corresponding to a stable number of detected 

cores, different from one, is the first selected feature. This feature is combined, in a 
2

R  

feature space, with each of the 1M −  remaining ones. The corresponding 1M −  lengths of 

the stable ranges for S are then determined and the pair of features that maximizes the 

length is kept. 

When m features out of M have been chosen, the algorithm proceeds in the 
1m

R
+

 feature 

space of 1m +  dimensions to select the ( 1)thm +  feature that maximizes the length of the 

range of S when combined with the m previously chosen features. This procedure is iterated 

until the M features have been ordered by diminishing relevance. The sequence L(m) of 

length values thus obtained allows selecting a subset of relevant features within the set of M 

features. These salient features are those that correspond to the starting increasing phase of 

the length values in the sequence ( )L m . All the features that follow the first decrease in the 

sequence L(m) are discarded. 

To demonstrate the efficiency of the proposed feature selection technique, we use the bi-

dimensional data set of Fig. 1 constituted of three Gaussian clusters. The length L(m) of the 

longest range of values of S where the same number of cluster cores is detected by the 

clustering procedure is plotted against the number m of selected features (cf. Fig. 7). The 

feature selected at each step is indicated at the corresponding point of the plot. The series 

4 5 1 3 6 2 7
( , , , , , , )f f f f f f f , 

5 1 2 4 7 3 6
( , , , , , , )f f f f f f f  and 

5 2 6 4 3 1 7
( , , , , , , )f f f f f f f  represent the 

7 first selected features among the 13 computed from the co-occurrence matrices, ordered by 

decreasing relevance when 2, 3 and 4 classes of textures are required by the K-means 

algorithm, respectively. As expected, the number of required classes influences the feature 

selection. When 2 classes are required, the selected features are f4, f5 and f1 since L(m) begins 

to decrease when f3 is selected (cf. Fig. 7(a-1)). With 3 classes of textures, the plot of Fig. 7(b-

1) shows that the two first features f5 and f1 are selected for detecting the 3 clusters. When 4 

classes of textures are used, it appears that only the first feature f5 is selected for detecting 

the 3 clusters (cf. Fig. 7(c-1)). Fig. 7(a-2), 7(b-2) and 7(c-2) show the ordered features 

extracted from density sum and difference histograms when 2, 3 and 4 classes of textures are 

required by the K-means algorithm, respectively. 

5.3 Number of texture classes 
The next parameter that remains to be adjusted is the number of texture classes required by 

the K-means algorithm. This number is not determined automatically by the basic, but well 
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controlled, version of the algorithm used in this work. In fact, the concept of cluster stability 

allows specifying this number by selecting the number of texture classes that leads to the 

longest range of variation of  S  where the number of detected cores remains constant. Fig. 7 

shows that this wider range is reached when the textures are assigned to two classes with 

the three features  f4, f5  and  f1  extracted from the COM and with the five features f9, f3, f6, f1 
and f4 extracted from the density SDH.  

5.4 Hypercubic neighborhood size 
The neighborhoods used to determine the local values of the texture features have been 

defined as hypercubes of side length equal to 3 (cf. § 2.2). But we could have used larger 

neighborhoods constituted of (2 1)N
h +  unit cells centered at the sampling points. We have 

analyzed the effect of the parameter h on the behavior of the algorithm. For each neighborhood 

size varying from h =1 to h =4, we have selected the relevant texture features as explained in 

§ 5.2 to classify the bi-dimensional data of figure 1(a), asking always for two texture classes. 

Table 4 indicates the largest ranges of the discretization parameter S where the numbers of 

detected clusters remain constant for each neighborhood size. It appears that the largest of 

these ranges are obtained for h =1 . Furthermore, beside being the best choice in terms of 

reliability of the results, the choice of the minimal neighborhood size (h =1) reduces the 

computation time while improving the sensitivity of the procedure to local texture 

properties. 

6. Experimental results 

The following examples have been chosen to provide some insight into the behavior of the 

proposed texture based clustering procedure and to demonstrate the interest of this 

approach for pattern classification. 

6.1 Example 1 
The first example illustrates all the steps of the algorithm and demonstrates the ability of the 

procedure to detect clusters of unequal weights. The data set is presented in Fig. 8(a). It is 

composed of 950 bidimensional observations drawn from the four normal distributions of 

unequal weights specified in table 5. 

The local texture features are computed from the co-occurrence matrices, and, for 

comparison, from the density sum and difference histograms. In order to tune the algorithm, 

the number of required texture classes is varied from 2 to 4. In the two cases, the largest 

range where the number of detected clusters remains constant appears for two classes of 

textures. It corresponds to a partition of the data set into four clusters (cf. Figs. 8(c-1) and 

8(c-2)). With the density SDH based texture features, the largest range  of S where the 

number of detected cores remains constant is [13-38] (Fig. 8(c-2)). It is slightly larger than 

that obtained with the COM texture features, which is [26-50] (Fig. 8(c-1)).  

Figs. 8(d-1) and 8(d-2) show the discrete data sets obtained for S = 38, which is the middle of 

the range associated with the co-occurrence features, and for S = 26 when the features are 

extracted from density sum and difference histograms, respectively. The four cores, detected 

as domains of homogeneous textures, are displayed in Fig. 8(e-1) and 8(e-2). The texture 

features extracted from the COM are f1, f4, f3  and those extracted from the density SDH are 
f1, f9, f5  . 
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The result of the classification is shown in Fig. 8(b). Table 5 summarizes the statistics of the 

four detected clusters. The performance of the classifier is measured by the classification 

error-rate, estimated as the ratio of the number of misclassified observations to the total 

number of observations. The error-rates obtained with the two proposed algorithms are 

identical and equal to 3.15% . In this example, the classes do not overlap too much and the 

actual error-rate is very close to the theoretical minimum error-rate achieved by use of the 

Bayes decision rule associated with the true statistics of the data set, which is equal to 2.63%. 

The difference between these two error-rates corresponds to only five observations 

misclassified out of over 950.  

6.2 Example 2 
The major difficulties in cluster analysis are with non spherical clusters, bridges between 

clusters and non linearly separable clusters. The bivariate data set of Fig. 9(a) has been 

generated keeping these well-known difficulties in mind. It is composed of three 

populations of 1000 data points each drawn as: 

1 1 1
cosx A B= Θ+  

2 2 2
cosx A B= Θ+  

 

where Θ  is a normal random variable with mean m  and standard deviation s , and where 

1
B  and 

2
B  are normal random variables with means μ  and variances σ  (cf. Table 6). 

For this example, the largest range of S where the three clusters have been identified is [24-

50] when the co-occurrence features are used (cf. Fig. 9(c-1)), while it is [24-46] for the 

features extracted from density SDH (cf. Fig. 9(c-2)). Figs. 9(d-1) and 9(d-2) show the discrete 

data sets obtained for S=37 and S=35 respectively, i.e. the middles of these ranges that are 

very similar. 

The three detected cores are displayed in Fig. 9(e-1) and 9(e-2). Two texture features, namely 

2
f  and 

6
f  , have been extracted from the COM to obtain the two cores shown in Fig. 9(e-1) 

and four texture features extracted from density SDH, namely 
6 3 1
, ,f f f  and 

2
f  , have been 

selected to obtain the two cores shown in Fig. 9(e-2). The classification results achieved with 

the two algorithms are identical. They are shown in Fig. 9(b). The error-rate obtained with 

the texture clustering procedures is 1.12%, whereas it reaches 6.3% with the ISODATA 

algorithm [Ball & Hall, 1965]. This example shows that when central points cannot represent 

the clusters globally, the texture based approach, which takes into account the local 

properties of the distribution of the input data, performs much better than algorithms 

dedicated to globular clusters.  

6.3 Example 3 
We now present a multidimensional case, which demonstrates the ability of the procedure 

to identify interlaced clusters for data of higher dimensionality. The data shown in Fig. 10(a) 

consists of two clusters generated as circular torus formed by the rotation of a plane circular 

Gaussian distribution about an axis in the plane of that distribution. These two torus are 

interlaced as the rings of a chain. 
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The cluster cores detected by the clustering procedure based on the selected co-occurrence 

features f5 and f4 with two texture classes and with S=34, which is the middle of the [17-50] 

largest range where the number of detected clusters remains constant, are presented in Fig. 

10(c). Figure 10(d) shows the two cluster cores detected with the features f9, f6, f1, and f8 

extracted from the density sum and difference histograms with two texture classes and with 

S=32, i.e. the middle of the [14-50] largest range where the number of detected clusters 

remains constant. The classification results achieved with the two algorithms are identical. 

They are shown in Fig. 10(b). The error-rate associated with the two texture clustering 

procedures is 0.1% whereas it reaches 12.17% with the ISODATA algorithm. This result 

demonstrates the effectiveness of the approach in a non trivial situation. 

7. Computational load 

The proposed texture clustering algorithms are based on the same 3 steps scheme:  

1. Data conditioning  

2. Texture characterization 

3. Clustering based on texture properties.  

In the first data conditioning step, the distribution of the data points is approximated by the 

discrete multi-dimensional histogram constituted of 
N

S cells. Thanks to the fast algorithm 

proposed in [Postaire & Vasseur, 1982], the number of elementary operations required by 

this procedure is N Q . 

In the last clustering step, the sampling points where the local underlying texture is 

evaluated are first assigned to different texture classes using the K-means algorithm that 

requires RKt  operations, where R is the number of non-empty hypercubes, K is the 

number of texture classes and t is the number of iterations necessary for the algorithm to 

converge. 

Then, the connected components are extracted by means of an aggregation procedure where 

two hypercubes that belong to the same class of texture are assigned to the same component 

if they have at least one point in common. As  (3 1)N −  adjacent neighbors of each sampling 

point are considered, R3N operations are required by the connected components extraction 

procedure. 

The core extraction procedure requires the determination of the compactness of all the 

detected connected components, involving also R3N elementary operations. Using a 

hypercubic structuring element of side length equal to 3, the classical closing-opening 

morphological filtering process requires 4R3N operations. 

We now focus our attention on the complexity of the second step since the first and third 

steps are independent of the texture features extraction process. This second step, which 

consists in the characterization of the distributions in terms of texture, is split into two 

phases. The co-occurrence matrices or the density sum and difference histograms are 

generated in a first one, while the texture features are extracted from the matrices or from 

the histograms in a second phase. 

The computational loads associated with the generation of the COM and the density SDH 
for each non-empty hypercube are similar, and depend on the number of the couples of 

adjacent sampling points encountered within a hypercubic neighborhood of size 

length (2 1)h + . As there are (3 1)N −  adjacent sampling points for each of the 
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(2 1)N
h + sampling points falling in the hypercubic neighborhood, (3 1)(2 1)N N

h− +  couples 

of sampling points are considered to compute the co-occurrence matrix or the density sum 
and difference histogram at each sampling point of the discrete multidimensional 

histogram. As h  is set to 1 (cf. § 5.4), the number of elementary operations is approximately 

equal to ( ) ( )3 3 1 9N N N× − ≈ . Hence, the determination of all the co-occurrence matrices or 

the density sum and difference histograms requires 9N
R  operations. 

The second phase is significantly different for the COM based and the density SDH based 
algorithms. It deserves a particular attention to avoid computational burden. 

7.1 Complexity of the co-occurrence matrix based algorithm 
In the case of the COM, each matrix must be looped through once or twice depending on the 

feature to be extracted. ( )2

1G + operations are necessary to explore the matrix so that the 

total complexity of the texture characterization using the co-occurrence matrices for R non-
empty hypercubes is equal to: 

( ) ( )( )( )( )2

9 1
N

O R Gα β+ + + . 

where α  and β  are the numbers of features using 1 and 2 loops, respectively. 

When the quantization level G of the density and/ or when the dimension N are large,  the 

computation cost for computing the features becomes prohibitive. Several algorithms have 

been proposed in the texture analysis literature to overcome this problem. Some solutions are 

the reduction of the quantization level G [Clausi, 2002], the updating the features determined 

in a hypercubic neighborhood from those obtained in the adjacent neighborhoods [Argenti et 

al., 1990] or the storage of only the non-zero co-occurring density values [Clausi & Jernigan, 

1998; Clausi & Zhao, 2002]. This last solution is well-adapted for large quantization levels G, 

i.e. when the co-occurrence matrices become large and sparse. We have used a hybrid data 

structure which combines a linked list and hash tables [Clausi & Zhao, 2002] to avoid the 

storage of the pairs of values of the co-occurrence matrices that have zero probability. This 

data structure is called hereafter the Hybrid Co-occurrence Matrix (HCM). 

Each node of that linked list is a structure containing one of the pairs of co-occurring values 

effectively encountered in the hypercubic neighborhood, its probability of co-occurrence for 

neighboring sampling points and a link to the next node in the list. To include a new pair in 

a linked list, a node having the same pair of density values is searched. If such a node is 

found, then its probability is incremented. Otherwise, a new node is added at the end of the 

list. However, the search of a particular node is time consuming. To avoid this drawback, 

we use a hash table with the same size than the co-occurrence matrix, in order to give a 

direct access to each node of the linked list. The access to the hash table is provided by the 

pair of density values (i,j). Each entry in the hash table contains a pointer. If the pointer is 

null, then the particular co-occurring pair of density value (i,j) does not have a 

representative node on the linked list. In this case, a new node is created and inserted at the 

end of the linked list. If the pointer is not null, then it points to the existing corresponding 

node in the linked list and its probability is incremented. 

The length L of the linked list is equal to the number of distinct pairs of values found in the 

considered hypercubic neighborhood. A total of ( ) ( )( )9
D

R Lα β+ +  operations are 
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required to calculate the texture features for all the sampling points. The value of L, depends 
on the data structure, on the dimension N and on the discretization parameter S. As L is 

generally significantly smaller than ( )2

1G + , the computational load to determine the 

texture features can be greatly reduced by means of the HCM.  

7.2 Complexity of the density sum and difference histogram based algorithm 
Let us now consider the algorithm based on the density sum and difference histograms that 

must be looped through once or twice to extract one feature. As the histograms are one-

dimensional structures, they are explored in ( )2 1G +  operations and the resulting 

complexity of the whole characterization procedure is equal to: 

( ) ( )( )( )( )9 2 1
D

O R Gα β+ + + . 

As ( ) ( )2

2 1 1G G+ +≺ , it appears that the complexity of the density SDH based algorithm is 

significantly smaller than that of the COM based algorithm, especially for high values of G. 

However, the comparison between the complexities of the density SDH and HCM based 

algorithms is not easy since the value of L  depends on many parameters. The complexity of 

the density SDH based algorithm is smaller than that of the HCM based algorithm only if ( )2 1G L+ ≺ . 

7.3 Processing times comparison 
In order to compare the processing speeds produced by the feature extraction procedures 

based on the COM, the HCM and the density SDH , we use data sets constituted of two well 

separated Gaussian distributions of observations with means μ =[2, 2, 2,…, 2]T and  μ =[-2, -

2, -2,…, -2]T and with unit covariance matrices 
1 2 N

IΣ = Σ = . For N-dimensional data, 

1
μ and 

2
μ  are N-dimensional vectors, while 

1
Σ and 

2
Σ  are N N×  unit covariance 

matrices. 

Since the main purpose of these simulations is to compare the computation times of the 

texture characterization procedures, the tuning of these algorithms is not optimized as 

proposed in section 5. On the contrary, all runs are made with 10S =  and with the largest 

number of available texture features for each algorithm. This strategy allows running the 

feature extraction procedures under comparable conditions for different dimensionalities N 

of the data and different sample sizes Q. For the density SDH based algorithm, we compute 

the 9 available features of table 2. For a fair comparison, we have selected the 9 most 

discriminatory features among the 13 that can be extracted from the COM and HCM (Table 

1). 

As the number of non-empty hypercubes depends on the structure of the data distribution, 

we have determined the average computation time per non-empty hypercube. Table 7 

indicates these computation times for twelve data sets obtained with three different sample 

sizes (Q=1000, 5000 and 10 000) and for N varying from 2 to 5, using a Pentium M processor 

715A/  1.5GHz PC with 512 Moctets memory. Although the running times are computer 

dependent, they give an idea of the computation time improvement in a non trivial case. 
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We indicate, for each data set, the number R of non-empty hypercubes and the maximum 

value G of the densities. As the number of sampling points increases with the 

dimensionality N, the number of non-empty hypercubes is an increasing function of N for a 

given number Q of data points. As a consequence, the number of data points in each non-

empty hypercube tends to decrease with increasing values of N , so that G is a decreasing 

function of N.  The mean value of the lengths L of the linked lists produced by the HCM 

based procedure is also indicated in table 7. This mean value is denoted L . 

As expected, the processing times for the generation of the COM and the density SDH are 

similar. They increase with the dimensionality N and are independent of the number Q of 

data points.  

Table 7 allows to compare the processing times of the feature extraction process from the 

COM, the HCM and the density SDH for different couples of values of Q and N.  

The procedure based on the HCM is always faster than that based on the COM. The speed 

improvement is important when the value G is high and the mean value L  of the lengths of 

the linked lists is low. For example, with Q =10 000 and with the lower dimension N =2, G 

reaches the value 869, L  is equal to 63 and the extraction of the features from the HCM is 

more than 6000 times faster than the extraction from the COM. On the opposite, the 

improvement of the processing times is less significant for lower values of G and higher 

values of L . For the same number Q =10 000 and a higher dimension (N =5), the maximum 

value G is equal to 61 and L  reaches the value 804. In this case, the speed with the HCM is 

only twice faster than that with the COM (cf. table 7). 

The procedure based on the density SDH is also always faster than that based on the COM. 

The larger the maximum value G, the more important is the speed improvement. For 

example, the extraction of the features from the density SDH is more than 400 times faster 

than the extraction from the COM when  G reaches the value 869, i.e. with Q =10 000 and 

with the lower dimension N =2. For the same number Q =10 000 and a higher dimension (N 

=3), the maximum value G is equal to 415 and the speed with the density SDH is only 100 

times faster. But, even for G=61, a significantly lower value corresponding to N=5, the speed 

remains more than 10 times faster with the feature extraction procedure based on the 

density SDH than that based on the COM.  

If we compare the density SDH with the HCM based procedures, we can show that these 

two procedures provide comparable computation times. When the average value L  of the 

lengths of the linked lists is smaller than the size (2 1)G +  of the SDH, the extraction of the 

features from the HCM becomes faster than the extraction from the density SDH. For 

example, with Q=10 000, and with the dimension N =2, the extraction of the features from 

the HCM is more than 10 times faster than the extraction from the density SDH. On the 

contrary, for the same example and a higher dimension (N =5), the density SDH is more 

than 5 times faster than the HCM based procedure. 

8. Conclusion  

After a series of adaptations of classical image processing tools to cluster analysis such as 

thresholding, edge detection, relaxation, Markov field models and mathematical 

morphology, this chapter shows how texture analysis concepts can be introduced in the 

field of pattern classification. A general-purpose clustering procedure has been presented, 
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based on multidimensional texture analysis. The basic idea behind this approach is the 

characterization of the local distribution of the data points in the multidimensional data 

space in terms of textures. A set of texture features extracted from co-occurrence matrices or 

density sum and difference histograms that accumulate spatial and statistical information is 

used to evaluate locally the multidimensional textures that characterize the data 

distributions. The clustering scheme is based on the classification of texture feature vectors 

rather than on a direct processing of the observations themselves in the data space. 

Experimental results show that the density SDH and the COM based clustering algorithms 

are nearly as accurate in terms of error rates. However, the processing time using the COM 

tends to be prohibitive, especially for large data sets. This time processing can be greatly 

reduced by means of an hybrid structure including a linked list associated with hash tables. 

The main advantage of sum and difference histograms for clustering is a substantial 

reduction in computation time and memory requirement without any loss of accuracy of the 

results. 

When the texture based clustering procedures are compared with classical classification 

schemes for globular clusters detection, they perform comparably well. However, the new 

procedures are much more efficient in difficult clustering situations such as non spherical or 

non linearly separable clusters since they are sensitive to the local characteristics of the 

observation distributions. 
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