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1. Introduction

During the last one and a half decades, the electro-mechanical impedance (EMI) technique
has emerged as a universal cost-effective technique for structural health monitoring (SHM)
and non destructive evaluation (NDE) of all types of engineering structures and systems
(Sun et al., 1995; Ayres et al., 1998; Soh et al., 2000; Park et al., 2000, 2001; Giurgiutiu and
Zagrai, 2000, 2002; Bhalla & Soh, 2003, 2004a, 2004b, 2004c). In this technique, a lead
zirconate titanate piezo-electric ceramic (PZT) patch, surface bonded to the monitored
structure, employs ultrasonic vibrations (typically in 30-400 kHz range), to derive a
characteristic electrical ‘signature” of the structure (in frequency domain), containing vital
information concerning the phenomenological nature of the structure. Electro-mechanical
admittance, which is the measured electrical parameter, can be decomposed and analyzed to
extract the mechanical impedance parameters of the host structure (Bhalla & Soh, 2004b,
2004c). In this manner, the PZT patch, acting as ‘piezo-impedance transducer’, enables
structural identification, health monitoring and NDE (Bhalla, 2004).

The PZT patches are made up of ‘piezoelectric’ materials, which generate surface charges in
response to mechanical stresses and conversely undergo mechanical deformations in
response to electric fields. In the EMI technique, the bonded PZT patch is electrically excited
by applying an alternating voltage using an impedance analyzer. This produces
deformations in the patch as well as in the local area of the host structure surrounding it.
The response of this area is transferred back to the PZT wafer in the form of admittance (the
electrical response), comprising of the conductance (the real part) and the susceptance (the
imaginary part). Hence, the same PZT patch acts as an actuator as well as a sensor
concurrently. Any damage to the structure manifests itself as a deviation in the admittance
signature, which serves as an indication of the damage (assuming that the integrity of the
PZT patch is granted).

The EMI technique has been shown to possess far greater sensitivity to structural damages
than the conventional global vibration techniques. It is typically of the order of the local
ultrasonic techniques. The EMI technique employs low-cost PZT patches, which can be
permanently bonded to the structures and unlike the ultrasonic techniques, can be
interrogated without removal of the finishes or rendering the monitored structure out of
service. In addition, no complex data processing or expensive hardware is warranted since
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the data is directly acquired in frequency domain. The limited sensing area of the piezo-
impedance transducers helps in isolating the effects of far field changes, such as mass
loading and normal operational vibrations, thereby enabling damage localization (Park et
al., 2000).

The PZT patches are normally bonded to the surface of the monitored component using
adhesives, which introduce the so-called ‘shear lag effect’. This chapter is primarily focused
on development of analytical models for considering the shear lag effect inherent in the
adhesively bonded PZT patches for direct use in SHM/ NDE via the EMI technique. The
chapter covers a review of the modelling strategies since the 1980s and presents a detailed
description of two shear lag models specifically developed for the EMI technique, the first
one by Bhalla & Soh in 2004 and the second one, a simplified version, by Bhalla, Kumar,
Gupta and Datta in 2009.

2. Impedance Modelling of PZT-structure Interaction

The PZT patches, which play the key role in the EMI technique, typically develop surface
charges under mechanical stresses; and conversely undergo mechanical deformations when
subjected to electric fields, expressed mathematically by (IEEE standard, 1987)

T
D, =¢lE;+d,,T, 1)
E
Sk =d]kEj +Skam (2)

where D; is the electric displacement, Sy the mechanical strain, E; the electric field and T}, the

mechanical stress. g,-jT denotes the complex electric permittivity of the PZT material at

constant stress, d;, and d , the piezoelectric strain coefficients (or constants) and st the

complex elastic compliance at constant electric field. The superscripts “T" and ‘E" indicate
that the quantity has been measured at constant stress and constant electric field
respectively.

During the last one and half decades, several attempts have been made to model the PZT-
structure electromechanical interaction. The beginning was made by Crawley and de Luis
(1987) in the form of ‘static approach’, later substituted by the ‘impedance approach’ of
Liang, et al. (1994). Liang and coworkers modelled the host structure as mechanical
impedance Z; connected to the PZT patch at the end, as shown in Fig. 1(a), with the patch
undergoing axial vibrations under an alternating electric field E;. Mathematically, Z is
related to the force F and the velocity u by

Floopy = —Zgti(x—py @)

Solution of the governing 1D wave Eq. resulted in following expression for the complex
electromechanical admittance for the system of Fig. 1(a)
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Fig. 1. (a) Liang’s 1D impedance model (Liang et al. 1994).

(b) A PZT patch surface-bonded to a structure.
(c) Impedance model for the system shown in (b).
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where w, [ and h represent the PZT patch’s dimensions (see Fig. 1a), d;; the piezoelectric

strain coefficient for the 1-3 axes and  the angular frequency. Y =YZ(1+7))is the
complex Young's modulus of the PZT patch (at constant electric field) and

ef = £5(1- &) the complex electric permittivity (at constant stress), with the symbols 7 and

¢ denoting the mechanical loss factor and the dielectric loss factor respectively. Z, represents
the mechanical impedance of the PZT patch (in short circuited condition), given by
_xwh Y F
" tanud (jo)

©)

where &, the wave number, is related to the density p and the Young’s modulus Y of the
patch by

K=o Y% ©6)

In real-life applications, where the PZT patch is surface-bonded on a structure, as shown in
Fig. 1(b), the nodal plane passes through the centre line of the patch. The structure can be
represented as a set of two impedances Z; connected on the either side of the patch, as
illustrated in Fig. 1(c). For this scenario,  would be the half-length of the patch and Eq. (4)
needs to be modified as

b . w7 2 TF Z, 2 LE( tankl
Y=G+Bj=2a—| (&35 —d5, Y ") +| —2—|d3, Y
=20 l:( 33—d3Y") [ZS+Za 31 p”

)
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Zhou et al. (1996) extended the formulations of Liang to model the a PZT element coupled
to a 2D host structure. The related physical model is schematically illustrated in Fig. 2. Zhou
and coworkers replaced the single term Z; by a matrix consisting of the direct impedances
Zy and Z,y, and the cross impedances Z,, and Z,,, related to the planar forces F; and F,
(along axes 1 and 2 respectively) and the corresponding planar velocities #; and u, by

Fl Zxx ny i’l
Tz, z, | ®
£ wo W2
Considering dynamic equilibrium along the two principal axes in conjunction with
piezoelectric constitutive relations (Egs. 1 and 2), they derived

-1
Zy, Z, Z,,
2TE 2 TE KCDS(K[){I*VK w2 +Z¢} K cos( kw) Lifv 2 (9)
= w7 243YE aiyE Jsinrd sin &KW I Zyw Z, wZ Z {1}
Y=jo—| &35 —-— +— _— .

3
h a-v 1-v) ! w v Zy . z, Z,,
) ¢ [ K cos( ) LA—I/ZA K cos( kw) l—vii-#i
1 Z Z w Zz

ayy ayy

axx ayy ayy

axx axx

where k, the 2D wave number, is given by

2
K=o /% (10)

Zaxx and Zgy, are the two components of the mechanical impedance of the PZT patch along
the two principal directions, given by Eq. 5. Although the analytical derivations of Zhou
and co-workers are accurate in themselves, the experimental difficulties prohibit their direct
application for the inverse problem, i.e. the extraction of host structure’s mechanical
impedance. Using the EMI technique, one can experimentally obtain two parameters- G and
B for a surface-bonded PZT patch. If complete information about the structure is desired, Eq.
(9) needs to be solved for 4 complex unknowns- Zy, Zy, Zyx, Zy,: (or 8 real unknowns).
Hence, the model could not be employed for the experimental determination of the drive
point mechanical impedance from measurements alone.

To alleviate these shortcomings, the concept of ‘effective impedance” was introduced by
Bhalla & Soh (2004b). The related physical model is shown in Fig. 3 for a square-shaped PZT
patch of half-length I. Bhalla & Soh (2004b) represented the PZT-structure interaction in the
form of boundary traction f per unit length, varying harmonically with time. The ‘effecive
mechanical impedance’, Z, . of the patch was defined as

Fig. 2. 2D impedance model of Zhou et al. (1996).
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where Fy is the overall planar force (or the effective force) causing area deformation of the
PZT patch and 7 the unit vector normal to the boundary. u,s = JA/p, is the ‘effective
displacement’, with 6A denoting the change in the patch’s area and p, its original
undeformed perimeter. Differentiation of the effective displacement with respect to time
yields the effective velocity, i, . The effective drive point impedance of the host structure
can be similarly defined, by applying a force on the surface of the host structure, along the
boundary of the proposed location of the PZT patch. The term T is the complex tangent
ratio, theoretically equal to [tan(xl) /xl]. However, in actual situations, it needs correction to

realistically consider the deviation of the PZT patch from the ideal behavior, to
accommodate which Bhalla and Soh (2004b) introduced correction factors as

12)
20 o G

= 1 tanCixd = tanCoud

The correction factors C; and C, can be determined from the experimentally obtained
conductance and susceptance signatures of the PZT patch in ‘free-free” conditions before
bonding it on the host structure. It has been demonstrated that this “updating” enables much
more accurate reults. Solution of the governing 2D wave Eq. for this system yielded

following expression for the complex electro-mechanical admittance Y

_ 2|\ —= 24%YE 243 YF Z _
Y=G+Bj=4a j—| ek ——1—+ 21 ol T (13)
h A=v)  (A=v) ( Zsefp + Zaefr
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Fig. 3. Effective impedance model of Bhalla & Soh (2004a).
(a) PZT bonded to host structure. (b) Interaction forces at boundary.
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Here, a single complex term for Z,.s (rather than four terms as in Zhou’s model) accounts
for the 2D mechanical interaction of the patch with the host structure. This makes the
resulting equation. simple enough to solve the inverse problem, i.e. to extract Z;.s (Bhalla &
Soh, 2004c), to be directly utilized for SHM/ NDE. No modelling is required for the host
structure and the necessary data is directly obtainable from experimental measurements.
Further, the corrected actuator effective impedance, Z,., can be expressed as

2hYE

jo(1-v)T a4

Zaef =

All the above models ignore the fact that the mechanical interaction between the PZT patch
and the host structure occurs through a finitely thick layer of adhesive sandwiched between
the PZT patch and the host structure, which introduces the so-called ‘shear lag effect’
through its elastic deformation. Presented in the following sections is a detailed review of
the shear lag mechanism inherent in adhesively bonded PZT patches and its rigorous
integration in 1D and 2D impedance models, as proposed by Bhalla & Soh (2004d). Further,
a new simplified model model proposed by Bhalla et al. (2009), which is especially suitable
for solving the inverse problem (of extracting Z), considering the presence of bond layer, is
also described.

3. Shear Lag Effect

Crawley and de Luis (1987) and Sirohi and Chopra (2000) respectively modelled the
actuation and sensing of a generic beam element by an adhesively bonded PZT patch. The
typical configuration of the system is shown in Fig. 4. The patch has a half-length I, width w,
and thickness /1, while the bonding layer has a thickness . The beam has depth h;, and
width wy. Let T, be the axial stress in the PZT patch and 7 the interfacial shear stress. The
system is under quasi-static equilibrium and the beam is actuated in pure bending mode,
with the bending strain linearly distributed across the cross section. Further, the PZT patch
is in a state of pure 1D axial strain and the bond layer in pure shear, with the shear stress
independent of ‘y’. The ends of the segmented PZT actuator/ sensor are stress free,
implying a uniform strain distribution across the thickness of the patch. A more detailed
deformation profile is shown in Fig. 5 for the symmetrical right half of the system. Let u, be
the displacement at the interface between the PZT patch and the bond layer, and u the
corresponding displacement at the interface between the bond layer and the beam. The
following subsections briefly review the shear transfer mechanism for sensor and actuator
respectively.

3.1 PZT patch as sensor

Let the PZT patch be instrumented only to sense the strain on the beam surface, and hence,
no external electric field be applied across it. Considering static equilibrium of the
differential element of the PZT patch in the x-direction, as shown in Fig. 4, we can derive

or,
T= Eh‘p (15)
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At any cross section of the beam, within the portion containing the PZT patch, the bending

moment is given by
M =T,w,h,(0.5h, + hg +0.5h,,) (16)

Using Euler-Bernoulli’s beam theory and assuming (f,+2hs)<<hy, we can reduce Eq. (16) to
3T, wph
+ [—PW" r ] -0 (17)
L

where T, denotes the bending stress on the beam surface. Differentiating with respect to x,
and substituting Eq. (15), we get

oT, 3
b |2%p | _g (18)
ox  \ wphy,
, e ’ dx S N
Differential T,+ Ty dx'\
Element ! 4 ox \
PZT patch ) t— > :
<o \h II
Bond laver : \\\ ~_~ < 'T'v ,’l

Fig. 4. A PZT patch bonded to a beam using adhesive bond layer.

Further, substituting 7, =Y,S,, T, = YESP and 7=Ggy=G(u,—u)/u into Eq.s (15) and

(18), and differentiating with respect to x, we respectively obtain

After
deformation

Beam

Fig. 5. Deformation in bonding layer and PZT patch.
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oS G,S
21’ =| 2 e (19)
Oox thshp
2
0 ‘S;b __ 3WPGSS[) § (20)
ox Ybthth

where Y} is the Young’'s modulus of elasticity of the beam, S, and Sp the beam and PZT
strains, G, the shear modulus of the bond layer, y the shear strain in the bond layer and
é= (S »/Sp— 1). Subtracting Eq. (20) from Eq. (19), we get

¢ o

—2-T°¢=0 21

e (21)
Where r?= Gs + 3Gowp (22)

YPhshP Ybthth

This phenomenon of the difference in the PZT strain and the host structure’s strain is called
the shear lag effect. The parameter /" (unit m-1) is called the shear lag parameter. The ratio &,
which is a measure of the differential PZT strain relative to surface strain of the host
substrate, is called the strain lag ratio. The general solution for Eq. (21) is

& =AcoshI'x + BsinhI'x (23)

Since no external electric field is applied across the PZT patch, the free PZT strain, ds;E3= 0.
Thus, at x = -1, Sp=0 = £ = -1. Similarly, at x = +I, £ = -1. Applying these boundary
conditions, we can obtain

__cosh(Ix)
6= cosh(T']) (@4)
Since &=(s,/8,-1),
Sp. _l1- cosh(I'x) 25)
Sy, cosh(T'/)

Fig. 6 shows a plot of the strain ratio (Sp/Sp) across the length of a PZT patch (I = 5mm) for
typical values of /"= 10, 20, 30, 40, 50 and 60 (cm?). It is observed that the strain ratio (Sp/Sp)
is less than unity near the ends of the PZT patch. The length of this zone depends on 7,
which in turn depends on the stiffness and thickness of the bond layer (Eq. 22). As G;
increases and ks reduces, /" increases, the shear lag phenomenon diminishes and the shear is
effectively transferred over very small zones near the ends of the PZT patch.
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Fig. 6. Strain distribution across the length of Fig. 7. Variation of effective length with
PZT patch for various values of /- shear lag factor.

This analysis shows that if the PZT patch is employed as a sensor, it would develop less
voltage across its terminals (than for perfectly bonded conditions) and hence underestimate
the strain in the substructure. In order to quantify the effect of shear lag, we can compute
the effective length, L of the sensor, as defined by (Sirohi and Chopra, 2000)

=)

ly 17 tanh(T'7)

2 (s, /8,)de=1- 2200 26

! ljo( p/Sp)dx I (26)
d

which is nothing but the area under the curve (Fig. 6) between x// = 0 and x// = 1. Fig. 7
shows a plot of the effective length (Eq. 26) for various values of the shear lag parameter /-
From this figure, it can be observed that typically, for 77> 30cm, (I / I) is very large,
typically greater than 93%, suggesting that shear lag effect can be ignored for relatively high
(> 30 cm?) values of -

3.2 PZT patch as actuator
If the same PZT patch is employed as an actuator for a beam structure, it can be shown
(Crawley and de Luis, 1987) that the strains Sp and S are given by

g - 3A N Ay coshl'x 5 = 3A  3Acoshlx
P~ (3+y) (3+y)coshll "7 Grw) (3+w)coshll

(27)

where A = d3;E; is the free piezoelectric strain, and y = (Yyhy/YEh,) the product of modulus
and thickness ratios of the beam and the PZT patch. Fig. 8 shows the plots of (S,/4) and (Sp
/A) along the length of the PZT patch (I = 5mm) for y = 15. It is observed that as in the case
of sensor, as I increases, the shear is effectively transferred over small zone near the two
ends of the patch. Typically, for 77> 30cm?, the strain energy induced in the substructure by
PZT actuator is within 5% of the perfectly bonded case.
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Fig. 8. Distribution of piezoelectric and beam strains for various values of /-
(a) Strain in PZT patch. (b) Beam surface strain.

4. Shear Lag Effect in Electro-Mechanical Impedance Formulations

It is observed in the preceding section that when acting as an actuator and/ or a sensor,
there is shear lag phenomenon associated with force transmission between the PZT patch
and the host structure through the adhesive bond layer. However, this aspect has not been
thoroughly investigated for the EMI technique, in which the same patch concurrently serves
both as a sensor as well as an actuator. Abe et al. (2002) encountered large errors in their
stress prediction methodology using EMI technique, which were attributed to imprecise
modeling of the interfacial bonding layer. This highlights the importance of modelling the
shear lag mechanism accurately.

Xu and Liu (2002) proposed a modified 1D impedance model in which the bonding layer
was modelled as a single degree of freedom (SDOF) system connected in between the PZT
patch and the host structure, as shown in Fig. 9. The bonding layer was assumed to possess
a dynamic stiffness x, (or mechanical impedance, Z, = K, /j) and the structure a dynamic

stiffness K (or mechanical impedance, Zs = K /jw). Hence, the resultant mechanical
impedance for this series system can be determined as (Hixon, 1988)

res

Zsz _( K_b

- - A/ 28
Zb""Zs Kb"rKst S ( )

1

where = A 29
¢ 1+(Kg /K, ) @)

The coupled electromechanical admittance, as measured across the terminals of the PZT
patch and expressed earlier by Eq. (4), can therefore be modified as
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= wl T 2 LE Z, 2 CE( tanxd
Y =2wj— —dy Yo )+ —=2— |d5 Y 30
- {(533 1Y) [Za vz, [ ” (30)

¢'=1 implies infinitely stiff bond layer where as {'= 0 implies a free PZT patch. Xu and Liu
(2002) demonstrated numerically that for a SDOF system, as & decreases (i.e. as the bond
quality degrades), the PZT system shows an increase in the associated structural resonant
frequencies. It was stated that X, depends on the bonding process and the thickness of the

bond layer. However, no closed form solution was presented to quantitatively determine
x, and hence ¢ (From Eq. 29). Also, no experimental verification was attempted.

Ong et al. (2002) integrated the shear lag effect into impedance modelling using the analysis
presented by Sirohi and Chopra (2000). The PZT patch was assumed to possess an effective
length I (Eq. 26) instead of the actual length. However, since the effective length was
determined by considering sensor effect only, the method considered the associated shear
lag only partially. Also, the resulting formulations are valid for beam type structures only
and are not generic in nature. In addition, since frequencies of the order of 30-400 kHz are
involved in the EMI technique, quasi-static approximation (for calculating ) is strictly not
valid. The next section presents the model of Bhalla & Soh (2004d) to alleviate all the above
shortcomings.

5. Rigorous Shear Lag Model (Bhalla & Soh, 2004d)

5.1 1D shear lag model

This section presents a detailed step-by-step analysis for including the shear lag effect, first
into 1D model (Liang et al., 1994) and then its extension into 2D effective impedance based
model (Bhalla & Soh, 2004b).

PZT patch
Structure

x v ;
-I@—|5|—Z Z

Bonding layer
Fig. 9. Modified impedance model of Xu and Liu (2002) including bond layer.

Dynamic stiffness =Ko

Consider the PZT patch, shown in Figs. 4 and 5, to be driven by an alternating voltage
source and let it be attached to any host structure (not necessarily beam). Also, we assume
the PZT patch to be infinitesimally small as compared to the host structure. This means that
the host structure has constant mechanical impedance all along the points of attachment of
the patch. By D’ Alembert’s principle, the dynamic equilibrium of an infinitesimal element of
the patch leads to
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2

0“u, o7,
w,dx + (dm) P :Ehpwpdx (31)

where dm is the infinitesimal mass of the element considered. Due to the dominance of the
shear stress term, the inertial term can be neglected, which reduces Eq. (31) to Eq. (15). It
should be noted that the inertial force term has been separately considered in impedance
formulations (Liang et al., 1994), where, as a matter of fact, the shear lag effect has been
ignored. Hence, the two effects are independently considered and will be finally combined.
Assuming pure shear in the bond layer,

r=—r (32)

where G, = G (1+7' j) is the complex shear modulus of the bond layer and 7' is the

associated mechanical loss factor. From PZT constitutive relation, Eq. (2), the axial stress in
the PZT patch is given by

T, =YE(S, - n)=YEQ@, - ) (33)

'

P
Eq.s (32) and (33) into Eq. (15) and simplifying, we get

where S, =u), is the PZT strain and 4 = Esds; is the free piezoelectric strain. Substituting

JE
LY hh
r G

s

", (34)

At any vertical section through the host structure (which includes the PZT patch), the force
transmitted to the host structure is related to the drive point impedance Z; of the host
structure by

F=T,wyh,=-Zujo (35)

where u is the drive point displacement at the point in question on the surface of the host
structure. Since the PZT patch is infinitesimally small, Z; is practically the same along the
entire length of the PZT patch. Substituting Eq. (33), differentiating with respect to x (noting
that Z is constant), and rearranging, we get

Z. jw
u" — S./ u!

— 36
wph,Y £ =
From Eq.s (34) and (36), we derive
U, —u= —[—Z‘Gv_hsjw]u' (37)
sWp
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Eq.s (34) and (37) are the fundamental Eq.s governing the shear transfer mechanism via the
adhesive bonding layer. Eliminating u, from these equations and differentiating with
respect to x, we can derive

W™+ pu" —qu” =0 (38)
- w,G,
where p=——"""—"" (39)
Zshsjo
G, __G+n) _ G

and g== = ~
YEngh, YEhh,(+m)  YEheh,

(40)

p and q are shear lag parameters, similar to the factor /” in Eq. (22). The parameter g is

equivalent to the first component of /~ and p to the second component. As seen from Eq.

(40), g is directly proportional to the bond layer’s shear modulus and inversely proportional
to the PZT patch’s Young's modulus, the PZT patch’s thickness and the bond layer

thickness. Examination of Eq. (39) similarly shows that p s directly proportional to the

bond layer’s shear modulus and the PZT patch’s width. It is inversely proportional to
structural mechanical impedance and the bond layer thickness. Being dynamic parameter,

the frequency w also comes into picture, influencing P inversely. Further, it should be noted

that pisa complex term whereas the term g is approximated as a pure real term assuming 7
and 7' to be very small in magnitude. Solving Eq. (41), we get the roots of the characteristic

- = - =
-p+ +4 -p- +4
H=0, A=0, =_LTNP T -, _TPTNP T (1)

2 2

Eq. as

Hence, the solution of the governing differential equation (Eq. 38) can be written as

U= A+ Ayx+ Be™* + Ce™* (42)
Differentiating with respect to x, we get

' = Ay + Bize™ + Clye’™ (43)
From Eqs (37), (42) and (43), we obtain

U, = (A +ndy)+ Agx+ B(1+nk3)e’™ + C(1+nig)e” (44)
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= | Zhgj
where n=|-Z8/2 (45)
w, G

Differentiating Eq. (44) with respect to x, we obtain the strain in the PZT patch as
S, = Ay + BAs(1+ nA3)e™ + CAy(1+ nig)e™ (46)
At x =0 (see Figs 4 and 5), u = 0, hence Eq. (42) leads to
A;=-B+C) 47)
Similarly, applying the boundary condition that at x = 0 and u, = 0 to Eq. (44) leads to

A2=-(BAz+ CAy) (48)

Hence, Eq. (46) can be modified as
S, = BlAy(1+n3)e™™ = 131+ ClA4 (1+ ndg)e™ = 44] (49)

The third and the fourth boundary conditions are imposed by the stress free ends of the PZT
patch. That is, at x = - and at x = +, the axial strain in the PZT patch is equal to the free
piezoelectric strain or A = Ezds; (Crawley and de Luis, 1987). This leads to constants B and C

as
B B A k4 —k2
{C} (ks - k2k3)|:k1 —k3 } )

where k= A3(1+nd3)e ™ =2y, ky=Ag(l+ndg)e ™ — 2y , ky=A3(1+nky)e™ —2;  and
ky=Ag(0+nig)e™ =2y

In general, the force transmitted to the host structure can be expressed as
F= —Z‘Yja)u(x:l) (51)

where 1) is the displacement at the surface of the host structure at the end point of the
PZT patch. Conventional impedance models (for example, Liang and coworkers) assume
perfect bonding between the PZT patch and the host structure, i.e. the displacement
compatibility uu=) = upx=), thereby approximating Eq. (51) as F =-Z jau ;) . However,

due to the shear lag phenomenon associated with finitely thick bond layer, un=) # tpn=).
Based on the analysis presented in this section, we can obtain following relationship
between u - and u,- from Eq. (37)
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U,
(=) _ 1 _ 1 (52)

Yp [ Zihgjo U(x=1) (Hi” j
Wst u(x:l) pu,

S~

u

The term u,/u, can be determined by using Eq.s (42) and (43). Making use of this

relationship, Eq. (51) can be rewritten as

-7, . .
Fg =< jou p(x—1) = Z 0q ] OU p(x=1) (53)
u()
1+——2
( p “0]

'
o

where Z, ,, =Z; /[1 +L_u_] is the ‘equivalent impedance” apparent at the ends of the PZT
pu,

patch, taking into consideration the shear lag phenomenon associated with the bond layer.
In the absence of shear lag effect (i.e. perfect bonding), Zs.; = Zs. On comparing with the

result of Xu and Liu (2002) i.e. Eq. (29), we find that

(= (54

1+iu—”

pu,

Hence, the derivation presented in this section enables quantitative prediction of the
modifying term of the structural impedance, which was left undone by Xu and Liu (2002).

5.2 Extension to 2D shear lag model

The formulations derived above can be easily extended to the 2D effective impedance based
electro-mechanical model introduced by Bhalla & Soh (2004b). For this derivation, it is
assumed that the PZT is square in shape with a half-length equal to I. The strain distribution
and the associated shear lag are determined along each principal direction and the two
effects are assumed to be independent, which means that the effects at the corners are
neglected.

The patch is assumed to be mechanically isotropic and piezoelectrically orthotropic in the x-
y plane. The constitutive relations (Equations 1 and 2) can be thus reduced to (see Figure 3)

Dy =e33Ey +dy)(T; +T3) (55)

Sl =ﬂ+d31E3 (56)
YE

S2 = TZ;VTI +d31E3 (57)
YE
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Consider an infinitesimal element of the PZT patch, in dynamic equilibrium with the host
structure, as shown in Fig. 10. Since this figure shows a planar view, the shear stresses 7.

and 7, are not visible. Considering force equilibrium along x-direction, we can write (De
Faria, 2003)

0
Oh O e (58)
x o h

Ignoring the terms involving rate of change of shear strains (consistent with the observation

by Zhou et al., 1996), we get
éy

T <—l d T+ (%jdx

Txy

Fig. 10. Stresses acting on an infinitesimal PZT element.
2l Cxz (59)

Further, using Eqs (56) and (57), we can derive (noting A = Esds1)

vE

T (1-0%)

T [($1+0S,)- A +v)] (60)

ye o ,
or 7 :m[(um +Uupy)—A(1+v)] (61)

Differentiating with respect to x and ignoring the second order terms involving both x and y
(Zhou et al., 1996), we get

or, vt .

u
ox (1—U2) px

(62)

Substituting Eq. (62) into Eq. (59), expanding the term 7, and rearranging, we get
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YEheh, @)
Uy Uy =—7"U
N (B
Similarly, for the other direction, we get
YEnh,
Uy —ty =P (64)

:_—M
G,(1-v*) "

Adding Egs (63) and (64) and dividing by 2, we obtain, based on the definition of ‘effective

. , . oA [ +uyl+
displacement’ that is u,y =—= L Ll L I

“ 42-u2 (see Fig. 3), we obtain

VE
Y hphs ) 1

Uy o —Upfy =| =——— | ~—u, (65)
pelf — elf G.(1-0?) pelf dor pelf

where ¢, has been approximated as pure real number, as in the 1D case. Here, # Dl by

definition, is the effective displacement at the interface between the PZT patch and the bond
layer, u,y is the corresponding effective displacement at the interface between the structure

and the bond layer. Further, from the definition of effective impedance, we can write, for the
host structure
F= Tllhp + Tzlhp = —Zs’eﬁ-ueffja) (66)

Making use of Egs. (56) and (57), and noting A = Esds1, we get

YEIh, (S ) +S 5 —2A)
(1-v)

= _Zs,ejfuejfja) (67)

Substituting for S, =u),, S,,=u),,, making use of the definition of effective

displacement, and differentiating, we can derive

v | Lsg(l-v)jo |
Upeff =7 = Up.eff (68)
2vEin,,

Eliminating up o from E.s (65) and (68), we get

peff ~Velf 2G,(1+v)! @ Pefy

ju o (69)
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