

Media Processing in Processing

Collection edited by: Davide Rocchesso

Content authors: Davide Rocchesso, Pietro Polotti, and Anders Gjendemsjø

Online: <http://cnx.org/content/col10268/1.14>

This selection and arrangement of content as a collection is copyrighted by Davide Rocchesso.
It is licensed under the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/
Collection structure revised: 2010/11/10
For copyright and attribution information for the modules contained in this collection, see the "Attributions" section at the end of the
collection.

http://cnx.org/content/col10268/1.14
http://creativecommons.org/licenses/by/3.0/

Media Processing in Processing

Table of Contents

Chapter 1. Programming in Processing
1.1.

Introduction
Data Types

Variables
Programming Structures

Conditional Instructions
Iterations

Functions
Objects and Classes

Chapter 2. Media Representation in Processing
2.1.

Visual Elements
Coordinates
Images
Colors

The RGB model
HSB Model
Alpha channel
Tinging an image

Translations, Rotations, and Scale Transformations
Typographic Elements

Auditory Elements
Sounds
Timbre

Chapter 3. Graphic Composition in Processing
3.1.

Graphic primitives
0D
1D
2D
3D

The stack of transformations
Lighting
Projections

Perspective projections
Parallel views

Orthographic projection
Oblique projection

Casting shadows
Pills of OpenGL
References

Chapter 4. Signal Processing in Processing: Sampling and Quantization
4.1.

Sampling
1-D: Sounds
2-D: Images

Quantization
References

Chapter 5. Signal Processing in Processing: Convolution and Filtering
5.1.

Systems
Impulse response and convolution

Properties
Frequency response and filtering

Causality
2D Filtering

Chapter 6. Convolution - Discrete time
6.1.

Introduction
Derivation of the convolution sum

Graphical illustration of convolution properties
Convolution Sum
Convolution Through Time (A Graphical Approach)

Chapter 7. Signal Processing in Processing: Elementary Filters
7.1.

FIR filters
Averaging filter
Symmetric second-order FIR filter
High-pass filters
FIR filters in 2D

Non-linear filtering: median filter
IIR Filters

Resonant filter
Chapter 8. Textures in Processing

8.1.
Color Interpolation

Bilinear Interpolation
Texture
Texture mapping

Texture Generation
Chapter 9. Signal Processing in Processing: Miscellanea

9.1.
Economic Color Representations

Palette
Dithering
Floyd-Steinberg's Dithering

Economic Sound Representations
Histogram-Based Processing.

Translation and Expansion of an Histogram
Non Linear Scaling
Equalization of an Histogram

Segmentation and Contour Extraction
Contours
Regions

Audio Dynamic Compression
Index

Chapter 1. Programming in Processing

Introduction

This introduction is based on Daniel Shiffman's tutorial .

is a language and development environment oriented toward . In the course Media Processing in
Processing (MPP), processing is one of the main instruments used to introduce some
fundamentals in sound and image processing. Processing is an extension of Java that supports
many Java structures with a simplified syntax.

Processing can be used in three

Basic : Sequence of commands for simple drawing by graphic primitives. --

Table 1.1.

applet
without
nose

 size(256,256);
 background(0);
 stroke(255);
 ellipseMode(CORNER);
 ellipse(72,100,110,130);
 triangle(88,100,168,100,128,50);
 stroke(140);
 strokeWeight(4);
 line(96,150,112,150);
 line(150,150,166,150);
 line(120,200,136,200);

Intermediate : Procedural programming --

Table 1.2.

 void setup() {
 size(256,256);

http://www.shiffman.net/itp/classes/ppaint/
http://cnx.org/content/m12968/1.8/pinocchiononose.html

applet
with
nose

 background(0);
 }

 void draw() {
 stroke(255);
 strokeWeight(1);
 ellipseMode(CORNER);
 ellipse(72,100,110,130);
 triangle(88,100,168,100,128,50);
 stroke(140);
 beginShape(TRIANGLES);
 vertex(114, 180);
 vertex(mouseX, mouseY);
 vertex(140, 180);
 endShape();
 strokeWeight(4);
 line(96,150,112,150);
 line(150,150,166,150);
 line(120,200,136,200);
 }

Complex : Object-Oriented Programming (Java) --

Table 1.3.

applet

 Puppet pinocchio;

 void setup() {
 size(256,256);
 background(0);
 color tempcolor = color(255,0,0);
 pinocchio = new Puppet(tempcolor);
 }
 void draw() {
 background(0);
 pinocchio.draw();
 }
 class Puppet {
 color colore;
 Puppet(color c_) {

http://cnx.org/content/m12968/1.8/pinocchionose.html
http://cnx.org/content/m12968/1.8/pinocchioclassy.html

with
colored
nose

 colore = c_;
 }
 void draw () {
 stroke(255);
 strokeWeight(1);
 ellipseMode(CORNER);
 ellipse(72,100,110,130);
 stroke(colore);
 beginShape(TRIANGLES);
 vertex(114, 180);
 vertex(mouseX, mouseY);
 vertex(140, 180);
 endShape();
 strokeWeight(4);
 line(96,150,112,150);
 line(150,150,166,150);
 }
 }

The Processing programs can be converted into Java applets. In order to do that, one just goes to
the File menu and chooses Export. As a result, five files will be created and put in an applet
folder:

index.html: html code to visualize the applet

filename.jar: the compiled applet, including all data (images, sounds, etc.)

filename.pde: the Processing source code

filename.java: the Java code embedding the Processing source code

loading.gif: an image to be displayed while the applet is being loaded.

Moreover, by means of Export Application it is possible to generate an executable application
for Linux, MacOS, or Windows platforms.

Data Types

Variables

A variable is a pointer to a memory location, and it can refer either to primitive values (int,

float, ecc.) or to objects and arrays (tables of primitive-type elements).

The operation of assignment b = a produces

The copy of the content of a into b, if the variables refer to primitive types.

The creation of a new reference (pointer) to the same object or array, if the variables refer to
objects or arrays.

To have a clear understanding of computer science terms such as those that follow, we
recommend looking at Wikipedia

Definition: scope

within a program, it is a region where a variable can be accessed and its value modified

Definition: global scope

defined outside the methods setup() and draw(), the variable is visible and usable anywhere in
the program

Definition: local scope

defined within a code block or a function, the variable takes values that are local to the block or
function, and any values taken by a global variable having the same name are ignored.

Example 1.1. Array declaration and allocation
int[] arrayDiInteri = new int[10];

Programming Structures

Conditional Instructions

if:
 if (i == NMAX) {
 println("finished");
 }
 else {
 i++;
 }

http://wikipedia.org/

Iterations

while:

 int i = 0; //integer counter
 while (i < 10) { //write numbers between 0 and 9
 println("i = "+ i);
 i++;
 }

for:

 for (int i = 0; i < 10; i++) { //write numbers between 0 and 9
 println("i = "+ i);
 }

Example 1.2. Initializing a table of random numbers

 int MAX = 10;
 float[] tabella = new float[MAX];
 for (int i = 0; i < MAX; i++)
 tabella[i] = random(1); //random numbers between 0 and 1
 println(tabella.length + " elements:");
 println(tabella);

Functions
Functions allow a modular approach to programming. In Processing, in the intermediate
programming mode, we can define functions other than setup() and draw(), usable from
within setup() and draw().

Example 1.3. Example of function

 int raddoppia(int i) {

 return 2*i;
 }

A function is characterized by the entities (with reference to the example) :

return type (int)

name (raddoppia)

parameters (i)

body (return 2*i)

Objects and Classes
A class is defined by a set of data and functions. An object is an instance of a class. Vice versa, a
class is the abstract description of a set of objects.

For an introduction to the concepts of object and class see Objects and Classes.

Example 1.4. Example of class

Dot myDot;
void setup() {
 size(300,20);
 colorMode(RGB,255,255,255,100);
 color tempcolor = color(255,0,0);
 myDot = new Dot(tempcolor,0);
}

void draw() {
 background(0);
 myDot.draw(10);
}

class Dot
{

http://cnx.org/content/m11708/latest/

 color colore;
 int posizione;

 //****CONSTRUCTOR*****//
 Dot(color c_, int xp) {
 colore = c_;
 posizione = xp;
 }

 void draw (int ypos) {
 rectMode(CENTER);
 fill(colore);
 rect(posizione,ypos,20,10);
 }
}

A class is characterized by the following entities (with reference to the example) :

name (Dot)

data (colore, posizione)

constructor (Dot())

functions (or methods, draw())

An object (instance of a class) is declared in the same way as we declare a variable, but we have to
allocate a space for it (as we did for the arrays) by means of its constructor (with reference to the
example).

Declaration: (Dot myDot;)

Allocation: (myDot = new Dot(tempcolor,0))

Use: (myDot.draw(10);)

For a quick introduction to the Java syntax see Java Syntax Primer

http://cnx.org/content/m11791/latest/

Exercise 1.

With the following draw() method we want to paint the window background with a gray whose
intensity depends on the horizontal position of the mouse pointer.

 void draw() {
 background((mouseX/100)*255);
 }

However, the code does not do what it is expected to do. Why?

The variable mouseX is of int type, and the division it is subject to is of the integer type. It is
necessary to perform a from int to float by means of the instruction (float)mouseX.

Exercise 2.

What does the following code fragment print out?

 int[] a = new int[10];
 a[7] = 7;
 int[] b = a;
 println(b[7]);
 b[7] = 8;
 println(a[7]);
 int c = 7;
 int d = c;
 println(d);
 d = 8;
 println(c);

7
8
7
7

Exercise 3.

The following sketch generates a set of 100 moving circles and draws all chords linking the
intersection points of all couples of intersecting circles.

/*

 Structure 3

 A surface filled with one hundred medium to small sized circles.
 Each circle has a different size and direction, but moves at the same slow rate.
 Display:
 A. The instantaneous intersections of the circles
 B. The aggregate intersections of the circles

 Implemented by Casey Reas <http://groupc.net>
 8 March 2004
 Processing v.68 <http://processing.org>

 modified by Pietro Polotti
 28 March, 2006
 Processing v.107 <http://processing.org>

*/

int numCircle = 100;
Circle[] circles = new Circle[numCircle];

void setup()
{
 size(800, 600);
 frameRate(50);
 for(int i=0; i<numCircle; i++) {
 circles[i] = new Circle(random(width),
 (float)height/(float)numCircle * i,
 int(random(2, 6))*10, random(-0.25, 0.25),
 random(-0.25, 0.25), i);
 }
 ellipseMode(CENTER_RADIUS);
 background(255);
}

void draw()
{
 background(255);
 stroke(0);

 for(int i=0; i<numCircle; i++) {
 circles[i].update();
 }
 for(int i=0; i<numCircle; i++) {
 circles[i].move();
 }
 for(int i=0; i<numCircle; i++) {
 circles[i].makepoint();
 }
 noFill();
}

class Circle
{
 float x, y, r, r2, sp, ysp;
 int id;

 Circle(float px, float py, float pr, float psp, float pysp, int pid) {
 x = px;
 y = py;
 r = pr;
 r2 = r*r;
 id = pid;
 sp = psp;
 ysp = pysp;
 }

 void update() {
 for(int i=0; i<numCircle; i++) {
 if(i != id) {
 intersect(this, circles[i]);
 }
 }
 }

 void makepoint() {
 stroke(0);
 point(x, y);
 }

 void move() {
 x += sp;

 y += ysp;
 if(sp > 0) {
 if(x > width+r) {
 x = -r;
 }
 } else {
 if(x < -r) {
 x = width+r;
 }
 }
 if(ysp > 0) {
 if(y > height+r) {
 y = -r;
 }
 } else {
 if(y < -r) {
 y = height+r;
 }
 }
 }
}

void intersect(Circle cA, Circle cB)
{
 float dx = cA.x - cB.x;
 float dy = cA.y - cB.y;
 float d2 = dx*dx + dy*dy;
 float d = sqrt(d2);

 if (d>cA.r+cB.r || d<abs(cA.r-cB.r)) {
 return; // no solution
 }

 // calculate the two intersections between the two circles cA and cB, //
 // whose coordinates are (paX, paY) and (pbX, pbY), respectively. //

 stroke(255-dist(paX, paY, pbX, pbY)*4);
 line(paX, paY, pbX, pbY);
}

1. Complete the missing part that is expected to compute the intersections of the circles, in such
a way to draw the chords linking the intersection points. It is possible to use the computation
of intersection coordinates in a ad-hoc reference system (), then converting the result into the
Processing window coordinate system.

2. Make the chords time-variable by giving different speeds to different circles.

/*

 Structure 3

 A surface filled with one hundred medium to small sized circles.
 Each circle has a different size and direction, but moves at the same slow rate.
 Display:
 A. The instantaneous intersections of the circles
 B. The aggregate intersections of the circles

 Implemented by Casey Reas <http://groupc.net>
 8 March 2004
 Processing v.68 <http://processing.org>

 modified by Pietro Polotti
 28 March, 2006
 Processing v.107 <http://processing.org>

*/

int numCircle = 100;
Circle[] circles = new Circle[numCircle];

void setup()
{
 size(800, 600);
 frameRate(50);
 for(int i=0; i<numCircle; i++) {
 circles[i] = new Circle(random(width),
 (float)height/(float)numCircle * i,
 int(random(2, 6))*10, random(-0.25, 0.25),
 random(-0.25, 0.25), i);
 }
 ellipseMode(CENTER_RADIUS);

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

