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1. Introduction

Energy management in vehicles is an important issue because it can significantly influence the
performances of the vehicles. Improving energy management in vehicles can deliver
important benefits such as reducing fuel consumption, decreasing emission, lower running
cost, reducing noise pollution, and improving driving performance and ease of use. According
to Mainins (Manins, 2000), each year more then 50 million new cars are produced in the world.
However, usually only 30% to 40% of the energy produced by the engine is used to drive a car.
The large energy waste of around 60% is the result of having an engine powerful enough to
cope with the maximum power demand despite the fact that such power is required for only a
vary small percentage of vehicles’ operating time. In addition, vehicle emissions are a source of
greenhouse gas pollution emitting 70% to 90% of urban air pollution (SOE, 2006). Fuel
economy benchmarks and emission regulations have encouraged vehicle manufactures and
researchers to investigate new technologies to enhance fuel economy and minimise emissions.
The energy efficiency of vehicles can be improved by enhancing the efficiency of the vehicle.
Implementing energy management strategies in classical vehicles does not fully deliver the
expected benefits. Hybrid electric vehicles, on the other hand, offer a platform that can
accommodate advanced energy management strategies giving rise to full realization of the
stated benefits. Intelligent energy management methods can observe and learn driver
behavior, environmental and vehicle conditions, and intelligently control the operation of
the hybrid electric vehicle.

A Hybrid Electric Vehicle (HEV) takes advantage of an Internal Combustion Engine (ICE)
and an Electric Motor (EM) to deliver fuel consumption and exhaust emission reduction. An
EM is powered by on-board battery packs to drive the vehicle. From the consumers overall
perspective, the HEV is essentially the same as a Conventional Vehicle (CV). Moreover,
HEVs are refuelled in the same way as a CV. A HEV has the advantage over a pure Electric
Vehicle (EV) in both travelling range and convenience, as there is no need to recharge the
battery through a power point for long hours. Importantly, a HEV has the potential to
improve fuel economy by almost 50%, while also possessing all the advantages and
flexibility of a CV (Ehsani et al,. 2005). Hence, HEVs solve the problems of EVs whilst
minimising the shortcoming of CVs providing the benefits of both electric and conventional
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vehicles. HEVs are categorised into three groups: Series (S-HEV), Parallel (P-HEV), and
Series/Parallel (S/P-HEV) as shown in Fig. 1.

In an S-HEV, there is no mechanical link between the ICE and drive train. This means that
the ICE can run continuously in its preferred operating range, whereas the drivetrain is
driven by an electric machine. For the electric power request, it relies on the battery plus the
generator. The generator is driven by the ICE and maintains an appropriate energy level in
the battery. A disadvantage of this configuration is that energy is first converted from
mechanical power to electric power with the generator and then back to mechanical power
by the electric machine, both introducing losses.

The P-HEV establishes a parallel connection between the ICE and the electric machine that
both are allowed to give force to the drive the vehicle. The power through the EM can be
positive as well as negative. This allows the EM to operate in motor mode and generator
mode. At a top-level view, the P-HEV configuration looks similar to a conventional vehicle,
although the EM in a conventional vehicle operates only in generator mode.

Finally, the last vehicle configuration is an S/P-HEV. It merges the topology of a series and a
parallel HEV. S/P-HEVs have the highest complexity since power to the drivetrain can follow
various trajectories. Recently plug-in hybrid electric vehicle (PHEV) has come to market. A
PHEV is a hybrid electric vehicle that described above. The PHEV batteries can be recharged
by plugging into an electric power source. A PHEV combines type of conventional hybrid
electric vehicles and battery electric vehicles, possessing both an internal combustion engine
and batteries for power. The desire strategy using PHEV can be employed as follows: in short
distance travelling electric vehicle (EV) mode operation such as urban and for long distance
travelling hybrid electric vehicle (HEV) mode operation such as highways.

The most important challenge for the development of P-HEV is the synchronization of
multiple energy sources and conversion of power flow control for both the mechanical and
electrical paths in optimal fuel efficiency and battery areas.The difficulty in the development
of hybrid electric vehicles is the coordination of multiple sources such as mechanical and
electrical. The reason why a P-HEV is considered in this work is that it has fewer disadvantages
and less complexity (Kessels.], 2007) (Ehsani et al.,2005).
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Fig. 1. Three HEVs structures.

Nevertheless, any vehicle needs to deal with uncertain factors such as environment
conditions and also driver behaviour. HEVs are a highly complex systems comprising a
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large number of mechanical, electronic, and electromechanical elements (Zhu et al.,2002).
Hence a HEV can be considered as a Complex System (CS).

A Complex System is a system that can be analyzed into many components having
relatively many relations among them, so that the behaviour of each component depends on
the behaviour of others (Simon. A.H,1973).

In the real world, many problems and systems exist that are too complex or uncertain to be
represented by complete and accurate mathematical models. However, such systems need
to be designed, optimized, and controlled. CSs can be handled by Intelligent Systems (ISs).
ISs can learn from examples, are fault tolerant, are able to deal with non-linear problems,
and once trained can perform prediction and generalization at high speed. Intelligence
systems have been used in diverse applications in control, robotics, pattern recognition,
forecasting, medicine, power systems, manufacturing, optimization, signal processing, and
social/ psychological sciences. They are useful in system modelling such as in implementing
complex mappings and system identification. ISs comprise areas like expert systems,
artificial neural networks, genetic algorithms, fuzzy logic and various hybrid systems,
which combine two or more of these techniques. ISs play an important role in modelling
and prediction of the performance and control of energy and renewable energy processes.
According to literature, ISs have been applied to energy and renewable energy engineering.

ISs can be developed through modelling and simulation. The modelling and simulation
approach has become an essential tool for mechanical engineers and automotive researches in
improving efficiency and timing of vehicle design and development, resulting in the delivery of
significant cost saving as well as environmental benefits. The modelling and simulation is
generally defined as mathematical realisation and computerised analysis of abstract
representation of systems. The modelling and simulation helps achieve insight into the
functionality of the modelled systems, and investigate the systems' behaviours and
performances. The modelling and simulation is used in a variety of practical contexts relating to
the design, development, and use of conventional as well as advanced vehicles including: design
and evaluation of vehicle performance, fuel consumption, emission, energy storage devices,
internal combustion engine, hybrid engine, accessories, composite materials, determination of
drag using wind tunnel, training drivers trough virtual vehicle, collecting and analysing sensory
information, identifying critical test conditions, investigating crash factors, characterising road
topology, testing and analysing energy management strategies, and so on.

This work employs the modelling and simulation approach to develop an Intelligent Energy
Management System (IEMS) for a P-HEV.

The main objective is to optimize fuel consumption and reduce emissions. The work involves the
analysis of the role of drivetrain, energy management control strategy and the associated impacts
on the fuel consumption with combined wind/drag, slope, rolling, and accessories loads.

2. Literature Review and Background

This section provides a review of the main approaches used in modelling and control of
energy management of HEVs. In a CV, energy can be dissipated in a number of ways
including (Kessels.], 2007):
i.  Brake utilisation: The brake is applied by the driver to decelerate the vehicle
resulting in the loss of kinetic energy in the form of heat.
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ii. Engine start/stop: The engine often runs idle during the utilisation of vehicle
resulting in an unnecessary consumption of fuel.

iii. Uneconomic engine operating condition: An engine often demonstrates non- linear
fuel consumption behaviour in certain operating conditions that causes an
excessive use of fuel.

iv. Unscheduled load: Certain mechanical and electrical loads get activated outside the
economic operating point of engine increasing the fuel consumption.

P-HEVs provide a platform to reduce the wasted energy. The most important challenge for the
development of P-HEV is the synchronization of multiple energy sources and conversion of
power flow control for both the mechanical and electrical paths. Control in HEVs is recognized
as two levels of actions: supervisory control and component control. In this study supervisory
control is investigated as a suitable control strategy in energy management.

The control strategy is an algorithm that is used for issuing a sequence of instructions from
the vehicle central controller to operate the drivetrain of the vehicle. The control strategy
needs to monitor uncertain events. Moreover, in order to improve the system, the control
strategy can provide optimized energy management. The control strategies in a P-HEV can
be classified in two main groups as follows.

2.1 Rule-Based Control

The control rules techniques are based on mathematical, heuristics, and human expertise
generally with an analytical knowledge of a predefined driving cycle. Control rules can be
categorized in three methods.

A. Rule-Based

This method is based on an examination of the power requirements, ICE efficiency, fuel or
emission maps. Human knowledge is used to design rules to split the requested power between
converters. The method can be categorized into three groups: on/ off control (Ehsani et al.,2005),
base line control (Zhu et al.,2002) (Sciarretta et al., 2004) (Linl et al.,2004) (Lyshevski, 1999)
(Barsali et al., 2004) (Khayyam et al., 2008), and discrete time events (Zhang & Chen, 2001)
approaches.

B. Fuzzy logic

Fuzzy logic control has a nonlinear structure that can deal with the nonlinear structure of
the power split problem. Fuzzy logic has a more robust structure and offers more design
flexibility. The problem with fuzzy logic is the optimization and mathematical manipulation
of defuzzification system. The defuzzification process consumes memory and time in
controller. Some fuzzy logic controller have been developed for HEVs including (Baumann
et al., 2000) (Farrokhi & Mohebbi, 2005) (Langari &won, 2005) (Mohebbi et al.,2005) ( Salman
et al., 2000) (Schouten et al.,2002) (Hajimiri at al., 2008).

C. Neuro-Fuzzy

There are also combinations of fuzzy logic and artificial neural called neuro-fuzzy control
(Mohebbi et al.,2005) and fuzzy discrete event control (Bathaee et al., 2005).
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2.2 Optimal Control

In optimal control the controller is optimized according to a cost function of the system.
Therefore, optimal control strategies are almost perfect. However, the optimal controllers
are sensitive to parameter changes and also to noise. To perform the optimization process,
all the dynamic and static behaviours of the system components are taken into
consideration. Calculations are usually simplified by introducing assumptions which means
that the solution is optimum only under the assumptions. On the other hand, the discrete
time events method is simple and more robust. System behaviours are divided into discrete
events. Each event is connected to another by certain rules (Mohebbi & Farrokhi, 2007).

If this optimal control is performed over a fixed driving cycle, a global optimum solution
can be found. In fact, the optimal control system solution is noncasual in that it achieves the
reduction of fuel consumption using information of future and past power demands.
Obviously, this technique cannot be used directly for real-time energy management.
Optimal control can be divided in two groups as follows.

A. Global Optimization (off line)

There are several reported solutions to achieve performance targets by optimization of a cost
function representing efficiency over a drive cycle, yielding global optimal operating points.
The global optimization techniques are not directly applicable for real-time problems,
considering the fact that they are casual solutions. This is due to their computational
complexity. Some of the global optimization methods are given below:

A.1 Neural Networks

Neural networks have the ability to be trained online or offline, but online training
consumes memory in a controller. This trainability characteristic makes neural networks as
a good candidate for adaptive energy management systems. As an example, the work
presented in (Mohebbi &Farrokhi,2007) developed a neural network for optimal control.
Prokhorov (Prokhorov D.V , 2008) used a neural network controller for improved fuel
efficiency of the Toyota Prius hybrid electric vehicle. A new method to detect and mitigate a
battery fault was also presented. The developed approach was based on recurrent networks
and included the extended Kalman filter.

A.2 Classical Optimal Control

(Delprat et al,. 2004) used the optimal control theory based on Lewis and Syrmos (Lewis &
Syrmos., 1995) work. This method is directly applied to find a global solution for the energy
management problem in a parallel torque-addition arrangement. The analytical nature of
this method makes it a good one. However, variation of drivetrain structure makes it
difficult to find an analytical solution, compared with numerical and iterative-based
methods. Some optimal control have been developed for HEVs including (Wei et al.,2007)
(Pisu & Rizzoni,2007) (Musardo et al.,2007).

A3 Linear Programming

This method can formulate the problem of optimizing the fuel efficiency as a nonlinear
convex optimization problem that is approximated by a large linear program (Tate &
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Boyd,1998). The approximations used for transformations and the fact that LP may not be
applicable to a more sophisticated drivetrain degrade the proposed approach.

A.4 Dynamic and Stochastic Programming

Dynamic Programming (DP) method utilizes the minimizing cost function over a driving
cycle. (Lin et al.,2003) demonstrated that the approach does not give a real-time solution by
nature. A family of random driving cycles needs to be used to find an optimal solution.

A.5 Genetic Algorithm

The Genetic Algorithm (GA) has been used to solve a constrained nonlinear programming
problem. (Piccolo et al.,2001) showed that GA is very useful for complex nonlinear optimization
problems. This is because GA leads to a more accurate exploration of the solution space than a
conventional gradient-based procedure. But GA dose not give the necessary view to the designer
of the powertrain , unlike an analytical approach. Montazeri et al. (Montazeri et al.,, 2006)
described the application of genetic algorithm for optimization of control parameters in P-HEV.

B. Real Time Optimization (on line)

In order to develop a cost function for real-time optimization, the following methods can be used.

B.1 Model Predictive Control

(Salman et al., 2005) utilized a look-ahead window to find a real-time predictive optimal
control law. This approach can be used for superior fuel economy by previewing the driving
pattern and road information.

B.2 Decoupling Control

(Barbarisi et al.,2005) proposed a novel strategy to assure acceptable drivability of the
vehicle that was based on the vehicle’s dynamic model. Based on the proposed decoupling
methods, the controller’s output is composed of different components.

B.3 Genetic-Fuzzy

The genetic-fuzzy control strategy is a fuzzy logic controller that is tuned by a genetic
algorithm. Poursamad et al. (Poursamad et al.,2008) and Montazeri et al. (Montazeri et al.,
2008) applied these control strategy model to minimize fuel consumption and emission.

2.3 Discussions

The presented work is focused on a control strategy to reduce fuel consumption though
considering performance and driveability. Our optimal control strategy is found in two
steps, first finding the control which results in the reduction of fuel consumption together
and offering the best performance, and second taking vehicle driveability into consideration.
Among the control strategies for the best fuel economy, dynamic programming is the only
one that assures global optimality if the driving cycle is known in advance.

However, it does not apply to real-time problems. On the other hand, fuzzy logic, rule-
based, and neuro-fuzzy controllers are not generally optimized, but applied to real-time
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problems. If the future driving conditions of a few minutes ahead can be predicted then the
optimal controller can help find a suboptimal solution.

3. Factors Involved in Energy Management of Hybrid Electric Vehicles

Bandivadekar and Heywood (Bandivadekar & Heywood, 2007) presented an analysis that
shows the possibility of halving the fuel consumption of new vehicles by 2035. Enhancement in
vehicle control and management strategies is considered to be an influential mean in reducing
the fuel consumption of vehicles. Energy management approaches in vehicles can be realised
through considering a number of factors including (Cacciabue et al, 2009): environmental
conditions, driver behaviour, vehicle specifications, and intelligent transportation approach
(EPA, 2004). In order to develop an energy management system, a number of models need to be
implemented and used. These models are described in the following,.

3.1 Main factors involved in energy management system of HEVs

A HEV can be considered as a complex system consisting of subsystems. In the
development of energy management systems, model of the HEV subsystems are developed
and used. Fig. 2 shows an overview of the energy management model for HEVs.
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Fig. 2. Overview of the energy management model for HEVs.

3.2 Model of Environment

Among the factors that are involved in HEV systems, the environment conditions such as road
geometrical specifications and wind behaviour are often unknown and uncertain during
drives. The information about the geometrical specification and wind behaviour of the road
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ahead of the vehicle can be used by an intelligent system to reduce fuel consumption of the
vehicles (Khayyam et al., 2008). However, this information is often unavailable to the
intelligent system on-board of a vehicle in real-time. Thus, utilising on-line and off-line
prediction and monitoring of the geometrical specifications and wind behaviour of the road
ahead of vehicles can improve their performances. Environmental information can be
categorized in two groups: current and look-ahead. The data include road geometry, road
friction, wind drag, and ambient temperature. It has been demonstrated that lookahead
environment information can be employed by the energy management system to achieve
reduction of fuel consumption (Hellstrom et al.,2009). Khayyam et al. (Khayyam et al.,2008)
presented a Slope Prediction Unit (SPU) to calculate the slope angle of the road within the
distance of 50-300 meters away from the vehicle. This information reduced fuel consumption
about 6.1% liter/100 km during simulation. Global Positioning Systems (GPS) and Geographic
Information Systems (GIS) can provide static and dynamic road information.

Current Environment Model (CEM) is an algorithm that creates data associated with
environmental conditions and frictions. Look-ahead Environment model (LEM) is an
algorithm that creates data associated with future environmental conditions and frictions
encountered by the vehicle.

In order to model environment, a number of methods can be used. Khayyam et al.
(Khayyam et al.,2009a) proposed a method that can be used to produce authentic highway
height data using a set of probability distributions. They considered a highway as a complex
road which can have any kind of possible geometrical variations. The presented method
models highway heights by Rayleigh probabilistic distribution function. In addition,
highway geometric design laws were employed to modify the created highway data making
it consistent with the real highway situation. The proposed model is then used to produce a
3D realistic road. The method is called a Probabilistic Highway Modelling (PMH) technique.
PMH is capable of creating artificial highway and wind data that possess statistical
characteristics of real highway and wind situations. A highway is considered to contain a
collection of road segments. The Poisson Probability Distribution Function (PDF) is used to
produce a random number that determines the number of road segments. Segments can
then have different lengths. For each segment, the exponential PDF produces a random
number that represents the segment length. In addition, for each segment, two other
random numbers are generated and used to form the geometry of the segment. The
Rayleigh PDF is employed to produce a random number that represents the height change
of the segment. Also, the Gaussian PDF is used to form a random number that gives the
bend deflection change in the segment. The random numbers for height and bend could be
small or large injecting varying degrees of heights and bends into different road segments.
Also, highway geometric design laws are used to modify the created highway data to make
it consistent with the real physical highway situation.

A wind is constructed using a collection of regions of differing lengths. A wind creation
algorithm is an iterative routine. The algorithm creates wind speed and direction values for
each region. The exponential PDF produces a random number that represents the region
length. The Weibull PDF is employed to produce a random number that represents the wind
speed value in the region. Also, the uniform PDF is used to form a random number that
gives the wind direction value in the region.

The PHM can be employed in simulation of problems involving highway roads such as
energy optimization of conventional and hybrid electric vehicles. Fig. 3 displays a flowchart

www.intechopen.com



Intelligent Energy Management in Hybrid Electric Vehicles 155

diagram description of the highway creation algorithm using the PHM. The result of the
highway creation algorithm demonstrates in Fig. 4 that show a 3D representation of the
constructed sample highway using the PHM. Fig. 5 displays a flowchart diagram
description of the wind creation algorithm using the developed PHM concept.
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Fig. 3. Highway creation algorithm using the developed PHM.
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Fig. 4. 3D representation of the constructed sample highway using PMH technique.
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Fig. 5. Wind creation algorithm using the developed PHM.

3.3 Model of Driver

Driver behaviour has a strong influence on emissions and fuel consumption of the vehicle.
Modelling driver behaviour can be done using different methods. As an example, the

Driver-Vehicle-Environment (DVE) (Cacciabue, 2007)

(Lin et al., 2005) method models

human machine interaction and associated taxonomies for classifying human behaviour. De.
Vlieger et al. (De. Vlieger et al.,2000) identified three types of driving behaviour as follows:

1- Calm driving that implies anticipating other road user's movement, traffic lights,

speed limits, and avoiding hard acceleration.

2- Normal driving that implies moderate acceleration and braking.
3-Aggressive driving that implies sudden acceleration and heavy braking.

Moreover, they note that emissions obtained from aggressive driving in urban and rural
traffic are much higher than those obtained from normal driving. A similar trend is
observed in relation to fuel consumption. It is stated that the driving style affects the

emission rate and the fuel consumption rate.
Average acceleration and Standard Deviation (SD) of

acceleration over a specific driving

range are used to identify the driving style. Acceleration criteria for the classification of the

www.intechopen.com



Intelligent Energy Management in Hybrid Electric Vehicles

157

driver's style are based on the acceleration ranges proposed by De Vlieger et al. (De Vlieger
et al. 2000). They defined the typical ranges of average accelerations as describe in table 1.

Acceleration Calm Normal Aggressive
Driving Driving Driving
City 4.85-6.9 6.98-8.6 9.15-11.8
Journey(m/s?)
Highway 0.85 1.0 2.16
Journey(m/s?)

Table 1. Overview of the tested acceleration (De Vlieger et al., 2000).

Our objective is to use support dynamic real-time driver behaviour system in the energy
management system. A driver first determines the drive strategy, selects the engine
specifications, starts the vehicle motion, and controls the mass flow rate of fuel into ICE by
changing the pedal, gear, brake, and clutch. Also, the driver sends this data as drive strategy
to IEMS.

3.4 Model of Vehicle (Quasi-Static)

In a P-HEV, both the Internal Combustion Engine (ICE) and the Integrated
Starter/Generator (ISG) can give tractive force to the wheels. Furthermore, the ISG will be
used as a generator to supply the electric loads. A schematic drawing of the vehicle
configuration is shown in Fig. 6.

o P o B

Wheels

Pnet

Electric
Motor

Fig. 6. P-HEV topology (Kessels.],2007).

split

Pem

The power demand of the drivetrain Py covers all the elements of the drivetrain, including
the transmission and the clutch. The engine speed @ and the drivetrain torque t; are
calculated back from the vehicle speed and denote the driver’s power demand:

F, = oz,

1)

The power split device is assumed to have no energy losses and establishes the following
power balance:

Pe:Pd+Phev (2)

Where : Py, is hybrid power and P.is engine power.
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3.4.1 Conventional Vehicle Specification
A vehicle ICE can be treated as a controlled volume system whose energy balance is given
as follows:

chmbaus!im = (Q/ilel + Qair - Qexhaust) (3)
=P +P, .+ Py + P, +P,,

road-— friction drag slope accessory driving + Qwater/ oil + Qheatlax.v

In order to include all losses, Equation (3) is reformed into the following equation where the
effect of different losses is taken into account by corresponding efficiencies:

(Qmmbuman ) x ’70110 xn fuel ~ air xn mechanical X7 heat loss Pnet (4)
=P ~ priction T P drag T P siope T+ P accessory T P driving
where: p = Power output of engine
=Otto cycle efficiency= 1 =0.529 (Pullkrabek,1997)
’7{))‘[() 1 -

(r=1)
r,

= Real fuel air engine efficiency =0.75(Yaodong Wang,2007)

fuel —air

=Mechanical efficiency=0.9 (Plint,1997)
= Heat loss efficiency=0.8 (Pullkrabek,1997)

Tnechanical

Theat loss
These efficiency are depend on some variable factors and situations.They can be measured
by industrial vehicle companies. In the section 3.4.3 we will select specific efficiency in our
model.To calculate ¢ Equation (3) is used:

combaustion

©)

Qcombustion = mﬁzel x qcumbustion

where Qoomiustion is the combustion energy. In this model, the fuel is assumed to be C.H, g, in

(Wang et al., 2007) . The complete combustion of C,H,,,, with 1+k percent theoretical air is

14.96
written as:

CoH o6 +hx11.74x(0, +3.76)N, ——> ©)
8CO, +7.48H,0 +11.74(k -1)0, +11.74 x3.76 x k x N,

If the heat transfer was accurately measured, the released energy would be 109100 k.% per
g

8 mole of CO,(Heywood .B.J, 1998). The result of Equation (6) gives:

q compusiion T z ni[hf +Ah)i=W., + Z ”e[h/ + AR], (7)
Where:
S nlh, +AR] = b CoH o +1.2x11.74 (0, +3.76 x N,) = 793 .23 kJ / kg
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Type [Symbol | Value

Description

Combustion

Enthalpy of formation E-F W Thermodynamic tables
f

Sensible formation E-F AT Thermodynamic tables

Combustion energy E-F

138017
qu)mbustmn %g

kg/

Mass flow rate of fuel | V-O .
m fieel

combustion
Temperature of fuel V-S T el 27 °C
Temperature of air V-S T,. 27 °C
Temperature of exhaust V-S T, haust 450 °C
Engine compression ratio E-F r, 8.6
Air compression ratio E-F ¥ 1.35
Ratio of nitrogen per oxygen E-F Fyaioa | 376
Excess air V-0 E, . osuir 20%
Road
Road friction E-F F iction Coing Mg €OS ©
Road friction coefficient E-F Crotting 0.01
Gravity acceleration E-F g 9.8 m/s?
Vehicle velocity V-O v, 16.6 m/s
Vehicle angle V-O 0, 0°
Drag
Dragfriction E-F Fd < C, (0)x pr 24(0)
Ira; drag 2
Wind angle of attack E-F 0, Random direction (0-360°)
Wind velocity E-F v, 0-6 m/s
Result wind and vehicle angle V-O 2] Calculate in simulation IEMS
Result of wind and vehicle speed | V-O v, Calculate in simulation IEMS
Result of wind and vehicle speed | V-O V., Calculate in simulation IEMS

Drag coefficient (By simulation) |V-S | C,,.(8) | = (0.00005 )x (6)+0.0097 x (6)+0.31

Front surface area V-S A(0) 1.8x1/ cos(é’)

Vehicle + passenger mass V-0 m 1280 kg

Air density E-F P 1.225 kg/m3

Slope

Slope friction R-O Fitope mg sin @

Road slope angle R-O [ -1% < atan(Q) < +0.6%
Radius of Comfort requirement | R-O R 100 m

Accessory

Accessory V-0 Paccessory 0-4250 watt

V-S vehicle specification; V-O vehicle operation; E-F environment factors;
R-O road condition.
Table 2. Parameters involved in energy balance equation
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and
> nfh, +Ahle=8CO,[h, + A,1CO, + T48H ,0lh, +A,1H,0 +11.74 x (0.2)0,[A 10, +
11.74x3.76 x 1.2 x N,[A, IN, =37219.70 kJ / kg
and W, =0
=|-37219 .70 + 793 .23 |= 38017 .93 kJ /kg )

q combustion

Substituting the terms stated in Table 2, the mass flow rate fuel consumption of the vehicle
can be calculated as follows :

Ii’l _ Proad— friction + Pdrag + Pslope + Paccessor'_v+ Blriving (9)
‘fuel —
(qcombu:tior) x 77otto x 77 x 77 mechz/mical>< 77 heat loss

fuel-air

The total fuel consumption in this process is:

mfuel = J-n;lfuel x dt (10)

P, =[F + F + F

1 2 )
net friction drag slope +F accessory ]>< V1 + E[l /2xm x (Vz—l - V1 )]

where t is the total numbers of steps involved in the simulation.

The symbols given in these equations are described in Table 2. The acceleration of the
vehicle in At time can be calculated as:

q =Yt 4V (11)
At dt

Also, the distance traversed by vehicle in Atis:

X :%xa/xAterVHxAt (12)

t

3.4.2 Parallel Hybrid Electric Vehicle Specification

The ISG is mounted on the crankshaft of the ICE and therefore, it is also coupled to the drive
train of the vehicle. Since the ISG model uses power based signals, it is not possible to
observe speed-dependent characteristics. The ISG operates similar to the electric machine. It
can operate in two modes: generator mode (Pj,>=0) and motor mode ( Pj<0).

The electric power net connects the ISG with the electric loads and the battery. No losses are
assumed in the electrical wires, leaving the following description:

F.=F,+F (13)

Where: Penis electric machine power, P»battery power, and P electric loads.

The battery model consists of two subsystems: a static efficiency block and a dynamic
energy storage block, see Fig. 7. The battery model is used where the losses grow
proportionally with the power during charging (P, > 0) and discharging (P; < 0).

www.intechopen.com



Intelligent Energy Management in Hybrid Electric Vehicles 161

The efficiency block incorporates the energy losses during charging and discharging,
whereas the energy storage block keeps track of the actual energy level E; in the battery. At
this point an integrator is used:

E,(t,) = E,(0)+ [[P,(t)dt » P, = max( n"P,,——P,) (14)

K + s
Ps Py
e 7var

To indicate the actual charging level of the battery, the State of Charge (SOC) is often used.
However, the physical background of SOC has a strong relation with battery models based
on current and voltage. Because the proposed battery model is power based, the State of
Energy (SOE) is more appropriate. The SOE expresses the relative energy status as follows:

Fig. 7. Battery Model

SOE = EE = %100 % (15)

cap

Depending on the control strategy from the EM system, three different representations of
the internal battery losses are taken into account, which approximate the relation between
the power P; at the battery terminals and the net internal power P;. Table 3 provides the
specifications of the battery and EM. The battery efficiency is considered as:

Mo = 2970 Zegio0s = 88 % (16)
Feature Symbo Type
1
Battery (NHW11)
Cells per module 6
Total Volts Vmax 273.6
Capacity  (Amp hours) 6.5
Capacity (Watt hours) 1778.4
Electric Motor
Operating Voltage (V) Vmin 273
Power (W) 33000-44000

Table 3. Parameters involved in energy balance equation

3.4.3 Control strategy and optimal torque

The control strategy involves calculation of the torque produced by ICE based on various
parameters such as road load and battery SOC. This includes the calculation of an optimal
torque based on contending ICE parameters, and deciding the actual torque output by later
modifying the optimal torque based on road load and battery SOC. The optimal torque map
is shown in Fig. 8.
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Fig. 8. Optimal torque map

At the same current speed, if the required torque is above the optimal torque (Area 1), the
ICE torque should be decreased bringing it near the optimal torque point. It means that EM
should be run as a motor to make up for the remaining torque, provided there is enough
battery charge.

At the same current speed, if the required torque is below the optimal torque (Area 2), the ICE
torque should be increased bringing it near to the optimal torque point. This is possible only if
SOC is not high. We can run the EM as a generator, while running the ICE at its optimum.

In order to modeling, the following specification of engine and Motor/Inverter will be
considered. Figs 9 and 10 show that the fuel converter efficiency operation and as well
Motor/Inverter Efficiency.

Optimal Tourque Area
(Fuel Efficiency)

Speed(RPM)

Fig. 9. Fuel Converter Operation Honda Insight 1.01 VTEC-E SI from ANL Test Data .

Motor Torque(Nm) - Motor Speed(RPM)
Fig. 10. Motor/Inverter Efficiency and Condition Torque Capability (Preliminary Model of
Honda 10kw).
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3.4.4 On-line adaptive strategy
The general control strategy for a parallel HEV can be summarized as follows (Shi et al,.2006):

i.  When the speed of the vehicle is small, ICE stops and electric motor gives the
driving power required which avoids higher fuel consumption and reduce
emission (It is assumed that SOC is sufficient).

ii. ~ When the speed of the vehicle is high enough, electric motor stops, ICE starts and
gives the driving power required. Currently, ICE works along optimum curve
depending on the cost function.

iii.  If the power required is larger than what ICE can give, ICE and electric motor work
together and electric motor takes additional required power from the battery (It is
assumed that SOC is sufficient).

iv. If SOC of the battery drops under the safe level, ICE supplies both the energy
required for travelling and extra power to charge the battery through electric motor
(electric motor is at generator mode).

v.  In brake state, energy floats from vehicle body to drivetrain. Electric motor works
as a generator and transforms braking energy to electricity to charge the battery.

4. Intelligent System Methods in Energy Management

Intelligent energy management methods can observe and learn driver behavior,
environmental and vehicle conditions, and intelligently control the operation of the hybrid
vehicle. This section describes intelligent system approaches with applications to design
optimization, modeling, and control of complex systems and processes.

4.1 Introduction of Complex and Uncertain System

A Complex System is (Simon. H,1973) “A system that can be analyzed into many
components having relatively many relations among them, so that the behaviour of each
component depends on the behaviour of others”.

In the real world, we can find many problems and systems that are too complex or uncertain
to be represented in complete and accurate mathematical models. And yet, we still have the
need to design, optimize, or control the behaviour of such systems. Complex system can be
solved by artificial intelligent systems.

Advances in intelligent systems have brought new opportunities and challenges for
researchers to deal with complex and uncertain problems and systems, which could not be
solved by traditional methods. Methods developed for mathematically well-defined
problems with precise models may lack in autonomy and thus cannot give adequate
solutions under uncertain environments (Shin &Xu, 2009). Intelligent systems are defined
with high degree of autonomy, reasoning with uncertainty, higher performance, high level
of abstraction, data fusion, learning and adaptation (Shoureshi & Wormley,1990).

4.2 Soft Computing Techniques

Various soft computing based techniques have emerged as useful tools for solving
engineering problems that were not possible or convenient to handle by traditional
methods. The soft computing techniques give computationally efficient modelling, analysis,
and decision making. The techniques that belong to the soft computing include artificial
neural networks (ANNSs), Fuzzy sets and systems, and evolutionary computation.
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