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1. Introduction

As wireless networks are becoming more omnipresent and pervasive, appropriate resource
allocation and organization becomes an increasingly pressing challenge. There exist on the
consumer market two important types of wireless network technologies. On the one hand,
cellular mobile networks are highly centralized and hierarchical. By contrast, wireless local
area networks (WLANs) are deployed in an ad-hoc unstructured manner, thus avoiding the
need for elaborate and costly planning. However, WLANs such as those falling under the
highly successful 802.11 standard do not manage interference effectively and tend to collapse
at high offered traffic loads. It can be seen that cellular and WLAN represent two radically
different approaches in radio resource management, characterized by different sets of advan-
tages and drawbacks.
The purpose of this chapter is to demonstrate the feasibility of a connection-oriented self-
organized wireless system which offers efficient radio resource management and provides
the best aspects of both cellular (reliable, connection-oriented operation even at high of-
fered loads) and WLANs (ad-hoc deployment and distributed intelligence). This is achieved
based on the multi-agent concept and local synergistic micro interaction (between neighbor-
ing transceivers) from which a global organization emerges.
The notion of Multiple Agent (MA) considered is of the “ant” variety, whereby small min-
imalist agents sense their environment and react to it in an interdependent manner. Social
insects and mostly ants or bees are the most cited biological examples. In the literature
such approaches have already been used to solve many combinatorial/optimization problems
(Beongku et al., 2003; Brueckner & Parunak, 2003; Muraleedharan & Osadciw, 2003).
This design philosophy differs from more traditional approaches which consist in postulating
criteria expressed by equations and models in order to formulate the problem in such a way
that an optimal solution is derived within the defined context. In the agent approach, precise
mathematical formulation of the problem is neither required nor very useful. The approach
thus becomes attractive for tackling complex multidimensional problems which would oth-
erwise be intractable. Therefore, our goal is not to demonstrate an optimal design, but to
illustrate how a Multi Agent System (MAS) can be empirically designed and fine-tuned to fit
a specific application. Moreover, it will be seen that such a dynamically adaptive solution, in
spite of its empirical nature, offers many advantages over a rigid analytically-derived coun-
terpart.
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We will focus herein on Parunak’s methodology (Parunak, 1997) because it offers an intuitive
modeling framework, which is well suited to the empirical design approach.

Considering wireless networks, this chapter describes a flexible distributed base station (DBS)
framework which removes many limitations of current networks in order to augment the so-
lution space. For example, a plurality of DBS can simultaneously provide a network link
to the same mobile, thus leveraging macrodiversity to improve link quality and/or achieve
power savings. These DBS are designed with auto-organization in mind, such that the net-
work structures itself autonomously. This is where MAS come in, offering the desired dis-
tributed intelligence, adaptability, scalability and auto configuration properties. However, the
DBS architecture is challenging in at least three aspects:

1. It requires the continuously-updated solving of a large combinatorial problem, namely
finding a good allocation of DBS resources to mobiles requiring service.

2. Interference must be handled in a transparent way so that mobiles can gain the best
benefit of macrodiversity without being restrained by interfering mobiles.

3. Power control is an important aspect for both energy consumption and network capac-
ity given that it is tightly-coupled with interference patterns.

These three aspects are entangled together such that an optimal allocation is a complex combi-
natorial problem. It is NP hard unless some heavy simplifying assumptions are made (on the
geometry, on propagation, or other aspects). Moreover, in the context of mobility, an optimal
solution at one point in time is not optimal if it cannot easily adapt to changing parameters
(mobiles’ positions, fading, etc.).
Yet, this complex context is well suited for a MAS design. Indeed, MA need an active environ-
ment in which to generate interaction. And each event of allocating power, channel or connec-
tions to mobiles, that a DBS generate, has consequences on other mobiles’ links. This creates
the required active environment in which agents can sense parameters such as the received
power, interference and link quality, and where decisions can be made locally to generate new
actions. In turn, the effect of these actions are sensed by other agents. The next section de-
scribes the challenges of the proposed DBS architecture. Then, MA design concepts used in
this study are described. The fourth section details the proposed design of three categories of
interacting agents respectively for :

1. macrodiversity connection management,

2. channel allocation, and

3. power level control.

Finally, the system is emulated. Results, including simulation of complex cases with randomly
distributed DBS and mobile traffic, show first the resource allocation quality that can be ob-
tained, and second the effectiveness of MAS design in terms of auto-configuration/scalability
and dynamic adaptation properties.
A final brief discussion will extend Parunak’s agent design principles to summarize the
lessons learned from designing MAS for the application at hand.
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Fig. 1. Illustration of a DBS architecture exploiting 2 channels, and showing macrodiversity
relay connections.

2. Challenges of the Distributed Base Station Network

2.1 Macrodiversity Potential

In a perfectly geometrical network with homogeneous traffic and symmetric propagation con-
ditions, each DBS needs only to connect to the closest mobiles to maximize the provided qual-
ity of service. However, traffic is never homogeneous and varies across time and space in ac-
cordance with the users’ schedules and patterns of usage. Moreover, propagation conditions
are highly dependent on location, with varying availability of lines of sight and saturation
of the frequency band due to heavy traffic. In such a context, there is a need for a simple,
scalable, dynamic system to allocate relay links to mobiles and to continuously adapt the al-
location pattern to changing conditions.
DBS can choose to relay mobiles far away from themselves in order to provide them with more
macrodiversity, and thus better balance resource allocation. However, this choice involves a
trade off. The exponentially-decaying link quality with the mobile-DBS distance could lead a
remote mobile to consume many valuable relay links while deriving only marginal benefits,
whereas closer mobiles would obtain much higher macrodiversity benefits from those same
resources. Also, macrodiversity links provide not only enhanced overall quality links, but also
reliability against network disconnection when undergoing severe fading, and it facilitates
handover for mobiles moving outside from the range of some DBS to others. Therefore, a
single criterion such as maximizing the minimum QoS for all mobiles would fail in certain
conditions where enough resources would be available to provide the majority of mobiles
with decent QoS, because of a few mobiles consuming much of these resources while deriving
marginal benefits.
Such situations reveal the perils of pursuing a global solution based on a single perhaps overly
simplistic quality criterion. In fact, many Pareto equilibrium solutions exist, in which no mo-
bile can gain quality of service without stranding another user. And all these possible so-
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lutions present multiple compromises on connection reliability and distribution of QoS. e.g.
some solutions could favor maximizing overall signal strength for high transfer rate, others
by distributing relaying links differently could prevent disconnections due to sudden strong
fading or interference because mobiles would in general enjoy higher probability of being
assigned multiple relay connections.
As such, it is not necessarily meaningful to define a priori goals for the search of a solution,
as it is not known beforehand what are the benefits and drawbacks of each possible Pareto
solution. This solution space is moreover hardly tractable due to the discrete nature of the
problem, with a finite but large number of link resources to attribute. It is limited by phys-
ical conditions where some links may not be feasible due to the weakness of the considered
signals. Also each link brings an increment of additional quality to the mobile’s overall link
quality, whose importance heavily depends on local propagation conditions that can vary
continuously (with slow fading and changing mobile-DBS distances), or abruptly given the
arrival of new connections in frequency allocation or strong fading situations. In this context,
no analytically tractable mathematical framework exists leading to an optimum solution tak-
ing into account all the dimensions of the problem. More specifically, one must consider that
an optimal solution, at a given state of the network and a given frame in time, could be too
heavily specialized to that particular situation, such that a sudden change (strong fading, new
mobiles joining the network) would make it ineffective. By analogy, it is known in biology
that a species too well adapted to its environment is heavily endangered due to its limited
capacity to adapt to environmental changes. Hence, a good solution is not an optimal one, but
a good enough one that provides margins for adaptation in time to face changes.
There is a strong need for distributed techniques which are flexible enough to be tuned to the
desired compromises while being able to handle unexpected events.

2.2 Channel allocation

Channel allocation faces the same propagation issues as connection management. To under-
stand the implications of channel management, we introduce the concept of channel footprint.
In a given situation (mobiles and DBS positions and relative densities, available channels,
power allocations, etc.), a mobile’s channel footprint can be understood as the space it oc-
cupies to maintain all its relaying links to DBS at a sufficient quality level. Hence, a second
mobile, if emitting on the same channel inside this space, would affect some or all of the first
mobile’s connections.
In the cellular context, it is assumed that each mobile enjoys the same channel footprint which
is controlled by the cell division of the space and an appropriate interference level threshold
to allow or prevent the reuse of a channel across cells. In the 802.11 protocol, it is a handshake
mechanism (the RTS/CTS exchange) which alerts neighboring transceivers that the channel
will be in use, in order to control, to some extent, this channel footprint by preventing neigh-
bors from reusing the channel in the vicinity, thus minimizing the hidden terminal effect (Ware
et al., 2001).
In the DBS architecture, it would be appropriate that mobiles be offered varying channel foot-
prints to adjust availability of channel resources and support the various needs of mobiles for
macrodiversity. Indeed, mobiles needing more macrodiversity would require a larger foot-
print. Moreover, mobiles close to all of their relaying DBS should allow other mobiles to reuse
the same channel at a closer range, compared to mobiles far from all DBS. This holds since
these mobiles can support higher interference power and still maintain a good signal to inter-
ference plus noise ratio (SINR). This aspect of channel allocation was taken into consideration

www.intechopen.com



Multi-Agent Design for the Physical Layer of a Distributed Base Station Network 497

in the dynamic allocation scheme know as the umbrella cell system (Furukawa & Akaiwa, 1994).
However, channel reuse should not necessarily always be maximized, since it could lead to
locally unnecessarily compacted channel allocation, even in low traffic conditions. Hence,
channel allocation should be able to adapt to always balance resources to sustain the high
throughput rate of modern communication services.
Another aspect to consider is the irregular geometry of the DBS network. The DBS density
will necessarily change across space given some maximum or mean local load. And also,
local mobile traffic varies across time and space (e.g. from residential neighborhood to office
centers). This leads to constantly changing disparities in local loads of the network to which it
must adapt the channel allocation. In the cellular world, solutions exist in the form of Dynamic
Channel Allocation schemes (DCA), such as the well-known segregation scheme by Akaiwa
& Andoh (1993), allowing cells with higher loads to use more channels.
Finally, faster channel allocation adaptation is required with high mobility, as mobiles move
in and out of DBS’ ranges. In cellular systems, this aspect is only tackled via a handover
mechanism. However, in the DBS concept, DBS share channels via the macrodiversity relaying
links. Hence, mobiles need not change their channel simply because they change a relaying
link. This additional complexity implies channel segregation algorithms are not as efficient in
the DBS concept.

2.3 Power allocation

Power level management can strongly affect the previously described aspects of connections
and channel management. It can also offer a powerful means to leverage the possibilities in
terms of resource management. Indeed, in the context of DBS, a higher power level implies
modifying the mobile’s channel footprint, and hence allowing it to reach perhaps more DBS
for more macrodiversity. Or, on the contrary, a lower power level will leverage the channel’s
reuse possibilities by generating less interference. Power control can therefore help to provide
much higher resource availability, and can provide synergistic behavior with the channel and
connection allocation to leverage the possibilities that macrodiversity can offer to balance the
resources across mobiles, throughout the network.
However, there potentially exists a maximum power level dynamic range which limits the
effectiveness of power control. Indeed, decentralized DCA implies sensing the availability of
channels. For example, the 802.11 protocol implements CSMA (Carrier-Sense Multiple Ac-
cess) to prevent improper reuse of channels. In the cellular world with DCA, a maximum
sensed interference power level threshold is considered to decide if the channel is available.
Therefore, the dynamic range of power-level adjustments cannot exceed a certain range such
that mobiles with low emission power needs are not disrupted by the interference caused by
a new connection from another mobile, perhaps much further away, but with a much higher
power level. It is noteworthy that this power level range is dependent on the space distribu-
tion of mobiles (and channel allocation). The range itself may not be constant at all scales such
that it could be high throughout the entire network when compared to smaller areas of the
network. Indeed, the SINR is a relative quantity which depends on the spatial distribution of
access points and traffic.
Power level allocation is also a contention process where each mobile strives to maximize its
QoS. Considering the viewpoint of one mobile, in order to maximize its QoS, it wants to be
within reach of a maximum number of DBS to maximize macrodiversity, and it also wants
to maximize its SINR for each of its links. Therefore, it wants to maximize its power level.
However, if all mobiles did so, none would get any benefit. And since no mobile can obtain
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any gains by reducing its power level, a non cooperative strategy is not a good choice for a
game-theoretic approach to power level adaptation.
Necessarily, some mobiles will have to “accept” to reduce their power level in order to al-
low other mobiles in need to enjoy better QoS by reducing interference and enabling them
to reach more DBS for macrodiversity. Yet, and due to the non linearity of the propagation
environment, there necessarily is a point of diminishing returns for mobiles to reduce their
power level. While any reduction necessarily implies a reduction in interference, the potential
gain for other mobiles does not necessarily offset or compensate (given a compromise choice
at a global scale) the loss in QoS for this mobile. It is to be understood here that there exist
trade-offs for an infinity of Pareto solutions. Therefore, and again, postulating one global uni-
dimensional criteria (e.g. as is done in traditional algorithms (Grandhi et al., 1993) ) to derive
a power allocation method would not allow assessment of the potential benefits of different
trade-offs. Indeed, the results of the proposed design will show how the traditional approach
to power control (which consists in maximizing the minimum SINR for all mobiles) in spite of
offering interesting capabilities in some situations, also prevents most mobiles from achieving
their QoS potential.

2.4 Complexity, Dynamics and Scalability

2.4.1 Complexity

In existing types of networks, the complexity is constrained by simplifying the hypotheses.
For example, in cellular networks, channel allocation is simplified by segregating channels
given an interference power threshold in order to guarantee a minimum SINR for all mobiles
in a cell. This assumption simplifies the evaluation of provided QoS, as it guarantees a mini-
mum QoS for connected mobiles, and avoids the hidden terminal effect, such that there only
remains to evaluate the probability of a connection being blocked (when all channels in a cell
or sector are occupied).
In the considered architecture, such assumptions are not made a priori as the purpose of the
DBS architecture is to maximize flexibility. And considering the number of possible combina-
tions of connections, or channels or even power levels, it is obvious that an exhaustive search
to find all Pareto solutions is pointless. Even considering an exhaustive search in the case of a
very simple scenario with only a few mobiles is pointless, since in such cases, the non-linear
effects and interactions of large networks would not apply and the obtained results would be
too limited to draw meaningful conclusions.
Also, postulating a unidimensional criterion and over-simplifying the non-linear effects in-
volved, in order to provide a tractable mathematical framework would limit the solution space
and therefore restrict the possibilities of such an architecture.
MA offer interesting properties to cope with complexity. The approach involves segmenting
the problem into mulitple subproblems where each is tackled by its own agent class. Heavy
calculations for evaluating and selecting combinations are also avoided. Instead, specific com-
binations are attempted and modified by agents’ actions through local interactions.

2.4.2 Dynamics and Scalability

One particular aspect to consider is the fact that a given resource allocation solution must
necessarily adapt to changes in a mobile wireless network. Such a solution must also adapt
to unexpected events, such as the failure of a DBS. And finally it must scale, such that adding
DBS locally will seamlessly, without any need for configuration, increase the capacity of the
network in terms of either provided QoS or number of provided connections.
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3. Multi-Agent Design

To solve the resource allocation problem, with the previously described considerations, mul-
tiple agents or bio-inspired optimization seems appropriate, as such approaches provide the
most important sought-after characteristics, namely

• scalability ;

• dynamic adaptation ;

• auto-configuration ;

• reliability facing unexpected events.

Following Parunak’s (Parunak, 1997) design principles, three main characteristics need to be
provided in a MA design: coupling, auto-catalysis, and function. Coupling implies that each
MA process is coupled directly or not to the others and their environment (e.g indirectly using
pheromones via an environment). Auto-catalysis implies that the agents’ actions taken in the
right direction1, by the nature of the agents’ processes, favor similar actions leading the system
to converge to a desirable state (positive feedback reinforcing the convergence towards the
solution). And finally, the system must be such that a useful global function emerges out of
the induced local interactions.

3.1 Coupling

To achieve coupling, Parunak explains that we first need an active environment. The radio
propagation medium constitutes just such an environment, as each mobile emitting on a given
channel influences the others due to interference. Hence, a mobile’s movement changes the
interference patterns for all others in its immediate vicinity. Additionally, mobiles are entities
which strive to acquire connections and in so doing, they necessarily broadcast information
to inform neighboring DBS of their presence and of their link quality. This forms an active
environment in which information is exchanged to sustain coupled processes.
We emphasize the fact that DBS and mobiles do form appropriate entities to host agents that
are small in size and scope. In particular, DBS, compared to central cellular base stations, are
specifically meant to be small, and will necessarily have small scope as they can only relay a
(smaller) limited number of mobiles in their vicinity.
As a final criterion related to coupling, agents should be mapped as entities, not functions since
an agent does not implement a complete function. That is, the function optimizing resource
allocation should be the result of the interaction of the agents and not be implemented as the
output of one agent. Indeed, an ant (in ant colonies) does not find a shortest path alone.
In the proposed system, the agents are mapped to either mobiles or DBS. Their actions will
then be to either allocate or deallocate a channel, or a connection, or modify a mobile’s power
level. Necessarily, all processes which modify resource allocation are all coupled since each
agent’s actions will not only influence the concerned mobile (changing channel, obtaining a
new relay connection or changing its power level), but also influence the neighboring mo-
biles, modifying their own channel footprint, their QoS, hence influencing other agents, and
coupling each agent’s processes together indirectly.

1 Since a priori goals are not explicitly defined, neither is the concept of a ”right direction”. Rather, a
behavior is designed, tuned and retained because its auto-catalysis properties happen to converge to a
solution which satisfies the needs of the system. Therefore, such a design allows wide exploration of
the solution space rather then restricting to predefined goals by not including all the effects involved in
the multidimensional problem. The design represents a certain creative process.
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3.2 Auto-catalysis

3.2.1 Flows

For agents to maintain their interactions, they must be designed to let the process evolve
continuously. Therefore, agents should not be designed based on discrete state transitions,
leading to pauses in the processes because of unverified conditions. That is why we must
favor flows instead of transitions. One way to achieve this is for agents to use volatile markers
(i.e. permanent and non-obstructive source of information which dissipate in time as they
become irrelevant –e.g. pheromones in ant colonies) to inform other agents on their particular
state, so that the agents’ processes continuously evolve rather than stop and wait for specific
conditions.
It is a design choice that no explicit information exchange is performed concerning the positions
of mobiles and DBS, available resources, etc. As mentioned, the available information stems
from what DBS and mobiles can sense locally (mobiles’ needs and QoS), which represents
our volatile markers. These bits of information are by nature volatile, as they only stay in
the environment as long as they are broadcasted by the mobiles, and hence are necessarily
current.
Since agents should not wait for predefined conditions to take actions, it is a comparative basis
that will trigger a corresponding action of:

1. allocating/deallocating a macrodiversity connection;

2. changing a mobile’s channel (frequency hopping);

3. increasing/decreasing a mobile’s power level to a certain amount.

3.2.2 Homeostasis

The notion stems directly from biology in which systems always strive to maintain an equi-
librium or homeostasis point, e.g. the blood sugar concentration is maintained (mainly) by two
different hormones which have opposite effects to balance the concentration.
This point of equilibrium must be sustained by an ongoing flow to ensure the system continu-
ously explores the solution space and does not get stuck in a deadend. This flow is analogous
to the variations of a stock market title whose value is influenced (at a macro level) by the
traders’ actions of selling and buying. In turn, at the micro level, the variations of the values
influences the traders’ decisions.
The corresponding aspect of our system is created by forcing DBS to continuously create and
destroy connections, continuously change channels (via channel hopping), and continuously
adjust power levels. Each of these actions — at the macro level of agents — influences the
status of mobiles, and these changes are in turn sensed by surrounding mobiles and DBS.
In effect, the flow of actions makes the system converge to a homeostasis point. This point
will be dependent on the the state of the network (traffic, available resources, etc.) due to
the comparative basis that triggers actions. As long as there exists a bias observed by the
agents that will trigger an action, the system will converge or oscillate to its homeostasis point.
These variations are important, since without them, and if there is no other change in the
system (e.g., induced by mobile motion), the sensed QoS of mobiles would never change,
never trigger actions, and the system might simply stop short of an optimal state.

3.2.3 Amplification and limitation

Together, amplification and limitation constitute an other important aspect to generate the
convergence to a homeostasis point. Amplification implies a positive feedback mechanism

www.intechopen.com



Multi-Agent Design for the Physical Layer of a Distributed Base Station Network 501

such that convergence (to a solution) is favored. In other words, the actions of an agent which
lead the system in a desirable global direction should be favored and should also influence
the surrounding agents to act in the same direction.
In effect, an MA system is comparable to a Genetic Algorithm (Goldberg, 1989) preserving
"genes" that seem to provide the best fitness and hence are part of an optimal solution. The
difference is that there are no external observing entities that measure via a metric the fitness
of candidate solutions. Rather, it is the interactions between agents and their environment —
the propagation medium — that must provide the natural selection function.
Limitation also implies preventing the whole system from focusing on one point (exacerbating
the convergence of actions to a local minimum) and thus miss a better solution. Moreover, lim-
itation can favor convergence by dampening the effect of amplification to prevent the system
from going past a solution or oscillating around it without converging.

3.3 Function

Coupling may be trivial to obtain and auto-catalysis somewhat more involved, but if the pro-
cess as a whole does not realize a useful function, then it is irrelevant. Function implies that
the homeostasis point described previously is useful for the system, e.g. in biology the home-
ostasis point for the blood sugar concentration is such that enough sugar is available to fuel
the cells, but not too much to avoid excessive sugar loss through the kidneys.
In our system, the sought-after function consists in

• maximizing the potential usage of the resources;

• and balancing them to offer a good compromise of quality across all mobiles, while not
hindering the overall system performance.

Most often, function is obtained through a utility function which translates the flow of varia-
tions (of QoS) sensed into rational decisions. That is, it converts a multi-dimensional problem
into a one-dimensional quantity upon which decisions for actions are based.
In spite of the fact that many frameworks attempt to provide mathematical support to de-
rive such utility functions (such as game theory (Mackenzie & Wicker, 2001) or COIN theory
(Tumer & Wolpert, 2004)), these frameworks mostly consider intelligent agents having the
ability to learn (eventually using reinforcement learning techniques), which is not the nature
of the proposed design. Ultimately, defining simple agent behavior to obtain an intended
global behavior still relies on intuition and art such as in Conway’s “game of life” (Elwyn R.
Berlekamp et al., 1982), or with Wolfram’s cellular automatons (Wolfram, 2002). Therefore, no
systematic procedure is known which derives the locally-applicable utility function from the
desired global behavior.
Function can also be sustained (especially if a utility function is not found) with

• behavior diversity and

• randomness.

Randomness can be helpful to introduce alternative solutions, that will or not be kept in time
given how effective they are. Behavior diversity can be obtained by forcing neighboring
agents to act differently so as to provide different reactions and experiments given identi-
cal stimulus. These properties support the function property by breaking the symmetry so as to
prevent the system from entering any deterministic patterns which might hinder convergence.
In the following section it is described how auto-catalysis and function are obtained for each
class of agents.
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Fig. 2. Agents actions and mapping to entities.

4. Agents’ Design

4.1 Agents Sensing Abilities

A mobile broadcasts its actual QoS designated PT(m), so that DBS in its vicinity can sense its
needs. This QoS corresponds to the total BER after macrodiversity combining the mobile’s
received signals. Moreover, a DBS senses the potential additional link quality it can provide
(or already provides) to a mobile. Considering mobile m and DBS B, this additional link
quality is named Pe(m, b), and represents the BER of the link from m to DBS b (Leroux et al.,
2006). Also, to incorporate the notion of classes of QoS, the DBS knows that mobile m requires
an overall quality of Pd(m), i.e. PT(m) < Pd(m).
For convenience, these values (Pe(m, b), Pd(m) and PT(m)) are expressed in a logarithmic scale
of base 10 of the BER. It is shown in (Leroux et al., 2006) that the following holds in a Rice
fading environment with different Rice fading parameters (SINR, K factor) values for each
link:

PT(m) ≈ a + ∑
b

Pe(m, b), (1)

where the relation (which implies that the combined BER is the sum in the logarithmic do-
main of the individual link BERs) is exact for certain types of modulation (such as DPSK)
and approximate for other types (such as coherent QPSK), and a is a constant related to the
modulation.
By definition, if mobile m is not relayed by DBS b, we have

Pe(m, b) � 0. (2)

4.2 Connection Allocation

4.2.1 Coupling

Connection agents are mapped to DBS. Indeed, each DBS senses local information on mobiles’
needs and can take decisions with regards to the allocation of connections. Mobiles can be re-
layed by many DBS offering more or less QoS. Therefore, a DBS decision (whether to relay or
not a mobile) will influence what its neighboring DBS senses and therefore influence their ac-
tions. Hence, the whole network is interdependent and linked or coupled via macrodiversity
links.
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4.2.2 Flow of action

While attempting to maintain connectivity, DBS should continuously change their links to grad-
ually converge to an optimal configuration which maximizes the benefits of macrodiversity. It
is this flow of changes in connection allocation which sustains the properties of auto-catalysis
and function.
In order to do so, two types of actions are defined : disconnection and reconnection. Each
action is taken alternatively, given the number of active connections the DBS has. Suppose a
DBS can provide at most N connections and has m active connections, it will perform

1. N − n disconnections, if it has m > N − n connections or,

2. N − m connections, if it has m ≤ N − m connections.,

where n is a system parameter (typically n = 1) under the designer’s control. For large values
of N, increasing n helps accelerate the convergence of the system, yet high values of n will
suppress the iterative selection mechanism such that the system may not converge any longer.
Hence two opposing “forces” must be designed to link the information sensed to the choice
that must be taken : which mobiles should be connected or disconnected. Finally, the balance
between these two forces should lead connections to a state that represents an homeostasis
point.

4.2.3 Function

Randomness is incorporated by having the connection agents activate (to perform a connec-
tion or disconnection action) randomly, following a Poisson law considering a discrete model
of time. This should also help to prevent any periodic pattern from taking hold.
A utility function is designed to link the information sensed to the choice of actions : links are
rated according to a continuous function so the DBS can compare the links and decide which
to connect or to disconnect.
Two metrics are designed, providing information on:

1. a measure of how well mobile m is served with respect to its requested QoS, i.e.

Fneed(m) =
P′

T(m)

Pd(m)
, (3)

2. and a measure of how much diversity DBS b is providing to m with respect to the mo-
bile’s overall link quality, i.e,

Fdiv(m, b) =
Pe(m, b)

P′
T(m)

. (4)

P′
T is understood in these definitions as the mobile’s total link quality if DBS b is connected to

the mobile (whether it is evaluating for connection or disconnection).
These two simple functions provide sufficient information for the DBS to compare the mobiles’
links and take a decision based on:

• how much a mobile needs more macrodiversity links;

• and to which extent this DBS is the one which will provide the mobile with an efficient
macrodiversity link (relative to the other DBS currently serving the mobile).

These information bits still need to be combined, and this is where an appropriate trade-off is
induced by using different combination functions.
To design the combination function, different characteristics must be considered:
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1. If a mobile has no connection, it must be favored, since basic connectivity should take
precedence.

2. If a mobile has only one connection, the DBS should not disconnect it.

Furthermore, there are two complementary compromises involved in the DBS’ decision pro-
cess:

1. either to remove a link because the mobile already enjoys sufficient QoS,

2. or to maintain it because it is the main DBS providing it;

and,

1. either to connect a mobile because it is in need,

2. versus not connecting it because the additional diversity brought to this mobile would
be low (compared to other possible connections).

Finally, the function must provide a natural ordering to classify the compromises in order to
take a decision.
The following function addresses all the characteristics discussed above:

C(m, b) = Fneed(m)× log (Fdiv(m, b)) . (5)

This function is necessarily positive or null. It is null if the mobile has no connection, since,
if it were connected to the DBS, it would have PT(m) = Pe(m, b) which implies Fdiv = 1
giving a null value of the logarithm. Likewise, it is null if considered for disconnection and
the mobile’s only link is to the considered DBS. Hence, if this utility function is null, the
agent will either privilege this mobile for connection or not disconnect it to keep the mobile’s
existing connection active.
The evaluation of the compromise is obtained by the multiplication of the two terms. Hence,
the more the DBS provides diversity, or the higher is the current QoS enjoyed by the mobile,
the higher is the function’s value.
The choice of compromise itself comes derives from “shaping function” used prior to the
multiplication of the two metrics. Simulation showed that the optimization happens most
efficiently if the shaping function of the second term is concave (naturally, it should be strictly
increasing), hence the use of the logarithm, which also provides the necessary null value for a
mobile with a single link.

4.2.4 Limitation and amplification

Limitation and amplification is naturally obtained with the environment propagation proper-
ties. Indeed, a poor signal quality will favor multiple connections (amplification), but distance
(mobile to DBS) and the infrastructure link capacity of DBS will restrict excessive connection
growth (limitation).
Also, this amplification (or attraction of macrodiversity links) and limitation sustains the
homeostatic behavior where mobiles in need get more links up to an equilibrium point where
additional links to these mobiles would overwhelmingly affect an otherwise well-served mo-
bile.
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4.3 Channel allocation

4.3.1 Flow

The flow of actions in the channel allocation agents naturally consists of the changes in channel
allocation, or channel hopping which modifies mobiles’ QoS and interference patterns which in
turn should trigger other changes.
For this flow to be generated properly, appropriate actions are specified in the following.

4.3.2 Coupling

Following Parunak’s principles, the sought-after function (optimizing the allocation) is di-
vided into independent actions whose interactions should lead to the other two properties
(auto-catalysis and function).
First, given the macrodiversity context, a mobile will choose one of its relaying DBS to be its
“master” connection, which implies one type of action and one agent (to select the master)
mapped at each mobile.
Second, DBS will choose mobiles (from their master links) and change their channels as is done
in cellular systems. Except that here, the change, or channel hopping, will not be triggered by
specified conditions (e.g. a mobile SINR falling below a threshold, or a mobile changing cell).
Instead, the flow of channel hopping will be sustained by having DBS choose a mobile at each
agent activation and change its channel. Channel allocation agents will activate in the same
way that the connection agents do. Two types of actions must be defined:

1. choosing a mobile, and

2. choosing a channel.

Mapping these actions at the DBS level, rather than letting the mobile decide when to change
channel makes sense in that DBS can gather information most effectively on the different chan-
nels in use, thus preventing mobiles from having to continuously scan channels.

4.3.2.1 Sensing

In addition to the mobile’s sensed link quality, DBS can sense

1. the received power of surrounding mobiles pr(m, b);

2. and the interference level on various channels pI(b, c) (for channel c at DBS b).

4.3.3 Function

Maximizing the channel usage constitutes, in a sense, an effort against the second law of ther-
modynamics. Indeed, the channel allocation, if optimal at some point in time, will necessarily
deteriorate with mobility as two mobiles transmitting on the same channel get closer to a point
where the interference will degrade the offered QoS, such that resources are not balanced any-
more. Considering this aspect, and rather than trying to solve an NP-complete problem, load
balancing is obtained by always attempting to change the channels of mobiles in need such
that they enjoy better SINR.
Three utility functions need to be designed taking as input what the agents can sense, and
yielding a chosen parameter value as output.

a. Mobile m will choose a master DBS (among its relaying DBS) on activation (where its
activation follows a Poisson law) based on the DBS from which it obtains the highest
link quality:

b = arg max
b

{Pe(b, m)}. (6)
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b. DBS b will choose a mobile (among mobiles connected as master to b), that is the most
in need, i.e.

m = arg min
m

{Fneed(m)}. (7)

c. Ideally, the DBS should try to use the channel with the lowest interference power level:

c = arg min
c

{pI(b, c)}. (8)

However, it may be overwhelming for a DBS to systematically sense channels to maintain up-
to-date information on interference levels on all channels, and this behavior (utility function
c.) is therefore only used as a benchmark.
Akaiwa & Andoh (1993) suggested a selection mechanism which is used herein with some
modifications. DBS b will scan channels in the order of a given priority list it maintains, and
determine if a channel can be assigned according to

• whether the resulting SINR will be above an SINR threshold ;

• and (in addition to Akaiwa’s method) whether it will also be above the actual SINR the
mobile enjoys.

The SINR threshold represents a mean to control the hidden terminal effect. It is a studied pa-
rameter in order to observe to which extend it prevents HTE while not limiting the flexibility
of the system.
For Akaiwa’s segregation algorithm, the priority list is obtained dynamically given the ratio
for each channel of previous assignments versus previous assignment attempts.
Finally, a random priority list is proposed as a simple, yet effective (as we will see) alternative
to the segregation algorithm approach.

4.3.4 Limitation

DBS will only test a limited number of channels given by the Chmax parameter, before giving
up. Indeed, there is no guarantee that the DBS will find a channel that will suit the chosen
mobile. Therefore, and instead of letting it scan all channels, it is forced to limit its search.
Eventually, it will try again, or another DBS will, thus providing behavior diversity as well.
In effect, the DBS are only trying to maintain channel assignments in a working state by “up-
grading” the solution iteratively in an opportunistic fashion given the eventual availability of
channels. It is the effect of a new channel allocation that will cause other DBS to also react
and change channels for the mobiles that will see their QoS affected by the new neighboring
interference. As this flow of action is sustained, the channel allocation remains functional and
should adapt to changes.

4.3.5 Channel availability

An additional functionality is provided for channel availability. A few spare channels are
reserved for the initial connection or reconnection of stranded mobiles (instead of using chan-
nels from the main pool). Then, a master DBS which has mobiles on these spare channels
will attempt to change their channels as a priority instead of choosing another mobile. Such
spare channels allow rapid network entry, providing higher availability as well as some time
margin for the DBS to find free channels in the main pool. It therefore eases the process and
the flow of channel hopping.
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4.3.6 Alternatives

Some attempts were made in order to add additional functionality to better handle irregular
topologies and classes of QoS. One such attempt was not only to change channels of mobiles
in need to better ones, but to also change channels of over-served mobiles with worse ones.
However, this approach proved fruitless. One reason is that it is not possible for DBS to dif-
ferentiate between channels having high interference due to over-served mobiles or poorly
served mobiles. And the change to a “worse” channel can have more cons (far too much
degradation for other mobiles) than pros (compacting channels more efficiently to free re-
sources). Indeed, the main challenge resides in the degradation of interference. And, in effect,
better results are obtained by simple channel hopping with the poorly served mobiles until
other mobiles are affected, react, and some balance is obtained.
The concept of classes of channels was also explored, where the threshold considered to assign
a channel would be modulated given the class of the channel and the mobile’s need, in order to
generate classes of channels with less interference and some with more, for mobiles which can
sustain it (which is also inspired from the umbrella-cell mechanism). No significant increase
of performance has yet been obtained with this approach.

4.4 Power Allocation

4.4.1 Flow

Necessarily, the flow in power allocation is the result of changes in power level, which in turn
changes interference, and the QoS of surrounding mobiles, which in turn should trigger other
power level changes. This striving for amplified/limited adjustments of power levels aims to
converge to a point of equilibrium : an homeostasis point where the system actually exhibits
its expected power control behavior.

4.4.2 Function

The previously defined Fneed(m) definition is considered. If it is above 1, the mobile is over
served (it enjoys a BER better than requested) and should reduce its power level, or increase it
if lower than 1. Yet, this in itself would be restrictive, as it would force all mobiles to the same
mean quality Fneed value, without taking into account the non linearity of the problem due
in part to the limited dynamic range of mobiles’ power levels. Indeed, and as will be shown,
the thermal noise at the receivers imposes a limit on the minimum power level a mobile can
transmit without the resulting SINR being too low for the connection (however small the
interference level is). And, of course, mobiles saturate at a maximal power level. Also, some
mobiles might be able to obtain more quality while not restricting others to maximize their
own, and if so, they should.
The Need variable is introduced to describe what could be the power level of the mobile
given its Fneed(m) factor : it is the value to which the mobile’s power level should converge to
if nothing else changes (which is not the case as other mobiles will adjust their power level).
When, for all mobiles, the current Needm value equals the current power level p(m), then the
homeostasis point is reached. The variable is defined

Needm(Fneed(m)) = 2e(−SFneed(m))
× (SFneed(m) + 1)− 1, (9)

where the value S is a scaling parameter for Fneed(m) in order to allow mobiles to potentially
obtain QoS higher than their requested Pd(m). Therefore, the Need function will not neces-
sarily be smaller than the current power level if Fneed(m) > 1. And mobiles will not be forced
to restrict their obtained QoS to a global mean value. In the current simulations, this QoS is
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maximized with S = 0.8, and this has been shown to hold in many different conditions of
traffic, mobile speeds in (9) and available resources. .
The exponential in (9) is a shaping function which also naturally affects the dynamics of the
system. In effect, it affects mobiles’ convergence speed differently given their needs, and this
translates into behavior diversity as no mobile will react in a precisely proportional manner.
The proposed function is of course not the only possible choice, but it has proved stable and
effective. Again, for MAS, effectiveness does not lie in the mathematical exactness of the
function, but in the interactions it will generate.

4.4.3 Homeostasis

Finally, this Need factor must be converted to a delta (step) value to adjust the power level.
Homeostasis is obtained by comparing the Need value to the current power level the mobile
uses to transmit. Hence, the delta value is in the form of Needm − pm. The mobile will then try
to converge to a Needm value which depends on local interactions given itself and neighbor-
ing mobiles’ Fneed values (given that these are indirectly linked via interference). Eventually,
a non-linear concave function helps convergence so that with Needm and pm close, the gen-
erated delta is kept small to slow down variations and help stabilize the convergence. We
postulate

∆m = β sign(Needm − pm) (|Needm − pm|)
1.5, (10)

where the β factor is used to modify the dynamics of the system to attain the proper compro-
mise between convergence speed and stability.

4.4.4 Limitation

Experience shows that this function is too unstable with high values of β. Still, it can be sta-
bilized with additional scaling parameters, while maintaining fast adaptation in time with
large values of β ≥ 5, which is important for mobility (β = 5 is used in the presented simu-
lations). Therefore, it is proposed that ∆ be scaled according to the current power level and
also the desired power level (the Need value). That way, if these values are small, ∆ is also
kept small to prevent strong changes in the system that would otherwise suddenly generate
exaggerated interference. Indeed, such changes would lead to complications such as breaking
existing links or simply propagating exaggerated reactions throughout the system. Building
upon (10), the following function is used :

∆m = pm × |Needm| × βsign(Needm − pm)(|Needm − pm|)
1.5. (11)

Finally, the delta value is constrained to not exceed the power level range:

∆m < 0 ⇒ ∆
′
m = max{∆m,

−pm

2
} (12)

∆m > 0 ⇒ ∆
′
m = min{∆m,

1

2
(1 − pm)}. (13)

As the mobile’s PC agent activates, its power level is adjusted as follows:

p
(ν+1)
m = p

(ν)
m + ∆

′
m. (14)
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5. Evaluation

5.1 Simulation platform

For the channel and power agents, simulations are based on the following platform. The
results shown for the connection agents are based on a simpler scenario (detailed in the ap-
propriate subsection), in order to isolate the effect of connection management and observe its
convergence, while not confusing it with the effect of interference and power-level manage-
ment.

Physical parameters

A square field of 25 square kilometers is considered, in which 1000 mobiles evolve and 100
DBS are scattered randomly. Hence, the traffic’s and network resources’ geometry are not
uniform, thus generating good and bad coverage of different areas. A mobile moves in a ran-
dom direction at a random speed taken (at the start of a scenario) out of a uniform distribution
over [0, Vmax]. DBS can relay 25 mobiles each, such that the mean number of macrodiversity
links per mobile is 2.5. A mobile’s maximum transmit power is 1W at 1 meter of its antenna,
and the propagation exponent is 4 (gij ∼ 1/d−4). Rayleigh fading is considered, except near
a DBS (closer than 100m) where a line of sight component is added with Rice factor K = 5
dB. Thermal noise at the receiver is considered for a bandwidth of 30kHz at a temperature of
20◦C, hence N0 = −129 dBW. The number of available channels is denoted Ch.

Agents’ emulation

Simulations are run for 1000 seconds and repeated 10 times with different initializations of
the geometry (DBS positions and mobiles’ initial position, directions and speeds). Time is dis-
cretized with a time step of 1 second. At each time step, physical parameters are evaluated
(mobile’s position, propagation, interference, BER, connection outage). Agents activate ran-
domly given a Poisson distribution to estimate the next activation time with parameter λ = 3
time steps. At each time step, the agents which activate evaluate their local state and take
actions accordingly (adjust the power level, hop to a new channel, change connections of the
concerned mobile, etc.).

Results

At each time step, the set of QoS indexes (total BER level given on a logarithmic scale
PT(m) = log10(BER(m))) for each mobile are sorted, thus providing a snapshot in time of
the distribution of the network’s resources across all mobiles. These sorted distributions are
then averaged for all the time steps of the simulation. Given this information, it is then pos-
sible to compare how each algorithm distributes resources. The same is done for the power
level allocation. Also, to verify the stability in time (considering the dynamic properties) of
the algorithm, two factors are interesting to observe to understand how the system handles
outage :

1. the mean number Nd of mobiles that loose all connections to the network per second,
and

2. the mean time tr it takes for the network to reconnect a mobile after it has been discon-
nected.

The latter also provides insight on how well the system is able to provide resources to mobiles
with high availability.
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