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1. Introduction 

Solid rocket motors (SRMs) are an integral part of human space flight providing a reliable 
means of breaking away from the Earth's gravitational pull. The development and 
deployment of an integrated system health management (ISHM) approach for the SRMs is 
therefore a prerequisite for the safe exploration of space with the next-generation Crew and 
Heavy-Lift Launch Vehicles. This unique innovative technological effort is an essential part 
of the novel safety strategy adopted by NASA.  
At the core of an on-board ISHM approach for SRMs are the real-time failure detection and 

prognostics (FD&P) technique. Several facts render the SRMs unique for the purposes of 

FD&P: (i) internal hydrodynamics of SRMs is highly nonlinear, (ii) there is a number of 

failure modes that may lead to abrupt changes of SRMs parameters, (iii) the number and 

type of sensors available on-board are severely limited for detection of many of the main 

SRM failure modes; (iv) recovery from many of the failure modes is impossible, with the 

only available resource being a limited thrust vector control authority (TVC); (iii) the safe 

time window between the detectable onset of a fault and a possible  catastrophic failure is 

very  short (typically a few seconds). The overarching goal of SRM FD&P is to extract an 

information from available data with precise timing and a highest reliability with no 

“misses” and no “false alarms”. In order to achieve this goal in the face of sparse data and 

short event horizons, we are developing: (i) effective models of nominal and off-nominal 

SRM operation, learned from high-fidelity simulations and firing tests and (ii) a Bayesian 

sensor-fusion framework for estimating and tracking the state of a nonlinear stochastic 

dynamical system. We expect that the combination of these two capabilities will enable in-

flight (real time) FD&P. 
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Indeed, dynamical models of internal SRMs ballistics and many SRMs fault modes are well 
studied, see e.g. (Culick, 1996; Salita, 1989; Sorkin, 1967) and references therein. Examples of 
faults, for which quite accurate dynamical models can be introduced, include: (1) 
combustion instability; (ii) case breach fault, i.e. local burning-through of the rocket case; 
(iii) propellant cracking; (iv) overpressure and breakage of the case induced by nozzle 
blocking or bore choking. The combustion instabilities were studied in detail in the classical 
papers of (Culick & Yang, 1992; Culick, 1996) and (Flandro et al, 2004). Bore choking 
phenomenon due to radial deformation of the propellant grain near booster joint segments 
was studied numerically in (Dick et al., 2005; Isaac & Iverson, 2003; Wang et al., 2005) and 
observed in primary construction of the Titan IV (see the report, Wilson at al., 1992).  
The FD&P system can be developed using the fact that many fault modes of the SRMs have 
unique dynamical features in the time-traces of gas pressure, accelerometer data, and 
dynamics of nozzle gimbal angle. Indeed, analysis shows that many fault modes leading to 
SRMs failures, including combustion instabilities (Culick,1974; Culick & Yang, 1992; 
Culick,1996; Flandro et al, 2004), bore choking (Dick et al., 2005; Isaac & Iverson, 2003; Wang 
et al., 2005), propellant cracking, nozzle blocking, and case breach (Rogers, 1986), have 
unique dynamical features in the time-traces of pressure and thrust. Ideally, the 
corresponding expert knowledge could be incorporated into on-board FD&P within a 
general Bayesian inferential framework allowing for faster and more reliable identification 
of the off-nominal regimes of SRMs operation in real time. In practice, however, the 
development of such an inferential framework is a highly nontrivial task since the internal 
ballistics of the SRMs results from interplay of a number of complex nonlinear dynamical 
phenomena in the propellant, insulator, and metal surfaces, and gas flow in the combustion 
chamber and the nozzle. On-board FD&P, on the other hand, can only incorporate low-
dimensional models (LDMs) of the internal ballistics of SRMs. The derivation of the 
corresponding LDMs and their verification and validation using high-fidelity simulations 
and firing tests become an essential part of the development of the FD&P system. 
 

 

Fig. 1. Typical time-trace of pressure in the nominal regime is shown by the black line with 
pressure safety margins indicated by the green shading region. Fault-induced pressure time-
trace in off-nominal regime is shown by the red line. Blue shading indicates diagnostic 
window and yellow shading indicates prognostic window. 
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At present the FD&P system in SRMs involves continuous monitoring of the time-traces of 

such variables as e.g. pressure, thrust, and altitude and setting up conservative margins on 

the deviation of these variables from their nominal values (see schematics in Fig. 1). 

However, in the absence of the on-board FD&P analysis of the SRM performance the 

probability of “misses” and “false alarms” is relatively high and reliability of the IVHM is 

reduced (see e.g. Rogers, 1986; Oberg, 2005). The goal of the on-board FD&P will be to detect 

the initiation time of the fault and provide its continuous diagnostic and prognostic while 

the performance variables are still within the safety margins to support the decision and to 

reduce the probability of “misses” and “false alarms”. 

In this chapter we report the progress in the development of such FD&P system. The main 

focus of our research was on the development of the: (i) model of internal ballistics of large 

segmented SRMs in the nominal regime and in the presence of number of fault modes 

including first of all case breach fault; (ii) model of the case breach fault; (iii) algorithms of 

the diagnostic and prognostic of the case breach fault within a general inferential Bayesian 

framework; and (iv) verification and validation of these models and algorithms using high-

fidelity simulations and ground firing tests. 

The chapter is organized as follows. In the next section we describe the low-dimensional 

performance model of internal ballistics of the SRMs in the presence of faults. In the Sec. III 

we modify this model for a subscale solid motor, analyze the axial distributions and validate 

the results of this model based on high-fidelity FLUENT simulations and analysis of the 

results of a ground firing test of the sub-scale motor faults. Developed Bayesian inferential 

framework for the internal SRM ballistics and FD&P algorithms is presented in the Sec. IV. 

FD&P for large segmented SRMs is analyzed in the Sec. V. Finally, in the Conclusions we 

review the results and discuss a possibility of extending proposed approach to an analysis 

of different faults. 

2. Internal ballistics of the SRMs 

The internal ballistics of the SRMs in the presence of the fault can be conveniently described 
by the following set of stochastic partial differential equations representing conservation 
laws for mass, momentum, and energy of the gas (Sorkin, 2005; Culick & Yang, 1992; Salita, 
1989 & 2001) 

  ( ) ( )( ) ,t p x pUA f U A S∂ + ∂ =  (1) 

where conservative variables of the gas dynamics and function f(U) are given by the 
following equations 

 2, ( ) ,

T T

u

U u f U u p

e ue up

ρ ρ
ρ ρ
ρ ρ

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦
 (2)  

 

eT=cVT+u2/2, hT=cpT+u2/2, are the total energy and total enthalpy of the gas flow, H=cpT0 is 

the combustion heat of solid propellant and the source terms that include fault terms at a 

given location x0 have the form 
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This model extends the previous work (Salita, 1989 & 2001) in a number of important 
directions. To model various uncontrollable sources of noise (such as cracks and case 
vibrations) that may become essential in off-nominal conditions and may screen the 
variation of the system parameters a random component in the propellant density ρp→ρp[1+√┫·ξ(t)] is introduced.  Various faults can be modeled within the set of Eqs. (1)-(3) 
(including nozzle failure, propellant cracking, bore choking, and case breach) by choosing 
the time scale and direction of the geometrical alternations of the grain and case and the 
corresponding form of the sourse/sink terms. In particular, for the case breach fault two 
additional terms in the 1st and 3rd equations in  Eqs. (3) correspond to the mass and energy 
flow from the combustion chamber through the hole in the rocket case with cross-section 
area Ah(t). We now extend this mode by coupling the gas dynamics in the combustion 
chamber to the gas flow in the hole. The corresponding set of PDEs 

 

( ) ( )
( ) ( )( )

2

, ,

,

,

,

t h h x h h h

t h h h x h h h h x h fr h

t h h t h x h h h t h h h

A A u

A u A u A p f l

A e A u h Q l

ρ ρ
ρ ρ
ρ ρ

⎧⎪⎪⎨⎪ ⎡ ⎤⎪ ⎣ ⎦⎩

∂ = −∂
∂ = −∂ − ∂ −
∂ = −∂ −

  (4) 

resembles Eqs. (1). The important difference, however, is that we neglect mass flow from the 

walls of the hole. Instead Eqs. (4) include the term  that describes the heat flow from the gas 

to the hole walls. The boundary conditions for this set of equations assume ambient 

conditions at the hole outlet and the continuity equation for the gas flow in the hole coupled 

to the sonic condition at the hole throat. The value of Qh is presented in Eq. (14). The 

dynamics of the gas flow in the nozzle is described by a set of equations similar to (4) and 

can be obtained from this set by substituting subscript “n” for subscript “h”. 

The model (1)-(4) allow us to include possible burning rate variations and also various 
uncontrolled sources of noise, such as grain cracks and case vibrations to simulate more 
realistic time-series data representing off-nominal SRM operation. Due to the high 
temperature T of combustion products in the combustion chamber, the hot mixed gas can be 
considered as a combination of ideal gases. As we are interested in average gas 
characteristics (head pressure and temperature) we will characterize the combustion 
products by averaged parameters using the state equation for an ideal gas: 

 
2

0 0

0 0 0

( )P V

p p T c T
c c T

T Tρ ρ γ
⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠  (5) 

2.1 Regression of propellant surface 
We take into account the propellant erosion in a large segmented rocket assuming that the 
erosive burning rate can be presented in the form  

                   n
b erR r ap r= = +$ $ . (6) 
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The erosive burning is taken into account in the Vilyunov’s  approximation 

 ( )er crr C I I= −$   (7) 

for I > Icr and 0 otherwise, where C and Icr are constants and I=const(ρu/rbρp)Re-1/8, where Re 
is the Reynolds number. 

2.2 Model of the propellant geometry 
To model the actual propellant geometry along the rocket axis the combustion chamber is 
divided into N segments as schematically shown in the Fig. 2. For each ballistic element the 
port area Ap(xi) and perimeter l(xi) averaged over the segment length dxi are provided in the 
form of the design curves     

            ( ) ( ( )), ( ) ( ( ))p i Ai i i li iA x f R x l x f R x= =   (8) 

(see Fig. 2). Note that the burning area and the port volume for each segment are given by 
the following relations 

 ( ) ( ) , ( ) ( ) ,i b i i b i i idV x A x dx dA x l x dx= =   (9) 

and, therefore, are uniquely determined by the burning rate rbi for each ballistic element.  
For numerical integration each segment was divided into a finite number of ballistic 
elements. The design curves were provided for each ballistic segment.  

2.3 Model of the nozzle ablation 
To model nozzle ablation we use Bartz’ approximation (Bartz, 1965; Hill and Peterson,1992; 
Handbook, 1973) for the model of the nozzle ablation (Osipov et al., March 2007, and July 
2007; Luchinsky et al., 2007) in the form: 
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  (10) 

where β ≈ 0.2 and ε  ≈ 0.023. In a particular case of the ablation of the nozzle throat and 
nozzle exit this approximation is reduced to  
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where Rt,in=Rt(0), Rex,in=Rex(0) and vm,t  and vm,ex are experimentally determined constants. In 
practice, to fit experimental or numerical results on the nozzle ablation it suffice to put β = 
0.2 and to obtain values of vm,t  and vm,ex by regression.  
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Fig. 2. Sketch of a cross-section of an idealized geometry of the multi-segment RSRMV 
rocket and an example of the design curves (8) for the head section.  

2.4 Model of the burning-though of a hole  
To complete the model of the case breach fault for the segmented SRMs the system of 
equations (1)—(12) above has to be extended by including equations of the hole growth 
model (Osipov et al., 2007, March and 2007, July; Luchinsky et al., 2007) 

 ( ), ,
0

( , ) ,c R b
h h t h h t

met met mel m met

Q Q Q
R v p T

q C T T ρ
+= = ⎡ ⎤+ −⎣ ⎦

+$  (13) 

 

( ) ( )
( )

( )

4 4
,

0.8 0.2
,

0

0

1 exp ,

2
0.023 ,

.

R t h t met

t h h
c p t met

b fb met met mel m met

Q p T T

p R
Q C T T

c

Q v q C T T

σ λ
γ

μ
ρ

−
⎡ ⎤= − − −⎣ ⎦

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎜ ⎟Γ ⎝ ⎠⎝ ⎠
⎡ ⎤= + −⎣ ⎦

 (14)  

Here Qh = Qc+QR+Qb. 

3. A subscale motor 

Motivated by the results of the ground firing test let us consider an application of the model 
(1)-(14) to an analysis of the case breach fault in a subscale motor. Note that a subscale motor 
can be consider as model (1)-(14) consisting of one ballistic element. In this case the velocity 
of the flow is small and one can neglect the effects of erosive burning, surface friction, and 
the variation of the port area along the motor axis. 

3.1 SRM internal ballistics in the “filling volume” approximation 
To derive the LDM of the case breach fault we integrate equations (1) along the rocket axis 
and obtain the following set of ordinary differential equations for the stagnation values of 
the gas parameters and the thickness of the burned propellant layer 
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Here (ρuA)|L and (ρuAht)|L are the mass and the enthalpy flow from the whole burning 

area of the propellant including the propellant surface in the hole and p0, ρ0, and e0 are the 
stagnation values of the flow parameters. The total mass flow from the burning propellant 
surface is equal to the sum of the mass flows through the nozzle’ and hole throats. 
Assuming that sonic conditions hold both in the nozzle throat and the hole throat we obtain 
the following result 
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Here Γ=((γ+1)/2)(γ+1)/2(γ-1) and Aet=(At,h+At) is the effective nozzle throat area. This relation 
means that in the first approximation the hole is seen by the internal flow dynamics as an 
increase of the nozzle throat area and the dynamics of the stagnation values of the gas 
parameters are governed by both dynamics of the propellant burning area (related to the 
thickness of the burned propellant layer R) and by the hole radius Rh. Substituting results of 
integration (16) into (15) and using model for nozzle ablation (11), (12) and hole melting (13), 
(14) we obtain the low-dimensional model of the internal ballistic of a subscale SRM in the 
presence of the case breach fault in the form 
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where the following dimensionless variables are used  
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Here subscript m refers to maximum reference values of the pressure and density and L0 is 
characteristic length of the motor. We note that two first equations in (17) correspond to the 
“filling volume” approximation in (Salita, 1989 & 2001). The important difference is that we 
have introduced noise terms and the exact dependence of the burning surface on the burn 
distance in the form of the design curve relation in the fourth equation in (17). We have also 
established an explicit connection with the set of partial differential equations (1) that helps 
to keep in order various approximations of the Eqs. (1), which are frequently used in 
practice and in our research. 
The equations above have to be completed by the equations for the main thrust F and lateral 
(side) thrust Fh induced by the gas flow through the hole in the form 

 1 1
0 0 0 0 , , , ,( ) , ( )t ex ex a ex h t h h ex ex h a h exF p A u p p A F p A u p p Aγρ γρ− −= Γ + − = Γ + −      (19) 

where pa is ambient pressure, uex and uh,ex are gas velocities at the nozzle outlet and hole 
outlets respectively, and pex and ph,ex are the exit pressure at the nozzle outlet and hole 
outlets respectively. 

3.2 Axial distributions of the flow variables in a sub-scale motor 

It follows from the analysis that M0
2=v2/c0

221 is small everywhere in the combustion 

chamber. Furthermore, the equilibration of the gas flow variables in the chamber occurs on the 
time scale (t = L/c) of the order of milliseconds. As a result, the distribution of the flow 
parameters follows adiabatically the changes in the rocket geometry induced by the burning of 
the propellant surface, nozzle ablation and metal melting in the hole through the case. Under 
these conditions it becomes possible to find stationary solutions of the Eqs. (1) analytically in 
the combustion chamber. Taking into account boundary conditions at the stagnation point and 
assuming that the spatial variation of the port area Ap(x) is small and can be neglected together 
with axial component of the flow at the propellant surface uS(x), we obtain the following 
equations for the spatial variation of the flow parameters (Osipov et al., March 2007) 
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and in the nozzle area 
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where M0 is given by the solution of the nozzle equation 
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3.3 Verification and validation (V&V) of the “filing volume” model 
To verify the model we have performed high-fidelity simulations using code by C. Kiris 
(Smelyanskiy et al., 2006) and FLUENT model (Osipov et al., 2007; Luchinsky et al., 2008). 
To solve the above system of equations numerically we employ a dual time-stepping 
scheme with second order backward differences in physical time and implicit Euler in 
psuedo-time, standard upwind biased finite differences with flux limiters for the spatial 
derivative and the source terms are evaluated point-wise implicit. For these simulations the 
following geometrical parameters were used: initial radius of the grain R0 = 0.74 m, Rt = 0.63 

m, L = 41.25m; ρ = 1800 kg·m-3, H = 2.9x106 J·kg-1, rc = 0.01 m·sec-1, pc = 7.0x106 Pa. The 
results of integration for a particular case of the neutral thrust curve are shown in the Fig. 
1(b). The fault (the nozzle throat radius is reduced by 20%) occurs at time tf = 15 sec. The 
comparison of the results of the simulations of the model (1) with the solution of the LDM 
(17) is shown in the Fig. 3(a). It can be seen from the figure that the LDM reproduces quite 
accurately the dynamics of the internal density in the nominal and off-nominal regimes. 
Similar agreement was obtained for the dynamics of the head pressure and temperature.  
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Fig. 3. (a) Comparison between the results of integration of the stochastic partial differential 
equations Eqs. (1), (2)(solid blue lines) and stochastic ordinary differential equations Eqs. 
(17)(dotted black lines) for the time evolution of the head density. (b) Comparison between 
the numerical (dashed blue lines) and analytical (solid lines) solutions for the gas velocity 
and pressure.  

The comparison of the analytical solution (21), (22) for axial distribution of the pressure and 
velocity with the results of numerical simulation of the high-fidelity model is shown in the 
Fig. 3(b). It can be seen from the figure that the axial variation of the gas flow parameters is 
small and agrees well with the results of numerical integration. Therefore, the dynamics of 
the SRMs operation with small variation of the port area along the rocket axis can be well 
characterized by the LDM (17), obtained by integration of Eqs. (1), (2) over the length of the 
combustion camera. 
This conclusion is also supported by the 2D high-fidelity simulations using FLUENT. To 
simulate time evolution of the propellant regression, nozzle ablation, and the hole burning 
through we have introduced the following deforming zones (see Fig. 4): (i) hole in the 
forward closure; (ii) nozzle ablation; and (iii) variation of the burning area as a function of 
time. In simulations we have used a density based, unsteady, implicit solver. The mesh was 
initialized to the stagnation values of the pressure, temperature, and velocity in the 
combustion chamber and to the ambient values of these variables in the two ambient 
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External walls of the rocket case

Hole in the 
forward closure

Internal walls of 
the rocket case

Propellant 
surface

Nozzle

External walls of the rocket case

Internal walls of 
the rocket case

NozzlePropellant surface
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forward closure

      

Fig. 4. 2D velocity distribution with axial symmetry obtained using FLUENT simulations 
after 0.14 sec (left) and t = 5.64 (right). The geometry of the model surfaces is shown in the 
figure. The propellant surface wall, hole wall, and the nozzle wall are deforming according 
to the equations (2), note the changes in the geometry of the rocket walls and the 
corresponding changes in the velocity distribution.  
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Fig. 5. Axial velocity (left) and pressure (right) profiles generated by the FLUENT model for 
t=0.05 sec (red dashed line) as compared to the analytical solutions (black solid lines) given 
by the (21), (22). 

regions on the right and left of the chamber. The results of the comparison of the analytical 
distributions (21)-(22) with the axial velocity and pressure distributions obtained using 
FLUENT simulations are shown in the Fig. 5. It can be seen from the figure that the model 
(17), (21)-(22) provides a very good approximation to the results of FLUENT simulations. 
Note that the difference in the time scales for dynamics of burn distance, metal erosion, and 
nozzle ablation as compared to the characteristic relaxation time of the distributions to their 
quasi-stationary values trel allows us to integrate equations (1), (2) in quasi-stationary 
approximation as will be explained in details in Sec. 5. As a result we obtain the analytical 
solution for the quasi-stationary dynamics of the axial distributions of the gas parameters in 
the combustion chamber and in the nozzle area. The comparison of this analytical solution 
with the results of FLUENT simulations also demonstrates agreement between the theory 
and numerical solution of the high-fidelity model. The accuracy of the low-dimensional 
model (17) was further validated using results of a ground firing test for a subscale motor as 
will be described in details elsewhere.  
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4. Bayesian inferential framework for internal SRMs ballistics 

We are now in a position to introduce a novel Bayesian inferential framework for the fault 
detection and prognostics in SRMs. Note that the effect of the case breach fault and nozzle 
blocking on the dynamics of the internal gas flow in SRMs is reduced to the effective 
modification of the nozzle throat area Aet(t) as explained above. In a similar manner the 
effects of bore choking and propellant crack can be taken into account by introducing an 
effective burning area and by coupling the analysis of the pressure time-traces with the 
analysis of the nozzle and side thrust. The accuracy of the calculations of the internal SRM 
ballistics in sub-scale motors in nominal and off-nominal regimes based on the LDM (17) 
allows us to use it to verify the FD&P in numerical simulations. 

4.1 Bayesian framework 
The mathematical details of the general Bayesian framework are given in (Luchinsky et al., 
2005). Here we briefly introduce earlier results in the context of fault detection in SRMs 
including abrupt changes of the model parameters. The dynamics of the LDM (17) can be in 
general presented as an Euler approximation of the set of ODEs on a discrete time lattice 
{tk=hk; k=0,1,...,K} with time constant h  

 *
1 ˆ( | ) ,k k k kx x hf x c hzσ+ = + +   (23) 

where 
1

( )
k

k

t h

k
t

z t dt
h

ξ+= ∫ , * 1

2
k k

k
x x

x ++= , xk = {p, ρ, R, V, rh, rt, ri} is L-dimensional state of 

the system (17),  σ  is a diagonal noise matrix with two first non-zero elements a1 and a2,  f  is 
a vector field representing the rhs of this system, and c are parameters of the model. Given a 
Gaussian prior distribution for the unknown model parameters, we can apply our theory of 
Bayesian inference of dynamical systems (Luchinsky et al., 2005) to obtain 
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where elements Aml and wm are defined by the following equations 
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Here the vector field is parameterized in the form f(x;c)=Û(x)c, where Û(x) is a block-matrix 

with elements Umn build of N blocks of the form Îφn(x(tk)), Î is LxL unit matrix, and 
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To verify the performance of this algorithm for the diagnostics of the case breach fault we 

first assume the nominal regime of the SRM operation and check the accuracy and the time 

resolution with which parameters of the internal ballistics can be learned from the pressure 

signal only. To do so we notice that equations for the nozzle throat radius rt, burn distance 

R, and combustion chamber volume can be integrated analytically for a measured time-

traces of pressure and substituted into the equations for pressure dynamics. By noticing 

further that for small noise-intensities the ratio of dimensionless pressure and density p/ρ ≈ 

1 obtain the following equation for the pressure dynamics 

 ( )0
2( ),net b

p
b

c A A
p p p p D t

Vr V
γ γρ ξΓ= − + − +$   (28) 

where At(t), Ab(t), and V(t) are known functions of time given by the following equations 
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∫ ∫
∫   (29) 

The parameters c0γΓ/rb, γρp, and D can now be inferred in the nominal regime by applying 
Eqs. (23)-(27) to the analysis of equation (28). An example of the inference results is shown 
in the Table 1. 
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Fig. 6. (a) An example of the geometry of the simulations of the nozzle failure model using 
Eqs. (1), (2). The geometry of the case before and after the fault is shown by the solid blue 
and red lines respectively.  (b) estimation of the value of the parameter -c0GAt/(pL) before 
(left curve) and after (right curve) the fault. The dashed line shows the actual value of the 
parameter. The solid lines show the PDF of the parameter estimation with T=0.1 sec, 
∆t=0.001 sec, N=500 (see the caption for the Table 1). 
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Parameters Actual Inferred Relative error 

γρp 248.2 244.7 1.4% 

-c0Γ/rb -61260 -61347 1.38% 

D 2.5×10-4 2.44×10-4 2.4% 

Table 1. The results of the parameter estimation of the model (28), (29) in the nominal 
regime. The total time of the measurements in this test was T=1 sec, the sampling rate was 1 
kHz, and the number of measured points was N=1000. 

We conclude that the parameters of the nominal regime can be learned with good accuracy 
during the first few second of the flight. This result allows one to apply Bayesian algorithm 
for fault detection and diagnostics in SRMs.  
We now provide numerical example explaining in more details how this technique can be 
used for in-flight FD&P in SRMs. We will be interested to verify if the Bayesian framework 
can provide additional information ahead of the “alarm” time about the most likely course 
of the pressure dynamics to reduce the probability of the “misses” and “false alarms”. To 
model the “miss” situation a case will be considered when small pressure deviation from 
the nominal value persists for a few second prior to the crossing the “alarm” level and the 
time window between the “alarm” and “catastrophe” becomes too short. This situation is 
illustrated in the Fig. 7(a), where measured pressure signal (black solid line) crosses the 
alarm level (dashed line) initiating the alarm at approximately tA ≈ 15 sec. The overpressure 
fault occurs at tF ≈ 17 sec and the time window between the alarm and a “catastrophic” event 
becomes too short, which can be considered as a model of “miss” situation. To model the 
“false alarm” situation a case will be considered in which the pressure crosses the “alarm” 
level, but then returns to its nominal value (see Fig. 7(b)). In all the simulations presented 
here the overpressure fault was modeled as a reduction of the nozzle throat area. Note, 
however, that the results discussed below can be extended to encompass other faults, 
including e.g. the propellant cracking, bore choking, and case breach as will be discussed 
below. 
 

        

Fig. 7. (a) Example of possible time variation of the pressure fault (black line) representing a 
possible “miss” situation. The blue dashed and red solid lines indicate the “alarm” and the 
“catastrophe” levels respectively. Note that the time window between the “alarm” and the 
“catastrophe” is too short. (b) Example of possible time variations of the fault pressure 
representing a possible “false alarm” situation. The blue dashed and red solid lines are the 
same as in (a). 
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4.2 Modeling “misses” for the nozzle failure and neutral thrust curve 
To model the “misses” we assume that the time evolution of the nozzle fault is highly 
nonlinear and can be described by a polynomial function  

 ( )2 3
0et tA A A ατ βτ δτ= − Δ + +   (30) 

corresponding e.g. to the slow degradation followed by the fast destruction of the nozzle 
walls as shown in the Fig. 7(a), where ┬ is the time elapsed from the fault initialization. In 
this case the time window between the “alarm” and the overpressure fault becomes too 
short and effectively the FD&P system “misses” the event. The thrust curve is chosen to be 
neutral. Our goal is to demonstrate that application of the Bayesian framework for the SRM 
FD&P allows one to extend substantially the time window between the “alarm” and the 
overpressure fault thereby reducing the probability of “misses”. To this end we extend the 
model described by Eqs. (17) by including nonlinear terms from Eq.(30). The corresponding 

vector field of the Eq. (28) can be written as f(x;c)=Ĉφ with the set of the base functions given 

by Eq. (31) and the set of the model parameters is given in Eq.(32), where a=(c0Γ)/(πLrb0R*). 
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Fig. 8.(a) An example of the time-traces of temperature (blue line) and the pressure (black 
line) of the SRM operation with neutral thrust curve. Fault corresponding to abrupt changes 
of the nozzle throat area (cf Fig. 6(a)) occurs at t=17 sec. (b) Nonlinear time evolution of the 
pressure build up after the nozzle blocking fault is shown by the back solid line. Predicted 
dynamics of the pressure is shown by the jiggling lines. The results of the predictions build 
1sec, 1.5sec, and 2.1 sec after the fault are shown by green, cyan, and blue lines 
correspondingly. The values of the pressure at t=14 sec, which are used to build the PDF of 
the pressure, are shown by red circles. The time moments of the predicted overpressure 
faults used to build the PDF of the case burst times as shown by the black squares on the red 
margin line. Fault occurs at t=9 sec. 
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Parameters of the system are monitored in real time. Once small deviations from the 
nominal values of the parameters is detected at time td the algorithm is continuously 
updating the inferred values of parameters estimated on increasing intervals Δt of time 
elapsed from td . These values are used to generate a set of trajectories predicting pressure 
dynamics. Example of such sets of trajectories calculated for three different time intervals  
Δt =1sec, 1.5 sec, and 2.1 sec are shown in the Fig. 8(b) by green, cyan, and blue lines 
respectively. These trajectories are used to predict the PDFs of the head pressure for any 
instant ahead of time. An example of such PDF for the pressure distribution at time at t=14 
sec is shown in the Fig. 9(a). The method used to calculate PDF for the pressure distributions 
is illustrated in the Fig. 8(b). The same trajectories are used to predict the PDFs of the time 
moment of the overpressure fault as illustrated in the Fig. 8(b) and Fig. 9(b). It can be seen 
from the figures that the distribution of the predicted time of the overpressure fault 
converges to the correct value 2.1 sec after the fault thereby extending the time window 
between the “alarm” and the fault to 6 sec which is almost three folds of the time window 
obtained using standard technique.  
Therefore, we conclude that the Bayesian framework provides valuable information about 
the system dynamics and can be used to reduce the probability of the “misses” in the SRM 
FD&P system. A similar analysis shows (Luchinsky et al., 2007) that the general Bayesian 
framework introduced above can be applied to reduce the number of “false alarms”. 
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Fig. 9. (a) The PDF of the predicted values of pressure at t=14 sec build 1 sec (green line), 1.5 
sec (cyan line), and 2.1 sec (blue lines) after the fault. The dashed vertical line shows the 
dangerous level of the pressure. (b) The PDF of the predicted times of the overpressure fault 
build 1sec (green line), 1.5 sec (cyan line), and 2.1 sec (blue lines) after the fault. The dashed 
vertical line shows the actual time when the overpressure fault is going to happen. 

4.3 Self-consistent iterative algorithm of the case breach prognostics 
In the previous section we have shown that in-flight FD&P for SRMs can be developed 
within Bayesian inferential framework. The introduced technique can be very useful in a 
wide range of contexts including in particular active control of combustion instabilities in 
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liquid motors (Hathout et al, 2002). In practice, however, it is often desirable (see also the 
following section) to further simplify the algorithm by avoiding stochastic integration. The 
simplification can be achieved by neglecting noise in the pressure time-traces and by 
considering fault dynamics in a regime of quasi-steady burning. 
To illustrate the procedure of building up iterative FD&P algorithms that avoids stochastic 
integration let us consider the following example problem. A hole through the metal case 
and insulator occurs suddenly at the initial time of the fault t0. The goal is to infer and 
predict the dynamics of the growth of the holes in the insulator layer and in the metal case, 
as well as the fault-induced side thrust, and changes to the SRM thrust in the off-nominal 
regime. In this example the model for the fault dynamics is assumed to be known. This is a 
reasonable assumption for the case breach faults with simple geometries.  For this case the 
equations can be integrated analytically in quasi-steady regime and the prognostics 
algorithm can be implemented in the most efficient way using a self-consistent iterative 
procedure, which is developed below. As an input, we use time-traces of the stagnation 
pressure in the nominal regime and nominal values of the SRM parameters. In particular, it 
is assumed that the ablation parameters for the nozzle and insulator materials and the 
melting parameters for the metal case are known. It is further assumed that the hole radius 
in the metal case is always larger than the hole radius in the insulator (i.e. the velocity of the 
ablation of the insulator material is smaller than the velocity of the melting front), 
accordingly the fault dynamics is determined by the ablation of the insulator. This situation 
can be used to model damage in the metal case induced by an external object.  
To solve this problem we introduce a prognostics algorithm of the fault dynamics based on 
a self-consistent iterative algorithm that avoids numerical solution of the LDM. We notice 
that with the limit of steady burning, the equations in (17) can be integrated analytically. 
Because the hole throat is determined by the radius of the hole in the insulator, we can omit 
the equation for the hole radius in the metal case. The resulting set of equations has the form 
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Fig. 10. (left) Results of the calculations using iterative algorithm A1. Absolute values of 
pressure for four different initial values of the hole in the case: 0.5, 1.0, 1.5 and 2.0 mm are 
shown by the black, blue, red, and cyan solid lines respectively. The nominal pressure is 
shown by the dashed black line. (right) Iterations of the effective hole radius in the metal 
case. Red solid line shows 0th approximation. Five first approximations shown by red 
dashed lines are indicated by arrows. Final radius of the hole in the metal case is shown by 
black dotted line. 0th approximation for the hole in the insulator is shown by dashed blue 
line. Final radius of the hole in the insulator is shown by the black dashed line. 
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Here ( ) ( ) ( ) ( )et t t hA t A t A t A t= + Δ + is an effective nozzle throat area where the 1st term 

corresponds to the nominal regime, the 2nd term corresponds to the deviation of the nozzle  

throat area from the nominal regime due to the fault, and the 3rd term corresponds to the 

area of the hole in the rocket case. Similarly, we define the effective burning area 

( ) ( ) ( )bef b bA t A t A t= + Δ  as a sum of the burning area in the nominal regime and a term that 

describes the deviation of the burning area from the nominal regime due to the fault. Using 

Eqs (33) the following iterative algorithm A1 can be introduced:  
1. Set initial values of the corrections to the nozzle and burning area to zero ΔAt(t) = 0 and ΔAb(t)=0. Set values of the areas of the holes in the metal and in the insulator to constant 

initial values Am(t) = π⋅Rm02 and Ah(t) = π⋅Rh02.  
2. Update time-trace of the pressure using 1st eq. in (33) 
3. Update burn web distance R, radius of the hole in the insulator Rh, and nozzle throat 

radius Rt using last three Eqs. In (33). 
4. Repeat from the step (2) until convergence is reached.  
The results of the application of this self-consistent algorithm to the prognostics of the case 
breach fault parameters are shown in Fig. 10(left). Once quasi-steady pressure and the 
dynamics of the hole growth in the insulator are predicted in the off-nominal regime one 
can determine the dynamics of the hole growth in the metal case and the dynamics of the 
fault-induced side thrust. To do so, we use the following self-consistent iterative algorithm 
A2 for t>t0 that takes into account the assumption that the velocity of the melting front is 
larger than the velocity of ablation in the insulator. 
1. Set 0th approximation R(0)h0(t) for the hole radius in the metal to rh0.  
2. Construct 1st approximation  
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