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1. Introduction     
 

1.1 Adaptive Filtering Review 

There are a number of possible degradations that can be found in a speech recording and 
that can affect its quality. On one hand, the signal arriving the microphone usually 
incorporates multiple sources: the desired signal plus other unwanted signals generally 
termed as noise. On the other hand, there are different sources of distortion that can reduce 
the clarity of the desired signal: amplitude distortion caused by the electronics; frequency 
distortion caused by either the electronics or the acoustic environment; and time-domain 
distortion due to reflection and reverberation in the acoustic environment.  
Adaptive filters have traditionally found a field of application in noise and reverberation 
reduction, thanks to their ability to cope with changes in the signals or the sound 
propagation conditions in the room where the recording takes place. This chapter is an 
advanced tutorial about multichannel adaptive filtering techniques suitable for speech 
enhancement in multiple input multiple output (MIMO) very long impulse responses. 
Single channel adaptive filtering can be seen as a particular case of the more complex and 
general multichannel adaptive filtering. The different adaptive filtering techniques are 
presented in a common foundation. Figure 1 shows an example of the most general MIMO 
acoustical scenario. 

 

 
Fig. 1. Audio application scenario. 
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The box, on the left, represents a reverberant room. V  is a LIP×  matrix that contains the 

acoustic impulse responses (AIR) between the  I  sources and P  microphones (channels); L  
is a filters length. Sources can be interesting or desired signals (to enhance) or noise and 
interference (to attenuate). The discontinuous lines represent only the direct path and some 

first reflections between the ( )ns1  source and the microphone with output signal ( )nx1 . Each ( )npiv  vector represents the AIR between Ii K1=  and Pp K1=  positions and is constantly 

changing depending on the position of both: source or microphone, angle between them, 
radiation pattern, etc. 
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vpi=[ vpi1  vpi2 ···  vpiL].  (1) 

 ( )nr is an additive noise or interference signal. ( )nxp , Pp K1=  is a corrupted or poor quality 

signal that wants to be improved. The filtering goal is to obtain a W  matrix so that ( ) ( )nsny io
ˆ≈  corresponds to the identified signal. The signals in the Fig. 1 are related by 

 ( ) ( ) ( )nrnn += Vsx , (2) 

y(n) = Wx(n). (3) 

 ( )ns  is a 1×LI  vector that collects the source signals, 

 ( ) ( ) ( ) ( )[ ]TT

I

TT nnnn ssss L21= , 
(4) 

( ) ( ) ( ) ( )[ ]Tiiii Lnsnsnsn 11 +−−= Ls .  

 ( )nx  is a 1×P  vector that corresponds to the convolutive system output excited by ( )ns  

and the adaptive filter input of order LPO× . ( )nxp  is an input corresponding to the channel 

p  containing the last L  samples of the input signal x , 

 ( ) ( ) ( ) ( )[ ]TT

P

TT nnnn xxxx L21= , 
(5) 

xp(n)=[ xp(n)  xp(n-1) ···  xp(n-L+1)]T .  
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W  is an LPO×  adaptive matrix that contains an AIRs between the P inputs and O outputs 

⎥⎥
⎥⎥
⎥

⎦

⎤

⎢⎢
⎢⎢
⎢

⎣

⎡
=

OPOO

P

P

www

www

www

W

L

MOMM

L

L

21

22221

11211

,  

wop = [wop1   wop2  ···   wopL]. (6) 

 
For a particular output Oo K1= , normally matrix W  is rearranged as column vector 

 [ ]TPwwww L21= . (7) 

 
Finally, ( )ny  is an 1×O  target vector, ( ) ( ) ( ) ( )[ ]TO nynynyn L21=y . 

The used notation is the following: a  or α  is a scalar, a  is a vector and A  is a matrix in 

time-domain a  is a vector and A  is a matrix in frequency-domain. Equations (2) and (3) are 

in matricial form and correspond to convolutions in a time-domain. The index n  is the 

discrete time instant linked to the time (in seconds) by means of a sample frequency sF  

according to snTt = , ss FT 1= . sT  is the sample period. Superscript T  denotes the transpose 

of a vector or a matrix, ∗  denotes the conjugate of a vector or a matrix and superscript H  
denotes Hermitian (the conjugated transpose) of a vector or a matrix. Note that, if adaptive 

filters are 1×L  vectors, L  samples have to be accumulated per channel (i.e. delay line) to 
make the convolutions (2) and (3). 
The major assumption in developing linear time-invariant (LTI) systems is that the 
unwanted noise can be modeled by an additive Gaussian process. However, in some 
physical and natural systems, noise can not be modelled simply as an additive Gaussian 
process, and the signal processing solution may also not be readily expressed in terms of 
mean squared errors (MSE)1.  
From a signal processing point of view, the particular problem of noise reduction generally 
involves two major steps: modeling and filtering. The modelling step generally involves 
determining some approximations of either the noise spectrum or the input signal spectrum. 
Then, some filtering is applied to emphasize the signal spectrum or attenuate/reject the 
noise spectrum (Chau, 2001). Adaptive filtering techniques are used largely in audio 
applications where the ambient noise environment has a complicated spectrum, the statistics 
are rapidly varying and the filter coefficients must automatically change in order to 
maintain a good intelligibility of the speech signal. Thus, filtering techniques must be 

                                                 
1 MSE is the best estimator for random (or stochastic) signals with Gaussian distribution (normal 
process). The Gaussian process is perhaps the most widely applied of all stochastic models: most error 
processes, in an estimation situation, can be approximated by a Gaussian process; many non-Gaussian 
random processes can be approximated with a weighted combination of a number of Gaussian densities 
of appropriated means and variances; optimal estimation methods based on Gaussian models often 
result in linear and mathematically tractable solutions and the sum of many independent random 
process has a Gaussian distribution (central limit theorem) (Vaseghi, 1996). 
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powerful, precise and adaptive. Most non-referenced noise reduction systems have only one 
single input signal. The task of estimating the noise and/or signal spectra must then make 
use of the information available only from the single input signal and the noise reduction 
filter will also have only the input signal for filtering. Referenced adaptive noise 
reduction/cancellation systems work well only in constrained environments where a good 
reference input is available, and the crosstalk problem is negligible or properly addressed. 

 
2. Multichannel Adaptive Filters 
 

In a multichannel system ( 1>P ) it is possible to remove noise and interference signals by 
applying sophisticated adaptive filtering techniques that use spatial or redundant 
information. However there are a number of noise and distortion sources that can not be 
minimized by increasing the number of microphones. Examples of this are the surveillance, 
recording, and playback equipment. There are several classes of adaptive filtering (Honig & 
Messerschmitt, 1984) that can be useful for speech enhancement, as will be shown in Sect. 4. 
The differences among them are based on the external connections to the filter. In the 
estimator application [see Fig. 2(a)], the internal parameters of the adaptive filter are used as 
estimate. In the predictor application [see Fig. 2(b)], the filter is used to filter an input signal, ( )nx , in order to minimize the output signal, ( ) ( ) ( )nynxne −= , within the constrains of the 

filter structure. A predictor structure is a linear weighting of some finite number of past input 
samples used to estimate or predict the current input sample. In the joint-process estimator 

application [see Fig. 2(c)] there are two inputs, ( )nx  and ( )nd . The objective is usually to 

minimize the size of the output signal,  ( ) ( ) ( )nyndne −= , in which case the objective of the 

adaptive filter itself is to generate an estimate of ( )nd , based on a filtered version of ( )nx , ( )ny  (Honig & Messerschmitt, 1984). 

 

 
Fig. 2. Classes of adaptive filtering. 
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2.1 Filter Structures 

Adaptive filters, as any type of filter, can be implemented using different structures. There 
are three types of linear filters with finite memory: the transversal filter, lattice predictor and 
systolic array (Haykin, 2002). 

 
2.1.1 Transversal 

The transversal filter, tapped-delay line filter or finite-duration impulse response filter (FIR) is the 
most suitable and the most commonly employed structure for an adaptive filter. The utility 
of this structure derives from its simplicity and generality. 
The multichannel transversal filter output used to build a joint-process estimator as 
illustrated in Fig. 2(c) is given by 
 

( ) ( ) ( ) ( )
1 1 1

1 , ,
P L P

pl p p p

p l p

y n w x n l n n
= = =

= − + = =∑∑ ∑ w x w x . 
(8) 

 
Where ( )nx  is defined in (5) andw in (7). Equation (8) is called finite convolution sum. 

 

 
Fig. 3. Multichannel transversal adaptive filtering. 

 
2.1.2 Lattice 

The lattice filter is an alternative to the transversal filter structure for the realization of a 

predictor (Friedlander, 1982).  
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Fig. 4. Multichannel adaptive filtering with lattice-ladder joint-process estimator. 

 
The multichannel version of lattice-ladder structure (Glentis et al., 1999) must consider 

the interchannel relationship of the reflection coefficients in  each stage l . 

 ( ) ( ) ( ) ( ) ( )1 1 11 ,∗− −= + − =l l l ln n n n nf f K b f x , (9) 

( ) ( ) ( ) ( ) ( )1 1 11 ,l l l ln n n n n− −= − + =b b K f b x . (10) 

 
Where ( ) ( ) ( ) ( )[ ]TPllll nfnfnfn L21=f , ( ) ( ) ( ) ( )[ ]TPllll nbnbnbn L21=b , 

 ( ) ( ) ( ) ( )[ ]TP nxnxnxn L21=x , and 
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The joint-process estimation of the lattice-ladder structure is especially useful for the adaptive 
filtering because its predictor diagonalizes completely the autocorrelation matrix. The transfer 
function of a lattice filter structure is more complex than a transversal filter because the 
reflexion coefficients are involved, 
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( ) ( ) ( )11n n n= − +b Ab K f , (11) 

( ) ( ) ( )11y n n n= − +wAb wKf . (12) 

 
Where [ ]TT

L
TT wwww L21=  is a 1×LP  vector of the joint-process estimator coefficients,  

[ ]TPllll www L21=w . ( ) ( ) ( ) ( )[ ]TT
L

TT nnnn bbbb L21= is a 1×LP  backward predictor 

coefficients vector. A is a LPLP ×  matrix obtained with a recursive development of (9) and 
(10), 
 

 
P P×I  is a matrix with only ones in the main diagonal and P P×0  is a PP×  zero matrix. 

[ ]1 2 1

T

P P L× −=K I K K KL  is a PLP ×  reflection coefficients matrix.  

 
2.2 Adaptation Algorithms  

Once a filter structure has been selected, an adaptation algorithm must also be chosen. From 
control engineering point of view, the speech enhancement is a system identification 

problem that can be solved by choosing an optimum criteria or cost function ( )wJ  in a block 

or recursive approach. Several alternatives are available, and they generally exchange 
increased complexity for improved performance (speed of adaptation and accuracy of the 

transfer function after adaption or misalignment defined by 
22

vwv −=ε ). 

 
2.2.1 Cost Functions 

Cost functions are related to the statistics of the involved signals and depend on some error 
signal 
 ( ) ( ){ }nefJ =w . (14) 

The error signal ( )ne  depends on the specific structure and the adaptive filtering strategy 

but it is usually some kind of similarity measure between the target signal ( )nsi  and the 
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estimated signal ( ) ( )nsny io
ˆ≈ , for OI = . The most habitual cost functions are listed in 

Table1.  
 ( )wJ  Comments 

( ) 2
ne  Mean squared error (MSE). Statistic mean operator 

( )∑−1
21 N

ne
N

 
MSE estimator. MSE is normally unknown 

( )ne2  Instantaneous squared error 

( )ne  Absolute error. Instantaneous module error 

( )∑ −n
mn me2λ  

Least squares (Weighted sum of the squared error) 

( ) ( ){ }22
nnE ll bf +  Mean squared predictor errors (for a lattice structure) 

Table 1. Cost functions for adaptive filtering. 

 
2.2.2 Stochastic Estimation 

Non-recursive or block methods apply batch processing to a transversal filter structure. The 
input signal is divided into time blocks, and each block is processed independently or with 
some overlap. This algorithms have finite memory. 
The use of memory (vectors or matrice blocks) improves the benefits of the adaptive 
algorithm because they emphasize the variations in the crosscorrelation between the 
channels. However, this requires a careful structuring of the data, and they also increase the 
computational exigencies: memory and processing. For channel p , the input signal vector 

defined in (5) happens to be a matrix of the form 
 

( ) ( ) ( )( ) ( )1 1 1
T

T T T

p p p pn n N n N n⎡ ⎤= − + − − +⎣ ⎦X x x xL , 
(15) 

( )
( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( )( ) ( )

1 1 1

1 1

2 1 2 1

p p p

p p p

p

p p p

x n N x n N x n

x n N x n N x n
n

x n N L x n N L x n L

⎡ ⎤− + − − +⎢ ⎥− − − −⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥− − + − − − + − +⎣ ⎦
X

L

L

M M O M

L

, 

 

( ) ( ) ( )( ) ( )1 1 1
T

n d n N d n N d n⎡ ⎤= − + − − +⎣ ⎦d L , 
(16) 

 
where N  represents the memory size. The input signal matrix to the multichannel adaptive 

filtering has the form 
 

( ) ( ) ( ) ( )1 2

T
T T T

Pn n n n⎡ ⎤= ⎣ ⎦X X X XL . (17) 
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In the most general case (with order memory N ), the input signal ( )nX  is a matrix of size  

NLP× . For 1=N  (memoryless) and 1=P  (single channel) (17) is reduced to (5). 

There are adaptive algorithms that use memory 1>N  to modify the coefficients of the filter, 

not only in the direction of the input signal ( )nx , but within the hyperplane spanned by the  ( )nx  and its 1−N  immediate predecessors  ( ) ( ) ( )[ ]11 +−− Nnxnxnx L  per channel. 

The block adaptation algorithm updates its coefficients once every N samples as 

 ( ) ( ) ( )1m m m+ = + Δw w w , (18) 

 ( ) ( )arg minm JΔ =w w . 

 

 
The matrix defined by (15) stores 1−+= NLK samples per channel. The time index m  

makes reference to a single update of the weights from time n  to Nn + , based on the K  

accumulated samples. 
The stochastic recursive methods, unlike the different optimization deterministic iterative 
algorithms, allow the system to approach the solution with the partial information of the 
signals using the general rule 
 ( ) ( ) ( )1n n n+ = + Δw w w , (19) 

 ( ) ( )arg minn JΔ =w w . 

 

 
The new estimator ( )1n +w  is updated from the previous estimation ( )nw  plus the 

adapting-step or gradient obtained from the cost function minimization ( )J w . These 

algorithms have an infinite memory. The trade-off between convergence speed and the 
accuracy is intimately tied to the length of memory of the algorithm. The error of the joint-
process estimator using a transversal filter with memory can be rewritten like a vector as 
 ( ) ( ) ( ) ( ) ( ) ( )Tn n n n n n= − = −e d y d X w . (20) 

 
The unknown system solution, applying the MSE as the cost function, leads to the normal or 
Wiener-Hopf equation. The Wiener filter coefficients are obtained by setting the gradient of 
the square error function to zero, this yields 
 

1
1

− ∗ −⎡ ⎤= =⎣ ⎦H
w XX Xd R r . (21) 

 
R  is a correlation matrix and r  is a cross-correlation vector defined by 
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1 1 1 2 1

2 1 2 2 2

1 2

P

PH

P P P P

⎡ ⎤⎢ ⎥⎢ ⎥= = ⎢ ⎥⎢ ⎥⎣ ⎦

X X X X X X

X X X X X X
R XX

X X X X X X

L

L

M M O M

L

, 

(22) 

1 2

∗∗ ∗ ∗⎡ ⎤= = ⎣ ⎦L
T

Pr Xd X d X d X d . 
(23) 

 
For each Ii K1=  input source, ( ) 21−PP  relations are obtained: p

H
qq

H
p wxwx =  for 

Pqp K1, = , with qp ≠ . Given vector [ ]TTTP

p

T

p 112
wwwu −−= ∑ = L , due to the nearness 

with which microphones are placed in scenario of Fig. 1, it is possible to verify that 

1×= PL0Ru , thus R  is not invertible and no unique problem solution exists. The adaptive 

algorithm leads to one of many possible solutions which can be very different from the 
target v . This is known as a non-unicity problem. 
For a prediction application, the cross-correlation vector r  must be slightly modified as ( )1−= nXxr , ( ) ( ) ( ) ( )[ ]TNnxnxnxn −−−=− L211x  and 1=P . 

The optimal Wiener-Hopf solution rRw 1

opt

−=  requires the knowledge of both magnitudes: 

the correlation matrix R  of the input matrix X  and the cross-correlation vector r  between 

the input vector and desired answer d . That is the reason why it has little practical value. So 

that the linear system given by (21) has solution, the correlation matrix R  must be 
nonsingular. It is possible to estimate both magnitudes according to the windowing method 
of the input vector. 

The sliding window method uses the sample data within a window of finite length N . 

Correlation matrix and cross-correlation vector are estimated averaging in time, 
 ( ) ( ) ( ) Nnnn HXXR = , (24) 

 ( ) ( ) ( ) Nnnn ∗= dXr . 

 

 
The method that estimates the autocorrelation matrix like in (24) with samples organized as 
in (15) is known as the covariance method. The matrix that results is positive semidefinite but 
it is not Toeplitz. 
The exponential window method uses a recursive estimation according to certain forgetfulness 

factor λ  in the rank 10 << λ , 

 ( ) ( ) ( ) ( )nnnn HXXRR +−= 1λ , (25) 

 ( ) ( ) ( ) ( )nnnn ∗+−= dXrr 1λ . 
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When the excitation signal to the adaptive system is not stationary and the unknown system 
is time-varying, the exponential and sliding window methods allow the filter to forget or to 
eliminate errors happened farther in time. The price of this forgetfulness is deterioration in 
the fidelity of the filter estimation (Gay & Benesty, 2000). 
A recursive estimator has the form defined in (19). In each iteration, the update of the 

estimator is made in the ( )nΔw  direction. For all the optimization deterministic iterative 

schemes, a stochastic algorithm approach exists. All it takes is to replace the terms related to 
the cost function and calculate the approximate values by each new set of input/output 
samples. In general, most of the adaptive algorithms turn a stochastic optimization problem 
into a deterministic one and the obtained solution is an approximation to the one of the 
original problem. 
 

The gradient ( ) ( )
2 2∗∂= ∇ = = − +∂ H

J
J

w
g w Xd XX w

w
, can be estimated by means of 

( )2= − +g r Rw , or by the equivalent one ∗= −g Xe , considering R  and r  according to (24) 

or (25). It is possible to define recursive updating strategies, per each l  stage, for lattice 

structures as 
 ( ) ( ) ( )1l l ln n n+ = + ΔK K K , (26) 

 ( ) ( )arg minl ln JΔ =K K . 

 

 
2.2.3 Optimization strategies 

Several strategies to solve ( )arg min JΔ =w w  are proposed (Glentis et al., 1999) (usually of 

the least square type). It is possible to use a quadratic (second order) approximation of the 

error-performance surface around the current point denoted ( )nw . Recalling the second-

order Taylor series expansion of the cost function ( )J w  around ( )nw , with ( )nΔ = −w w w , 

you have 
 

( ) ( ) ( ) ( )+ Δ ≅ + Δ ∇ + Δ ∇ Δ21

2
H HJ J J Jw w w w w w w w   

(27) 

 
Deterministic iterative optimization schemes require the knowledge of the cost function, the 
gradient (first derivatives) defined in (29) or the Hessian matrix (second order partial 
derivatives) defined in (45,52) while stochastic recursive methods replace these functions by 
impartial estimations. 
 

( ) ( ) ( ) ( )⎡ ⎤∂ ∂ ∂∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦L
1 2

T

L

J J J
J

w w w
w

w w w
, 

(28) 
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( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

⎡ ⎤∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥∇ = ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

2 2 2

1 1 1 2 1

2 2 2

2

2 1 2 2 2

2 2 2

1 2

T

L

L

L L L L

J J J

J J J

J

J J J

w w w

w w w w w w

w w w

w w w w w w w

w w w

w w w w w w

. 

(29) 

 
The vector ( ) ( )= ∇n Jg w  is the gradient evaluated at ( )nw , and the matrix ( ) ( )= ∇2n JH w  

is the Hessian of the cost function evaluated at ( )nw .  

Several first order adaptation strategies are: to choose a starting initial point ( )0w , to 

increment election ( ) ( ) ( )μΔ =n n nw g ; two decisions are due to take: movement direction 

( )ng  in which the cost function decreases fastest and the step-size in that direction ( )μ n . 

The iteration stops when a certain level of error is reached ( ) ξΔ <nw , 

 ( ) ( ) ( ) ( )1n n n nμ+ = +w w g . (30) 

 
Both parameters ( )nμ , ( )ng  are determined by a cost function. The second order methods 

generate values close to the solution in a minimum number of steps but, unlike the first 
order methods, the second order derivatives are very expensive computationally. The 

adaptive filters and its performance are characterized by a selection criteria of ( )nμ  and 

( )ng  parameters. 

 

Method Definition Comments 

SD ( ) 2

H
nμ = − g

g Rg
 Steepest-Descent 

CG (See below) Conjugate Gradient 

NR ( )nμ α= Q  Newton-Raphson 

Table 2. Optimization methods. 

 
The optimization methods are useful to find the minimum or maximum of a quadratic 
function. Table 2 summarizes the optimization methods. SD is an iterative optimization 
procedure of easy implementation and computationaly very cheap. It is recommended with 
cost functions that have only one minimum and whose gradients are isotropic in magnitude 
respect to any direction far from this minimum. NR method increases SD performance using 

a carefully selected weighting matrix. The simplest form of NR uses 1−=Q R . Quasy-Newton 
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methods (QN) are a special case of NR with Q  simplified to a constant matrix. The solution 

to ( )J w  is also the solution to the normal equation (21). The conjugate gradient (CG) (Boray & 

Srinath, 1992) was designed originally for the minimization of convex quadratic functions 
but, with some variations, it has been extended to the general case. The first CG iteration is 
the same that the SD algorithm and the new successive directions are selected in such a way 
that they form a set of vectors mutually conjugated to the Hessian matrix (corresponding to 

the autocorrelation matrix, R ), 0, H

i j i j= ∀ ≠q Rq . In general, CG methods have the form 

 

1

, 1

, 1

l

l

l l l

l

lβ −
− =⎧= ⎨− + >⎩
g

q
g q

 
(31) 

,

,

l l

l

l l l

μ = −
g q

q g p
, (32) 

2

2

1

l

l

l

β
−

= g

g
, 

(33) 

( ) ( ) ( )1l l l ln n nμ+ = +w w q . (34) 

CG spans the search directions from the gradient in course, g , and a combination of 

previous R -conjugated search directions. β  guarantees the R -conjugation. Several 

methods can be used to obtain β . This method (33) is known as Fleetcher-Reeves. The 

gradients can be obtained as ( )= ∇Jg w  and ( )= ∇ −Jp w g . 

The memoryless LS methods in Table 3 use the instantaneous squared error cost function ( ) ( )= 2J e nw . The descent direction for all is a gradient ( ) ( ) ( )n n e n∗=g x . The LMS 

algorithm is a stochastic version of the SD optimization method. NLMS frees the 
convergence speed of the algorithm with the power signal. FNLMS filters the signal power 

estimation; 0 1β< <  is a weighting factor. PNLMS adaptively controls the size of each 

weight. 
 

Method Definition Comments 

LMS ( )nμ α=  Least Means Squares 

NLMS ( ) ( ) 2
n

n

αμ δ= +x

 Normalized LMS 

FNLMS ( ) ( )n
n

αμ =
p

 Filtered NLMS 

PNLMS ( ) ( ) ( )H
n

n n

αμ δ= +
Q

x Qx
 Proportionate NLMS 

Table 3. Memoryless Least-Squares (LS) methods. 
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Method Definition Comments 

RLS 

( ) ( )1n nμ −=R  

( ) ( ) ( )n n e n∗=g x  

 

Recursive Least-Squares 

LMS-SW 

( ) ( )( ) ( ) ( ) ( )
2

H H

n
n

n n n n
μ δ= +

g

g X X g
 

( ) ( ) ( )= *n n e ng X  

 

Sliding-Window LMS 

APA 

( ) ( ) ( )H
n

n n

αμ δ= +X X I
 

( ) ( ) ( )n n e n∗=g X  

 

Affine Projection Algorithm 

PRA 

( ) ( ) ( ) ( )1 1n n N n nμ+ = − + +w w g  

( ) ( ) ( )H
n

n n

αμ δ= +X X I
 

( ) ( ) ( )n n e n∗=g X  

 

Partial Rank Algorithm 

DLMS 

( ) ( ) ( )1

,
n

n n
μ =

x z
 

( ) ( ) ( )= *n n e ng z  

( ) ( ) ( ) ( )
( ) ( )−= + −− 2

, 1
1

1

n n
n n n

n

x x
z x x

x
 

 
 

Decorrelated LMS 

TDLMS 

( ) ( )
αμ =

2
n

n

Q

x
, = 1HQ Q  

( ) ( ) ( )n n e n∗=g x  

 
 

Transform-Domain DLMS 

Table 4. Least-Squares with memory methods. 

 
Q  is a diagonal matrix that weights the individual coefficients of the filters, α  is a relaxation 

constant and δ  guarantees that the denominator never becomes zero. These algorithms are 

very cheap computationally but their convergence speed depends strongly on the spectral 

condition number of the autocorrelation matrix R  (that relate the extreme eigenvalues) and 

can get to be unacceptable as the correlation between the P  channels increases. 
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The projection algorithms in Table 4 modify the filters coefficients in the input vector direction 

and on the subspace spanned by the 1−N  redecessors. RLS is a recursive solution to the 

normal equation that uses MSE as cost function. There is an alternative fast version FRLS. 
LMS-SW is a variant of SD that considers a data window. The step can be obtained by a 
linear search. APA is a generalization of RLS and NLMS. APA is obtained by projecting the 
adaptive coefficients vector w  in the affine subspace. The affine subspace is obtained by 

means of a translation from the orthogonal origin to the subspace where the vector w  is 

projected. PRA is a strategy to reduce the computational complexity of APA by updating the 

coefficients every N samples. DLMS replaces the system input by an orthogonal component 

to the last input (order 2). These changes the updating vector direction of the correlated 
input signals so that these ones correspond to uncorrelated input signals. TDLMS 

decorrelates into transform domain by means of a Q  matrix. 

The adaptation of the transversal section of the joint-process estimator in the lattice-ladder 

structure depends on the gradient ( )ng  and, indirectly, on the reflection coefficients, 

through the backward predictor, ( ) ( )=n ng b . However, the reflection coefficient adaptation 

depends on the gradient of ( )y n  with respect to them 

 

( ) ( ) ( ) ( )⎡ ⎤∂ ∂ ∂∇ = ⎢ ⎥∂ ∂ ∂⎣ ⎦L
1 2

T

L

J J J
J

K K K
K

K K K
, 

(35) 

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

⎡ ⎤∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥∇ = ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥∂ ∂ ∂⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦

L

L

M M O M

L

2 2 2

1 1 1 2 1

2 2 2

2

2 1 2 2 2

2 2 2

1 2

L

L

L L L L

J J J

J J J

J

J J J

K K K

K K K K K K

K K K

K K K K K K K

K K K

K K K K K K

. 

(36) 

 
In a more general case, concerning to a multichannel case, the gradient matrix can be 

obtained as ( )= ∇JG K . Two recursive updatings are necessary 

 ( ) ( ) ( ) ( )1l l l ln n n nμ+ = +w w g , 
(37) 

( ) ( ) ( ) ( )1l l l ln n n nλ+ = +K K G  (38) 

 
Table 5 resumes the least-squares for lattice. 
GAL is a NLMS extension for a lattice structure that uses two cost functions: instantaneous 
squared error for the tranversal part and prediction MSE for the lattice-ladder part, 

( ) ( ) ( ) ( ) ( )( )2 2
1 1 1l l l ln n n nβ β= − + − + −B B f b , where α  and σ  are relaxation factors. 
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Method Definition Comments 

GAL 

( ) ( ) 2

αμ =l

l

n
nb

 

( ) ( ) ( )l ln n e n∗=g b  

( ) ( )1

l

l

n
n

σλ
−

=
B

 

( ) ( ) ( ) ( ) ( )1 11 1H H
l l l l ln n n n n− −= − + −G b f b f  

Gradient Adaptive Lattice 

CGAL (See below) CG Adaptive Lattice 

Table 5. Least-Squares for lattice. 

 
For CGAL, the same algorithm described in (31-34) is used but it is necessary to rearrange 
the gradient matrices of the lattice system in a column vector. It is possible to arrange the 

gradients of all lattice structures in matrices. ( ) ( ) ( ) ( )1 2

TT T T
Pn n n n⎡ ⎤= ⎣ ⎦U g g gL  is the 

LP×  gradient matrix with respect to the transversal coefficients, 

( ) 1 2

T

p p p pLn g g g⎡ ⎤= ⎣ ⎦g L , Pp K1= . ( ) ( ) ( ) ( )1 2

T

Pn n n n= ⎡ ⎤⎣ ⎦V G G GL  is a 

( )PLP 1−×  gradient matrix with respect to the reflection coefficients; and rearranging these 

matrices in one single column vector, 
TT T⎡ ⎤⎣ ⎦u v  is obtained with 

[ ]11 1 21 2 1

T

L L P PLg g g g g g=u L L L L , 

( )111 1 1 11 1 112 1

T

P P PP PP LG G G G G G −⎡ ⎤= ⎣ ⎦v L L L L . 

 

1

, 1

, 1

l

l

l l l

l

lβ −
− =⎧= ⎨− + >⎩
g

q
g q

 

(39) 

( )
T

T

T
T

1

, 1

1 , 1α α−

⎧⎡ ⎤ =⎪⎣ ⎦= ⎨⎪ ⎡ ⎤+ − >⎣ ⎦⎩
T

l
T

l

l

l

u v
g

g u v
 

(40) 

2

2

1

l

l

l

β
−

= g

g
, 

(41) 

wl+1 = wl + μ ul , (42) 

1 λ+ = +l l l lK K V . (43) 
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The time index n  has been removed by simplicity. 10 <<α  is a forgetfulness factor which 

weights the innovation importance specified in a low-pass filtering in (40). The gradient 
selection is very important. A mean value that uses more recent coefficients is needed for 
gradient estimation and to generate a vector with more than one conjugate direction (40). 

 
3. Multirate Adaptive Filtering 
 

The adaptive filters used for speech enhancement are probably very large (due to the AIRs). 
Multirate adaptive filtering works at a lower sampling rate that allows reducing the 
complexity (Shynk, 1992). Depending on how the data and filters are organized, these 
approaches may upgrade in performance and avoid end-to-end delay. Multirate schemes 
adapt the filters in smaller sections at lower computational cost. This is only necessary for 
real-time implementations. Two approaches are considered. The subband adaptive filtering 
approach splits the spectra of the signal in a number of subbands that can be adapted 
independently and afterwards the filtering can be carried out in a fullband. The frequency-
domain adaptive filtering partitions the signal in time-domain and projects it into a 
transformed domain (i.e. frequency) using better properties for adaptive processing. In both 
cases the input signals are transformed into a more desirable form before adaptive 
processing and the adaptive algorithms operate in transformed domains, whose basis 
functions orthogonalize the input signal, speeding up the convergence. The partitioned 
convolution is necessary for fullband delayless convolution and can be seen as an efficient 
frequency-domain convolution. 
 

3.1 Subband Adaptive Filtering 

The fundamental structure for subband adaptive filtering is obtained using band-pass filters 
as basis functions and replacing the fixed gains for adaptive filters. Several implementations 
are possible. A typical configuration uses an analysis filter bank, a processing stage and a 
synthesis filter bank. Unfortunately, this approach introduces an end-to-end delay due to the 
synthesis filter bank. Figure 5 shows an alternative structure which adapts in subbands and 
filters in full-band to remove this delay (Reilly et al., 2002). 

K  is the decimation ratio, M  is the number of bands and N  is the prototype filter length. k  

is the low rate time index. The sample rate in subbands is reduced to KFs . The input signal 

per channel is represented by a vector ( ) ( ) ( ) ( )1 1
T

p n x n x n x n L= − − +⎡ ⎤⎣ ⎦x L , 

Pp K1= . The adaptive filter in full-band per channel 1 2

T

p p p PLw w w⎡ ⎤= ⎣ ⎦w L  is 

obtained by means of the T  operator as  
 

( )2

1
K

M

p m pm m
K

m
↓ ↑=

⎧ ⎫= ℜ ∗ ∗⎨ ⎬⎩ ⎭∑w h w g , 

(44) 

 
from the subband adaptive filters per each channel pmw , Pp K1= , 21 Mm K=  (Reilly et 

al., 2002). The subband filters are very short, of length 1
1

L N N
C

K K

+ −⎡ ⎤ ⎡ ⎤= − +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ , which 
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