
4

Modeling and Analysis Methods
for Multi-agent Systems

Jose R. Celaya1 and Alan A. Desrochers2

1Decision Sciences and Engineering Systems Department
2Electrical, Computer, and Systems Engineering Department

Rensselaer Polytechnic InstituteTroy, NY 12180
USA

1. Introduction

Multi-agent systems have been studied for the past few decades. At this point in time,
several multi-agent systems frameworks have been defined in order to apply the multi-
agent system concept to different applications. In a multi-agent system, several agents
communicate and interact in order to solve a complex problem. A multi-agent system can be
studied as a computer system that is concurrent, asynchronous, stochastic and distributed.
These characteristics of multi-agent systems make them also a discrete-event dynamic
system, and these have been studied under several analytical methodologies, particularly
Petri nets. Petri nets have a well-defined mathematical structure that can be leveraged to
provide formal analysis of discrete-event dynamic systems. From the discrete-event
dynamic system point of view, multi-agent systems lack analysis and design methodologies.
This chapter is concerned with the development of analytical methods for modeling and
analysis of multi-agent systems, as well as the definition and assessment of system
properties. The study of system properties is becoming more important due to the fact that
we are faced more and more with handling large complex dynamic systems. Computer
simulation is generally used to assess system properties and to verify that the system is
achieving its design objectives. An important challenge in this field is the development of
analytical methods to assess key properties of such systems. Such methods could be used to
provide a preliminary analysis of the multi-agent system, providing design and operation
feedback before the development of expensive simulation models. Furthermore, they will
provide insight into design methodologies for multi-agent systems that will ensure that the
system design under such methodologies complies with the required properties, hence
being a dependable multi-agent system.
The communication and interaction among agents is critical for the overall multi-agent
system design and for the proper functioning of the system. Several interaction frameworks
have been defined and they range from collaboration among agents, through competition
for resources requiring some level of negotiation in the multi-agent system. This work
focuses particularly at the interaction level, and studies the interactions between different
agents in the system.
The mission of the chapter is to present a methodology for modeling and analysis of multi-
agent systems at the agent interaction level. This will be carried out by studying the discrete-O

pe
n

A
cc

es
s

D
at

ab
as

e
w

w
w

.in
te

ch
w

eb
.o

rg

Source: Multiagent Systems, Book edited by: Salman Ahmed and Mohd Noh Karsiti,
 ISBN 978-3-902613-51-6, pp. 426, February 2009, I-Tech, Vienna, Austria

www.intechopen.com

 Multiagent Systems

74

event characteristics of the interactions and using the Petri net methodologies as the
modeling and analysis tool. Properties known to be important in the discrete event systems
and Petri net domains will be used to study multi-agent systems. Here, properties like
boundedness and liveness will be analyzed and demonstrated for multiagent systems, as
they relate to deadlock avoidance in the Petri net domain. Furthermore, these properties will
be related to characteristics of the interaction mechanism. If modeled properly, a deadlock
found in a Petri net domain will mean that the interaction mechanism in use in the multi-
agent system is prone to deadlocks in the interaction among agents.
In particular, this chapter will include methodologies for mapping multi-agent systems into
Petri net models. These methodologies will present the right level of detail/abstraction in
order to map all the important behaviors of the interaction framework into the resulting
Petri net models. Petri net analysis methods such as the reachability graph and the analysis
of the network invariants will be used for the assessment of properties. Furthermore, Petri
net synthesis techniques will allow the ability to provide more or less detail to the models,
giving the ability to add detail/abstraction to the behavior of the multi-agent system to be
modeled.

1.1 Methodology
The problem addressed in this chapter can be considered in two parts: properties, and
methodologies for modeling and analysis. The following is the methodology followed for
this work.
Properties: If a multi-agent system is regarded as a discrete-event system and modeled
using Petri nets, then properties known to be important in the discrete-event systems and
Petri net domains could be used to study multi-agent systems. If we consider models of
multi-agent systems as discrete-event systems, an important question to consider is which
properties in the Petri net domain are important? As a starting point there are properties we
would like to analyze and demonstrate for multi-agent systems. Examples of these are
boundedness and liveness as related to deadlock avoidance in the Petri net domain. Other
properties exist that are related to performance evaluation. These properties from the Petri
net domain could be related to characteristics of the communication and interaction of the
multi-agent system. If modeled properly, a deadlock found in a Petri net domain will mean
that the interaction mechanism in use in the multi-agent system is prone to deadlocks in the
interaction among individual agents.
Methodologies for modeling and analysis: Considering that a multi-agent system can be

regarded as a discrete-event system, Petri nets can be used as a modeling tool. This will

require methodologies for mapping multi-agent systems into Petri net models. These

methodologies will require the right level of detail/abstraction in order to map all the

important behaviors of the communication and interaction framework into the resulting

Petri net models. Having Petri net models of multi-agent systems will allow us to use the

existing analysis methodologies for Petri nets. Important properties of discrete-event

systems could be obtained with Petri net analysis methods such as the reachability graph

and the analysis of the network invariants. New analysis techniques related directly to the

multi-agent system domain can be designed or tailored from existing Petri net techniques.

Furthermore, Petri net synthesis techniques allow us to provide more or less detail to our

models giving the ability to add detail/abstraction to the behavior of the multi-agent system

that we would like to model.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

75

1.2 Related work
Petri nets and Petri net extension methodologies have been used to model systems with
more than one agent. Murata et al. [1] presented an algorithm to construct predicate/
transition models of robotic operations. Basically, robot actions were considered as firing
transitions and the model was used for the planning of concurrent activities of multiple
robots (agents). Even though the robotic system considered does not have direct interaction
between the agents, the model used shows the ability of the Petri net-like models to capture
interactions between the agents that are not evident in the design process. In a similar way,
Xu et al. [2] proposed a methodology based on predicate/transition nets for multiple agents
under static planning of activities. In addition, they proposed a validation algorithm for
plans with parallel activities. The verification is done based on reachability graphs due to
the fact that agents actions are modeled as transitions. Petri nets also have been used to
model specific multi-agent system frameworks but the resulting models have not been used
to provide a study of the properties of the multi-agent system. Ahn et al. [3] proposed a
multi-agent system architecture for distributed and collaborative supply-chain
management. The suggested architecture is aimed at discovering the structure of the
supply-chain and predicting future demands based on local information sharing among the
agents. A Petri net model is presented but no structural analysis of the model and no
verification of the coordination activities were performed. The advantages of having a Petri
net model were not exploited. The work of Leitao et al. [4], proposed a Petri net model
approach to formal specification of holonic control systems for manufacturing. They
developed a Petri net submodel for each of the four types of holons (agents) suggested in the
ADACOR (Adaptive Holonic Control Architecture for Distributed Manufacturing Systems)
architecture. There was no attempt to study the structural properties of the Petri net model
in order to assess some sort of dependability in the proposed architecture. Formal modeling
and specification of the multi-agent systems interaction framework has only been attempted
in the holonic manufacturing system considering the contract net protocol as the interaction
framework. The work presented by Hsieh in [5] proposed a new model called a collaborative
Petri net and addressed the question of deadlock and undesirable state avoidance under the
contract net protocol. Finally, multi-agent system survivability1 and fault tolerance using
Petri net models have been used in the mobile-agent area. Lyu et al. [6] used a Stochastic
Petri net model to assess survivability and fault tolerance of mobile agents systems. They use
the model for design and verification of their proposed agent architecture.

2. Introduction to Petri nets

Petri nets are a graphical and mathematical modeling tool used to describe and analyze
different kinds of real systems. Petri nets were first introduced by Carl Adam Petri in 1962
in Germany [8], and evolved as a suitable tool for the study of systems that are concurrent,
asynchronous, distributed, parallel and/or stochastic. Performance evaluation has been a
very successful application area of Petri nets. In addition, Petri nets have been successfully
used in several areas for the modeling and analysis of distributed-software systems,
distributed-database systems, flexible manufacturing systems, concurrent and parallel
programs and discrete-event dynamic systems (DEDS) to mention just a few [9][8][10][11]. A

1 Survivability is the agent's ability to recognize, resist and recover from attacks [7].

www.intechopen.com

 Multiagent Systems

76

multi-agent system is a kind of DEDS that is concurrent, asynchronous, stochastic and
distributed. From the DEDS point of view, multi-agent systems lack analysis and design
methodologies. Petri net methods are used in this work to develop analytical methodologies
for multi-agent systems.
Petri nets are often used in the modeling and analysis of DEDS. They include explicit
conditions under which an event can occur; capturing also the relations between concurrent
and asynchronous events. As a result, Petri nets are suitable for studying complex and
general DEDS [10][11].
This section presents an introduction to Petri nets. Petri nets are defined followed by
important properties and analysis methodologies. Finally, an example of a manufacturing
application is presented.

2.1 Petri nets definition
Definition 1 The following is the formal definition of a Petri net [9][8][12][13]. A Petri net is a five-
tuple

 (1)

where:
P is a finite set of places
T is a finite set of transitions

A ⊆ (P × T) ∪ (T × P) is a set of arcs

W : A → {1, 2, 3, …} is a weight function

M0 : P → Z+ is the initial marking
The meanings of places and transitions in Petri nets depend directly on the modeling
approach. When modeling, several interpretations can be assigned to places and transitions.
For a DEDS a transition is regarded as an event and the places are interpreted as a condition
for an event to occur.
Table 1 presents several typical interpretations for transitions and places. A simple Petri net
example is presented in figure 1. This example is used later to define additional Petri net
characteristics.

Table 1. Modeling interpretations of transitions and places [8].

Fig. 1. Petri net example.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

77

Places, transitions and arcs: Places are represented with circles and transitions are
represented with bars. The arcs are directed from places to transitions or from transitions to
places. The places contain tokens that travel through the net depending on the firing of a
transition. A place p is said to be an input place to a transition t if an arc is directed from p to
t. Similarly, an output place of t is any place in the net with an incoming arc from transition
t. In the example (figure 1) p1 is an input place of t1, and p2 is an output place of t1.
Transition firing: A transition can fire only if it is enabled. For a transition t to be enabled, all
the input places of t must contain at least one token2. When a transition is fired, a token is
removed from each input place, and one token is added to each output place. In this way the
tokens travel through the net depending on the transitions fired.

Definition 2 (Marking) The marking mi of a place pi ∈ P is a non-negative quantity representing the
number of tokens in the place at a given state of the Petri net. The marking of the Petri net is defined

as the function M : P → Z+ that maps the set of places to the set of non-negative integers. It is also

defined as a vector Mj = (m1,m2, …, m⏐P⏐) were mi = M(pi), which represents the jth state of the net.
Mj contains the marking of all the places and the initial marking is denoted by M0.
In the example of figure 1 only transition t1 is enabled. When t1 fires, one token is removed
from place p1 and one token is added to place p2. Figure 2 shows the evolution of the Petri
net in the previous example. Figure 2 a) presents the initial marking of the net M0 =
[M(p1),M(p2),M(p3)] = [2, 0, 0], only transition t1 is enabled. Figure 2 b) presents the net with
marking M1 = [1, 1, 0] after t1 is fired. Here, transitions t1 and t2 are enabled and they can be
fired. Finally, figure 2 c) represents the net after t2 is fired. In this case transitions t1 and t3 are
enabled with marking M2 = [1, 0, 1].

Fig. 2. Petri net evolution after firing transitions t1 and t2.

2 Assuming the weights W of the Petri net are equal to one. When the weights are not
indicated they are assumed to be one. The weight on an arc coming to a transition from one
of the incoming places indicates the minimum number of tokens needed in the incoming
place in order for that transition to be enabled. When the transition fires, it will remove from
the incoming place the amount of tokens indicated by the weight of the arc.

www.intechopen.com

 Multiagent Systems

78

The marking of the Petri net represents the state of the net. As described above, the
transitions change the state of the Petri net in the same way an event changes the state of a
DEDS.
Definition 3 (Reachability graph) The reachability graph has the marking of the Petri net (or state
of the Petri net) as a node. An arc of the graph joining Mi with Mj represents the transition when
firing takes the Petri net from the marking (state) Mi to the marking Mj .
The reachability graph of the Petri net in figure 1 is presented in figure 3.

Fig. 3. Reachability graph.

2.2 Properties
This section covers some of the most important properties of Petri nets such as Reachability,

Liveness, Boundedness and Reversibility. These properties are essential for the analysis of Petri

net models. Furthermore, they are required characteristics for the use of Petri nets in

performance evaluation [8][10][11].

These are properties that could be applied to multi-agent systems models. Examples of these

properties are boundedness and liveness since they are related to deadlock avoidance in

DEDS. Other properties are going to be relevant to multi-agent systems particularly to the

communication, interaction, and single agent architectures. It is unknown how the available

properties of Petri nets relate to models of multi-agent systems. This is a research question

addressed in this study. In addition, the definition of new properties might be required to

capture behaviors particular to multi-agent systems. A complete description of the available

Petri net properties can be found in [8]. The analysis methods developed in this research will

focus on the following properties.

Definition 4 (Reachability) A marking Mj is said to be reachable from marking Mi if there exists a
sequence of transitions that takes the Petri net from state Mi to Mj . The set of all possible markings
that are reachable from M0 is called the reachability set and is defined by R(M0).
The concept of reachability is essential for the study of the dynamic properties of a Petri net.

The reachability set can be obtained from the reachability graph presented previously, e.g.,

figure 3 [8][11].

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

79

Definition 5 (Liveness) A Petri net is said to be live for a marking M0 if for any marking in R(M0)
it is possible to fire a transition.
The liveness property guaranties the absence of deadlock in a Petri net. This property can
also be observed from the reachability graph. If the reachability graph contains an absorbent
state3, then the Petri net is not live at that state and it is said to have a deadlock [8][11].
Definition 6 (Boundedness) A Petri net is said to be bounded or k-bounded if the number of
tokens in each place does not exceed a finite number k for any marking in R(M0). Furthermore, a Petri
net is structurally bounded if it is bounded for any finite initial marking M0. A Petri net is said to
be safe if it is 1-bounded [8].
Definition 7 (Reversibility) A Petri net is reversible, if for any marking in R(M0), M0 is reachable.
This means that the Petri net can always return to the initial marking M0 [8][11].
For the example in figure 1 we have a reachability set R(M0) = {M1 = [1, 1, 0],M2 = [0, 2, 0],M3

= [1, 0, 1],M4 = [0, 1, 1],M5 = [0, 0, 2]}. The Petri net is live, reversible and 2-bounded for the
marking M0 = [2, 0, 0].

2.3 Structural analysis
This section considers the structural analysis of Petri nets by using invariant analysis as
described in [8][13]. Basically, the liveness and boundedness of the net will be assessed by
using P-invariants and T-invariants. These invariants are obtained from the incidence matrix
of the net and they give information regarding token conservation and transition firing
sequences that leave the marking of the net unchanged. These concepts are used to assess
the overall liveness and boundedness of the net.
Definition 8 (Incidence matrix) Let

= w(i, j) be the weight of the arc that goes from transition ti

to place pj and = w(j, i) be the weight of the arc from place pj to transition ti. The incidence matrix

A of a Petri net has ⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij] where
aij = - .

The example presented in figure 1 shows an ordinary Petri net (all the weights are equal to
1) and the following is its corresponding incidence matrix.

Definition 9 (Net-invariants) Let A be the incidence matrix. A P-invariant is a vector that satisfies
the equation

 (2)

and a T-invariant is a vector that satisfies the equation

 (3)

3 If the net is not live for marking M0 then at least one marking from R(M0) will not have any
enabled outgoing transitions. If the reachability graph is considered as the state graph of the
net, then an absorbent state is that from which the marking it is representing does not have
any outgoing transitions enabled. As a result, when the net reaches an absorbent state, it will
remain in it indefinitely.

www.intechopen.com

 Multiagent Systems

80

2.3.1 Boundedness assessment
The P-invariants of the incidence matrix are used in Theorem 1 to make an assessment of the
boundedness of the Petri net. A Petri net model is covered by P-invariants if and only if, for
each place s in the net, there exists a positive P-invariant x such that x(s) > 0.
Theorem 1 A Petri net is structurally bounded if it is covered by P-invariants and the initial
marking M0 is finite [13].

2.3.2 Liveness assessment
The liveness of the Petri net model is assessed on Theorem 2 by means of the T-invariants of
the incidence matrix. A Petri net model is covered by T-invariants if and only if, for each
transition t in the net, there exists a positive T-invariant y such that y(t) > 0. This is a
necessary condition but not sufficient. The liveness assessment by the use of T-invariants is
still an open problem [8].
Theorem 2 A Petri net that is finite is live and bounded if it is covered by T-invariants [13].

3. Modeling of multi-agent systems with indirect interaction

The methodology presented here consists of defining a simple multi-agent system based on
the abstract architecture for intelligent agents (M). The abstract architecture is modeled as a
discrete-event system using Petri nets (N) and structural and reachability analysis provides
an assessment of the interaction properties. Deadlock avoidance in the multiagent system is
considered as a key property, and it is evaluated using the liveness and boundedness
properties of the Petri net model.
The purpose of this work consists of the definition of an abstract architecture for multiagent
systems with indirect interaction, analogous to the abstract architecture for intelligent
agents. The proposed architecture allows the description of agent-to-agent interactions via
changes in the environment and serves as an initial description of the discrete-event
dynamics of the multi-agent system. In addition, this work presents an algorithm
(algorithms 1 and 2) to obtain a Petri net model of a multi-agent system by making use of
the multi-agent system's abstract architecture. Finally, a methodology to ensure that the
multi-agent system is deadlock free is presented; it is based on the analysis of the properties
of the Petri net model.
Here, the abstract architecture of intelligent agents is used as a starting point; particularly
the abstract architecture for purely reactive agents. The level of abstraction of agents
modeled by the abstract architecture makes it a good candidate for the study of multiagent
systems as discrete-event dynamic systems. The study of interaction frameworks is first
approached by studying the simplest means of interaction among agents (indirect
interaction); assuming the agents have the perception/action capabilities and agents can
interact by changing each others environment.
Modeling approach based on interaction among agents: The interactions between agents
can be either a direct agent-to-agent interaction or an indirect interaction. The typical
structure of a multi-agent system was presented in [14] and is reproduced in figure 4. It
shows how the agents interact among each other and how they operate over a metalevel
(multi-agent level) environment. Arrows define direct agent interactions from agent to
agent; the indirect interactions are based on the environment. In the indirect interaction, an
agent modifies another agent's environment triggering a reaction. The indirect interaction
occurs in the cases when two or more agents share a subset of the environment. It should be

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

81

noted that the overall multi-agent system acts over a meta-level environment. An agent that
is part of the multi-agent system has its own environment that is somehow related to the
meta-level environment of the multi-agent system. This meta-level environment of the
multi-agent system is referred to in the literature as being an open environment [15]. A
complex problem will provide an open environment, which is dynamic, has components
that are unknown in advance, its structure changes over time and might be heterogeneous
in its implementation [15]. By focusing on the interactions among agents as described above,
it is natural to regard a multi-agent system as a discrete-event system.

Fig. 4. Structure of a multi-agent system [14].

Following the goal of defining a methodology for modeling multi-agent systems, there is a
need to define a modeling methodology that makes no use of the context of the system or at
least abstracts itself from it. Basically, looking at an abstract architecture as a means of
modeling single agents and multi-agent systems. The proposed modeling approach, uses
the abstract architecture to obtain the Petri net models.

3.1 Petri net models from the abstract architecture
The artificial intelligence research considers three difierent paradigms for intelligent agents:
a) reactive and b) deliberative; and c) hybrids between them. The abstract architecture
models how an agent behaves with respect to changes in its environment. Here, an agent
has its own environment and this environment is defined by the nature of the agent. The
goals, objectives and the general purpose of the agent define its environment. This abstract
architecture is based on the reactive paradigm of perception and action. A purely reactive

www.intechopen.com

 Multiagent Systems

82

agent has a perception of the environment and it is used in the decision mechanism that
provides an action in the agent. A reactive agent can also have an internal state as a decision
mechanism for the actions to be undertaken. An agent with perception and internal state
capabilities has more computational power than an agent without them and its
computational power is now comparable with that of the Belief-Desired-Intention
architecture as described in [14].
Abstract model for purely reactive agents: In a purely reactive agent, the perception part
records the changes in the state of the environment. The action part computes the actions to
be taken in order to react to changes in the environment. The agent environment changes
based on the actions applied by the agent, as well as actions by other agents, and it may be
dynamic in that it may change by itself.
The environment consists of a set of states S = {s1, s2,…}. The agent can undertake a set of
actions A = {a1, a2, …} and perceive a set of percepts P = {p1, p2, …}. For a purely reactive

agent, the behavior of the agent can be represented as the function action: P → A and

perception : S → P. The deterministic behavior of an environment can be represented by the

function environment : S × A → S.
Petri net modeling of multi-agent systems: A Petri net is defined as a five-tuple (P, T,

A,W,M0) where: P is a finite set of places, T is a finite set of transitions, A ⊆ (P × T) [(T × P) is a

set of arcs, W : A → {1, 2, 3, …] is a weight function, and M0 : P →

is the initial marking.

When modeling, several interpretations can be assigned to places and transitions. For a
discrete-event dynamic system a transition is regarded as an event, and the places are
interpreted as a condition for an event to occur.
There are properties we would like to show for multi-agent systems. Examples of these
properties are boundedness and liveness since they are related to deadlock avoidance in
discrete-event systems. Other properties are going to be relevant to multi-agent systems
particularly to the communication, interaction and individual agent architectures. The
reachability, liveness and boundedness properties of Petri nets are going to be used in the
analysis presented in this chapter.

3.1.1 Obtaining Petri net models from the abstract architecture
Places model the environmental state of the agent. Having a token in a place representing
state si means that the agent is currently in such a state.
Transitions model the actions of an agent. The environmental state is changed by actions so,
for the Petri net model having tokens move from one place to another by firing transitions,
this agrees with the execution process of the abstract architecture.
Algorithm 1 (Petri net submodel for agent i) Let Si be the set of environmental states of agent i,

and sij ∈ Si be the jth environmental state of agent i. Similarly, let Ai be the set of actions of agent i,

and aik ∈ Ai be the kth action of agent i.
1. Add a place for each element of the environment Si and label each place using notation Pij for sij .
2. Add a transition for each action in Ai and label each transition using notation Tik for aik.

3. For each instance of the function environment : Si ×Ai → Si say sij ×aik → sil: a) add an arc
leaving from place Pij and ending in transition Tik; b) add an arc leaving from transition Tik and
ending in place Pil; c) add a weight of 1 to each arc.
If an arc from transition Tik to place Pil already exists, add a new transition and label it T’ik;
perform this step using T’ik instead of Tik.

4. Add a token in the place representing the initial state of the environment.

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

83

Algorithm 2 (Petri net model of the multi-agent system) The Petri net sub-models of each of the
individual agents in the system should be joined based on their indirect interactions. In general, this
indirect interaction will be in such a way that an agent i action will change an environment state of
agent j. This communication act can be regarded as a regular action in the construction of the
complete model. There will be arcs added from the places modeling the environmental states of agent j
to the transition modeling the communication in agent i.

3.1.2 Analysis of the Petri net model
The Petri net model of the multi-agent system can be analyzed to assess system properties
like deadlock. Inspection of the reachability graph of the Petri net model can indicate if the
model is live and bounded. On the other hand, liveness and boundedness properties can
also be assessed using invariant analysis [13]. Basically, the liveness and boundedness of the
net can be assessed by using the P-invariants and T-invariants obtained from the incidence
matrix which give information regarding token conservation and transition firing sequences
that leave the marking of the net unchanged.
Let = w(i, j) be the weight of the arc that goes from transition ti to place pj and = w(j, i)

be the weight of the arc from place pj to transition ti. The incidence matrix A of a Petri net has

⏐T⏐ number of rows and ⏐P⏐ number of columns. It is defined as A = [aij] where
aij = - . Furthermore, a P-invariant is a vector that satisfies Ax = 0 and a T-invariant is a

vector that satisfies AT y = 0.
A Petri Net model is covered by P-invariants if and only if for each place s in the net, there
exists a positive P-invariant x such that x(s) > 0 . Furthermore, a Petri net is structurally
bounded if it is covered by P-invariants and the initial marking M0 is finite. In addition, a
Petri net model is covered by T-invariants if and only if for each transition t in the net, there
exists a positive T-invariant y such that y(t) > 0. Furthermore, a Petri Net is live and
bounded if it is covered by T-invariants. This is a necessary condition but not sufficient.

3.2 Multi-agent system modeling and analysis example
This section presents a description of a simple multi-agent system consisting of two physical
agents that work together at a task. This system will be used throughout this chapter to
illustrate how the Petri net and abstract architecture models can be applied to multi-agent
systems.
This system consists of two agents referred to as agent A and agent B. They move objects
from one end of a path to the other. Figure 5 shows 4 scenarios in the operation of the
system. Both agents are capable of moving objects and agent A moves faster than agent B.
The objective of agent A is to go to the end of the path, pick an object, and return to the start
of the path (figure 5a). Since it is faster than agent B it reaches the objects first (figure 5b). At
the time they intersect in the path, agent A gives its object to agent B and returns to the end
of the path to pick another object (figures 5c and 5d). On the other hand, the objective of
agent B is to go in the direction of the end of the path, intersect with agent A and get its
object. Once the agent has an object, it returns to the start of the path, places the object down
and starts all over again.
The meta-level environment of the system consists of a single path with a set of objects on one
side and no objects on the other side.
There is indirect interaction between the agents via changes in their environments. The
exchange of the object between the agents should be regarded as a result of a change in the

www.intechopen.com

 Multiagent Systems

84

environment of both agents. The two agents are regarded as purely reactive, which implies
they do not have a record of history and they do not have an internal state. The decisions
they make are about which actions to undertake and those decisions are directly influenced
by the location of the agent in the path and whether the agent has an object or not. It should
be noted also, that the goal of the overall multi-agent system is a little different from the goal
of each specific agent.

Fig. 5. Multi-agent system example for modeling and analysis.

3.2.1 Abstract architecture description
Under normal conditions, agent A will be walking to the end of the path to pick the object to
be moved. The object is going to be taken away by the other agent at the intersection. Let M
be the multi-agent system with agent A and B modeled with the abstract architecture. Agent
A has environmental states SA, a set of actions AA, an action function actionA, and an
environment evolution function environmentA. On the other hand, Agent B has
environmental states SB, a set of actions AB, an action function actionB, and an environment
evolution function environmentB. Tables 2 and 3 describe the possible environmental states
(SA) and the actions (AA) that agent A can undertake.

Table 2. Environmental states of agent A of M.

Table 3. Actions for agent A of M.

Table 4 presents the mapping of the environment (environmentA) describing how it will be

changing as the agent undertakes actions. It should be noted that the notion of exchanging

the part with agent B at the intersection has not been considered explicitly in the description

of the environmentA : S × A → S for agent A. The agents decision mechanism is described by

the actionA function as presented in (4).

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

85

(4)

Agent B will be walking toward the end of the path until it intersects with agent A which is
on its way back to the beginning of the path carrying an object. At the intersection point,
agent B takes over the object of agent A and proceeds to return to the beginning of the path
to drop the object and start the cycle again. The abstract architecture of agent B is presented
in Tables 4 and 5, and the actionB(s) function is described in (5).

Table 4. Environment function for agent A of M.

Table 5. Environmental states for agent B of M.

Table 6. Actions for agent B of M.

(5)

The mapping of the environment of agent B (environmentB) is presented in Table 7. The
interaction with agent A (in the exchange of the part) is implicitly modeled by action a2

although there is no indication in its abstract architecture that it will change the
environment of agent A.

3.2.2 Petri net model
The Petri net model of the multi-agent system was obtained following the procedure
described in algorithm 1 (Petri net submodel for an agent) and algorithm 2 (Petri net model of the
multi-agent system). Basically, algorithm 1 is executed once for each agent in the system.

www.intechopen.com

 Multiagent Systems

86

Table 7. Environment function for agent B of M.

Furthermore, once all the individual agents' submodels are obtained, algorithm 2 is used to
join the submodels of those agents that engage in indirect interaction.
Petri net submodel for agent A: The Petri net submodel for agent A presented in figure 6 is
obtained as follows. Step 1 of the algorithm is concerned with the places of the Petri net. For
each of the environmental states of agent A as described in table 2, a place is added to the
new submodel following the described notation. In this step, three places are added in total,
e.g., place pA2 which models the environmental state s2. In this state, agent A does not have
an object and it is not at the end of the path. The transitions of the model are added in the
second step of the algorithm. For this agent, a total of three transitions are added which
model the three actions agent A can undertake, e.g., transition tA2 models action a2 which in
turn is the pick an object action of agent A as described in table 3. The arcs of the Petri net are
added in Step 3 of the algorithm. These arcs are related directly to the function that
describes the evolution of the environment of the agent. This function maps the Cartesian
product of environmental states and actions into the environmental states resulting from the
agent undertaking a particular action. From the Petri net model point of view, this means a
Cartesian product of places and transitions that is mapped into a set of places. The addition
of arcs revolves around the transitions/actions of each instance of this mapping as described
in table 4, e.g., f(s2, a1) = s3 indicates that two arcs should be added to transition tA1, an
incoming arc from place pA2 and an outgoing arc to place pA3. The last step of the algorithm
consists of assigning the initial condition or current state to the model. A token is added to
the place representing the current environmental state of the agent. A complete list with
description of places and transitions is presented in table 8.

Fig. 6. Petri net model of agent A.
The Petri net submodel for agent A is not pure since place pA1 and transition tA3 form a self-
loop. A Petri net is said to be pure if there is no place p that is both the input and output
place to a transition t [8]. This self-loop is an artifact of the abstract architecture model of the
agent. A token in place pA1 indicates that the agent is currently at environmental state S1,
which in turn means that agent A has an object. Furthermore, transition tA3 models action a3

which indicates that agent A walks to the start of the path. This self-loop models agent A
walking towards the start of the path while carrying an object. It does not model what will
happen once the agent reaches the start of the path. It must be noted that this is not a
deficiency in the Petri net construction model, but a choice made in generating the abstract

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

87

architecture description for this agent. This description assumes that when agent A is
holding an object and walking towards the start of the path, the other agent will intersect
with it and take over the object.
From the Petri net analysis point of view it can be seen that a token will eventually reach
place pA1 and remain there indefinitely. This is consistent with the abstract architecture
description since it does not model the capabilities of the agent once it reaches the start of
the path having an object to drop there. As a result, the dynamics of this agent by itself reach
a stationary state. A stationary state in this context means that the agent will keep doing the
same activity and that the Petri net model indicates that the dynamics eventually get
trapped at one state. It can be seeen from the reachability graph in figure 7 that the agent
reaches state M2 and remains there. The only transition enabled at state M2 is transition tA3

and once it fires, the system remains in state M2.
The states of the reachability graph are described in figure 7 as well. The initial marking M0

describes the initial condition where agent A has no object and it is not at the end of the
path. From the reachability graph it can be concluded that the net is bounded and live for
M0 = [0, 1, 0]. Even though the subnet is live, it will remain in state M2 once such a state is
reached, as a result, the subnet is not reversible.

Fig. 7. Reachability graph of agent A.

The incidence matrix AA of the Petri net submodel of agent A is presented in equation 6. The
order of the places in the matrix is P = {pA1, pA2, pA3} and the order for transitions is

T = {tA1, tA2, tA3}. The incidence matrix AA is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let
x be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1]T is the only P-
invariant of AA with integer elements. Furthermore, let y be a T-invariant of the subnet
which satisfies equation AT y = 0, y1 = [0, 0, 1]T is the only T-invariant of AA with integer
elements.

(6)

The Petri net submodel of agent A is not covered by positive T-invariants. As a result, the
necessary condition for liveness is not met and it can be concluded that the subnet is not
structurally live. On the other hand, the subnet is covered by positive P-invariants, as a
result, the subnet is bounded for finite initial markings.
Petri net submodel of agent B: The Petri net submodel of agent B is presented in figure 8.
This submodel is obtained in a similar way as that of agent A, following the steps presented
in algorithm 1 and the abstract architecture description of the agent presented in the
previous section. The first step of the algorithm results in the addition of four places to the
model based on the set of environmental states described in table 5. The four transitions are
added in step 2, representing the set of actions in table 6. The four instances of the
environment evolution function presented in table 7 result in the eight arcs of the model.
The token was added to place pB1 to indicate that the agent does not have an object.

www.intechopen.com

 Multiagent Systems

88

Fig. 8. Petri net model of agent B.

The reachability graph is presented in figure 9. The initial marking M0 describes the initial
condition where agent B has no object. From the reachability graph it can be concluded that
the net is bounded and live for M0 = [1, 0, 0, 0].

Fig. 9. Reachability graph of agent B.

The incidence matrix AB of the Petri net submodel of agent B is presented in equation 7. The
order of the places in the matrix is P = {pB1, pB2, pB3, pB4} and the order for transitions is T =

{tB1, tB2, tB3, tB4}. The incidence matrix AB is a m × n matrix, where m = ⏐T⏐ and n = ⏐P⏐. Let x
be a P-invariant of the subnet which satisfies equation Ax = 0, x1 = [1, 1, 1, 1]T is the only P-
invariant of AB with integer elements. Furthermore, let y be a T-invariant of the subnet
which satisfies equation AT y = 0, y1 = [1, 1, 1, 1]T is the only T-invariant of AB with integer
elements.
The Petri net submodel of agent B is covered by positive T-invariants. As a result, the
necessary condition for liveness is met so it can be structurally live. On the other hand, the
subnet is also covered by positive P-invariants, as a result, the subnet is bounded for finite
initial markings.

(7)

Petri net model of the complete multi-agent system: Let N = (P, T, A,W,M0) be the Petri net
model of the complete system with places P = {pA1, pA2, pA3, pB1, pB2, pB3, pB4}, transitions T =
{tA1, tA2, tA3, tB1, tB2, tB3, tB4}, and M0 = [0, 1, 0, 1, 0, 0, 0]. Figure 10 shows N and the
interpretation of places and transitions is presented in Table 8.
This model was obtained by joining the Petri net submodels of the two agents, by following
the methodology presented in algorithm 2. The premise of the algorithm is to identify
agents engaging in indirect interaction in order to join their models. Furthermore, a
transition firing from one of the agents will modify the other agent's environmental state.
For this example, transition tB2 which models an action of agent B, modifies the
environmental state of agent A. The interpretation in terms of the system's description is

www.intechopen.com

Modeling and Analysis Methods for Multi-agent Systems

89

that when agent B takes over the object from agent A, the environmental state of agent A
changes from having an object to not having an object and not being at the end of the path. As a
result, two additional arcs are added to the submodels in order to construct the overall
multi-agent system model; an incoming arc to transition tB2 from place PA1, and an outgoing
arc from transition tB2 to place pA2.

Fig. 10. Petri net model N.

Table 8. Description of Petri net model N.

The tokens in places pA2 and pB1 represent the initial conditions of agent A and B
respectively. The tokens travel through the net representing different environment states for
the agents as the system executes. The systems execution scenarios presented in figure 5 can

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

