Open Access Database www.intehweb.com

18

Incremental Integer Linear Programming Models
for Petri Nets Reachability Problems

Thomas Bourdeaud'huy?, Said Hanafi? and Pascal Yim!
11.A.G.LS. Ecole Centrale de Lille

2[..A.M.I.H. Université de Valenciennes

France

1. Introduction

The operational management of complex systems is characterized, in general, by the
existence of a huge number of solutions. Decision-making processes must be implemented
in order to find the best results. These processes need suitable modeling tools offering true
practical resolution perspectives. Among them, Petri nets (PNs) provide a simple graphical
model taking into account, in the same formalism, concurrency, parallelism and
synchronization. Their graphical and precise nature, their firm mathematical foundation
and the aboundance of analysis methods have made them become a classical modeling tool
for the study of discrete event systems, ranging from operating systems to logistic ones.
However, their interest in the field of problem solving is still badly known.

In this paper, we consider some PN reachability problems. Since PNs can model flows in a
natural and efficient way, many operations research problems can be defined using
reachability between states, e.g. scheduling (Lee and DiCesare, 1994; Van Der AAlst, 1995),
planning (Silva et al., 2000), car-sequencing problems (Briand, 1999). Moreover, research on
Petri nets addresses the issue of flexibility: many extensions have been proposed to facilitate
the modeling of complex systems, by addition of ““color”, ““time” and ““hierarchy’” (Jensen,
1992; Wang,1998). For example, it is relatively easy to map scheduling problems onto timed
PNs. Their graphical nature reinforce obviously this strength, by allowing a kind of
interactivity with the system. At last, a large number of difficult PN analysis problems are
equivalent to the reachability problem, or to some of its variants or sub-problems (Keller,
1976). Particularly, model-checking (Latvala, 2001) which represents a key point when dealing
with systems analysis is directly linked to an exhaustive traversal of the corresponding PN
reachability graph.

Various methods have been suggested to handle the PNs reachability problem. In this
paper, we propose to use the mathematical programming paradigm. Some PN analysis
problems have already been handled using such techniques (Melzer and Esparza, 1996,Silva
et al, 1998; Khomenko and Koutny, 2000), but none has considered the general PNs
reachability problem.

The proposed approach is based on an implicit traversal of the Petri net reachability graph,
which does not need its construction. This is done by considering a unique sequence of steps
growing incrementally to represent exactly the total behavior of the net. We follow here a

Source: Petri Net, Theory and Applications, Book edited by: Vedran Kordic, ISBN 978-3-902613-12-7, pp. 534, February 2008, I-Tech Education and Publishing, Vienna, Austria

www.intechopen.com

402 Petri Net: Theory and Applications

previous work from (Benasser and Yim, 1999) called logical abstraction technigue. Their
technique was validated on several examples using logical constraint programming
techniques. It has shown more effective than other generic solvers and could even compete
with heuristics dedicated to particular classes of problems. Our methodology allows to
improve this original model using the wide range of tools and adjustments brought by
Operational Research techniques. We model the problem as an integer linear program, then
we solve it with a branch-and-bound technique (divide and conquer), using the Cplex
optimization software.

Moreover, we show how our incremental approach can be extended to Timed Petri nets in
order to solve scheduling problems modelled as Timed Petri Nets reachability problems.
The model built is as general as possible since we do not make assumptions about the firing
policy, contrarywise to other classical approaches dealing with the same issue.

This chapter is organized as follows. In section 2, we formally define the kind of PN
considered, their respective reachabilty problems and the ways such problems are dealt
with in the litterature. Then, in section 3, we give general considerations about step firings
and describe the elements of our incremental approaches. In section 4, we apply our
methodology to express reachability problems using a mathematical programming
formulation. Finally, as a conclusion, we describe a few promising research directions.

2. Petri Nets reachability problems

In this section, we give the terminology of both kinds of the PN we are interested in using
linear algebra -- in order to make our formulations more concise -- and define formally their
respective reachability problems.

2.1 Place/transition Petri nets
2.1.1 Petri net terminology
Definition 1 (Place/Transition Petri Net). A Place/Transition Petri net (Murata, 1989)

R=(P,T,C",C +) with its initial marking M is a bipartite weighted directed graph where:

o P={p,....,p,} isafinite set of places, with M =|P |. Places are represented as circles
and indexed by letter i ;

o T={,,... ,tn} is a finite set of transitions, with N =| T |. Transitions are represented as
rectangles and indexed by letter J ;

e Incidence matrices C~,C" and C e N™" with C=C*-C") define the weighted flow
function which associates to each arc (pl.,l‘j) (from place p; to transition [) or (tj ,D;)

(from transition 1 to place p,) its weight Ci;' or C ; . When there is no arc between place
P; and transition I, then we have: Cl.]_. = Cl;r =0. The i" row vector and jth column
vector taken from incidence matrices c,C * and C are denoted respectively C; , C; ,

c, C;

! J

and Cl. , C ;- We denote respectively by *p oand p° the set of predecessors and

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 403

successors of place P, and conversely "t and t* are the set of predecessors and successors of
transition t (also known as input and output nodes);

o m:P — N associates to each place p € P an integer m(p) called the marking of the
place p . Markings are represented as full dots called tokens inside places.

Definition 2 (Characteristic Vectors). Let (R,m) be a Petri net with P = { DisDaseees pm}
and T ={t,,t,,...,t}:

* The canonical vector €, associated to place p; (resp. €, associated to transition t ;) is the
i J

vector in {O,I}N (resp. in {O,I}M) which takes the value 17 in its i" (resp. jm)
component and ~"0" elsewhere.

o The marking vector M associated to marking M is the column vector (m(pl), m(pz),

com(p,)) eNY.

1100]foo0o01][=1-1 0 1
oo1o|ll1t1o00[]1 1 =10
0010/]/0200]]0 2 -1 0
000 1/]l0010]]0 0 1 -1
c” ct C

Fig. 1. A Petri Net and its Incidence Matrices

Example 1 (PN). An example of a PN and its incidence matrices is presented in Fig.1. Its initial
marking is m, = (1,0,0,0)" . We have e, = (0,1,0,0,0)" and e, =(0,0,1,0, 0)".

In a PN, the markings of the places represent the state of the corresponding system at a
given moment. This state can be modified by the firing of transitions. This behaviour is
called the ““token game”.

Definition 3 (Transition Firings). Let (R,m) be a Petri net. A transition tj is fireable from
marking m iff:
Vp,eP, m(p) = G,

— . 1
= m = (C -e M

The fireability condition is denoted by m[t) . If this condition is satisfied, a new marking m' s
produced from the marking m , such that:

www.intechopen.com

404 Petri Net: Theory and Applications

vp,eP, m(p) = m(p)-C,+C;

!

f— m

@)

m+C- a
J
The firing of a transition t from the marking M to the marking m' is denoted by m[tym’ .

Transition firings modify the marking of the net. It is thus interesting to know if one
particular marking can be reached. This problem is known as the ““reachability problem” for
Petri nets.

2.1.2 Reachability problem
Definition 4 (Reachable Marking). A marking m' is reachable from a marking m iff there
such that: n’l[lg1 ym, [taz ym, ... [Z‘TK ym'

exists a sequence of transitions O = la1 l‘(72 cen t"k

We denote by m[O' }m' that the marking m' is reachable from the marking m , where
K —
e

, associated to
k=1l

o=t o 4 oy .t_ s called a firing sequence. The Parikh vector O = Z

9k

e . -th . .
the firing sequence O is the vector whose]t component is equal to the number of times

the transition j is fired in O . Itis used to formulate a well known property of Petri Nets.

Proposition 1 (State equation). Let (R,mo) be a Petri net, m, a marking and

o= tal tf’z e t"l(a firing sequence. Then we have:

my[oym, = m, =m+C-c 3)

Proof. It is obtained using a simple induction over the number of transitions fired in the

sequence. w
The equation Error! Reference source not found. is called the fundamental (or state) equation
of Petri nets. This equation has been widely studied in PN reachability analysis, but it only
leads to semi-decision algorithms due to the existence of spurious solutions (Silva et al., 1992).
Indeed, in that case, the reverse implication does not hold: the Parikh vector of a firing
sequence is always solution to the state equation, but the reverse is not true. Some
techniques (Colom and Silva, 1989b) have been proposed to improve the strength of this
characterization, but they are still insufficient.

Definition 5 (Reachability Problem). Let (R, mo) be a Petri net and M , a marking. The set
of all markings reachable from my, is denoted by R (R, mo) ; the set of all possible firing sequences
(within which each transition is fireable from the corresponding marking) is denoted by F (R, mo) .
The problem of finding whether M, € R (R, mo) or not is known as the reachability problem for

Petri nets.
It has been shown that the reachability problem is decidable (Kosaraju, 1982). However it is
EXP-TIME and EXP-SPACE hard in the general case (Lipton, 1976). Of course, practical

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 405

applications need not only to know if a marking is reachable, but also what are the
corresponding firing sequences leading to this marking. To solve this problem, one needs to

find a firing sequence o € F (R, mo) such that mO[O' ym - A “naive” approach consists

in exploring the reachability graph exhaustively. This graph corresponds to the usual formal
representation of the behavior of the net.

Definition 6 (Reachability Graph). The reachability graph of a Petri net (R, mo), denoted by

G(R, mo) , 1s defined by:
A set of nodes R (R, mo) which represents the reachable markings;

A set of arcs, where an arc (711,m") labelled ¢ connects nodes 7 and m' iff m[t)m’.
Example 2 (Reachability Graph). Fig.2. presents a part of the reachability graph for the Petri net
of Fig.1.

Fig. 2. Reachability graph for the PN of Fig. 1
For a given initial marking m1,, the reachability graph G(R, mo) and the corresponding
reachability set R (R,mo) may be of infinite size. For instance, the set of markings

reachable from #1, for the net of Fig. 1 is infinite.

Practically, it is not possible to explore the reachability graph exhaustively due to the well
known problem of combinatorial explosion: the size of the state-space (i.e. the size of the
reachability set) may grow exponentially with the size of a system configuration (i.e. the
number of nodes of the Petri net). Many methods have been studied to limit this explosion.
Let us mention the three main families.
First ones aims at managing the combinatorial explosion without modifying the studied
reachability graph. Classical approaches are graph compressions, particularly bdd encoding
(Gunnarsson, 1998) and forward checking (Fernandez et al., 1992). Both uses depth first
traversal of the reachability graph.
e Other techniques construct a reduced reachability graph associated to the original, based
on some properties to preserve: symmetries (Huber et al., 1985), reductions (Berthelot,
1986) and partial order (covering step graphs (Vernadat et al., 1996), stubborn sets

www.intechopen.com

406 Petri Net: Theory and Applications

(Valmari, 1991)) are the main approaches. The logical abstraction technique (Benasser and

Yim, 1999) belongs also to this category.
e Last ones are based on the PN state equation (cf. Proposition 1): we can distinguish

parametrized analysis (Lindqvist, 1993) and algebraic methods (Lautenbach, 1987).
Many extensions have been proposed to improve the modelling power of Petri nets. Among
them, several extended Petri nets with ““time” have been proposed by assigning punctual
firing times (leading to ““Timed PN”) or time intervals (“"Time PN") to the components of
Petri nets (transitions, places, arcs or even tokens). To deal with firing times, two main
methods for modeling timing are used: either the timings are associated with the places (the
PN is said to be P-timed) (Sifakis, 1975), or the timings are associated with the transitions
(the PN is said to be T-timed) (Ramchandani, 1974). Depending on the system to be
modeled, one of the models (P-timed or T-timed) may be easier to use than the other one.
However, Sifakis has shown that the two models are equivalent. In the context of scheduling
problems, (Hillion and Proth, 1989) and (Van Der Aalst, 1995) propose to use T-timed Petri
nets, hereafter called simply Timed PN. We describe this model in the following section.

2.2 Timed Petri nets

Timed Petri nets have been introduced by (Ramchandani, 1974). The following presentation
has been adapted from (Chrétienne, 1984). We start by giving an informal introduction on
Timed Petri nets.

2.2.1 Informal presentation
.
Timed Petri nets correspond to Places/Transitions Petri nets where a duration d(t) € N is

associated to each transition #. A Timed Petri net has the same representation as PN, to
which is added a labelling on transitions. An example of Timed Petri net is given in Fig. 3.
Wehave: d(t) =3, d(t,)=4, d(t,)=5, d(t,)=2.

The firing durations associated to transitions modify the marking validity conditions. As soon
as durations are associated to transitions, the Petri net acts as if tokens “disappeared” at the
time the transition is fired, and then “reappeared” after a delay corresponding to the
duration of the fired transition. Thus, the marking of a Timed Petri net evolves with the
occurences of an external timer. For instance, let's consider the Timed Petri net of Fig. 3. At

date 1, the transition # (duration: 3 t.u.) is fired. Then the transition #, (duration: 2 f.u.) is
fired at date 5. The evolution of marking with time is given in Fig. 3. Note that one could

have fired transition , at date 4, since the resource 7, had been released at the end of the
firing of transition l‘l. However, the same transition was not fireable at date 3, since the

firing of #, was not finished.

The firing and ending dates of transitions play a fundamental role in the behaviour of the
Timed Petri net. It is thus necessary to adapt the firing equations according to these firing
dates. In order to respect the underlying semantic of PN, a timed firing sequence is said to be
feasible if and only if, at any time, the transient marking reached is made of non negative
components.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 407

Marking

Date 0
(Py>Py>P3:P4>P5:Pg 1y >")

Initial date o 1 (1,0,0,0,1,0,1, 1)1’1
Firing of u
l] - ! (05030303170’0’1)

t,(5) t,(2)

21 (0,0,0,0,1,0,0,1)"
3 1(0,0,0,0,1,0,0,1)"

Endof f, > | 4 | (0,1,0,0,1,0,1,1)"
Firing of a
L || 01,000001

£, (3) t,(4) ,
6 | (0,1,0,0,0,0,0,1)"

Endof £, > | 7 | (0,1,0,0,0,1,1,1)*

u
1 (0,1,0,0,0,1,1,1)
Fig. 3. Example of a Timed Petri Net and a Timed Firing Sequence

2.2.2 Timed Petri nets terminology
Definition 7 (TPN -- Timed Petri Net). A Timed Petri net (Ramchandani, 1974) is defined by a

pair (R,d) where R is a Place/Transition Petri Net and d : T — N isa mapping associating

a duration to each transition of the net. The vector d = Zd (1) e, is called the duration vector of
teT

the Timed Petri net.

Note that one could more generally consider rational valued durations. Nevertheless, after

having them reduced to the same denominator, and by reasoning over numerators, it is the

same as if durations were integer valued. In addition, to simplify the study, we restrict

ourselves to Timed Petri nets without immediate transitions (i.e. Vt € T,d(t) > 0), which is

not so restrictive in real world practice and corresponds well to scheduling problems we are
concerned with.

The transition firing semantics in TPN forbids reentrance. In other words, it is not possible to
fire again a transition that has not yet finished to be fired. Again, this semantics is well fitted
to scheduling problems, where transitions are associated to operations on machines. Thus,
one can associate a unique residual duration to each transition without any possible confusion
between several concurrent transitions activations. The residual duration vector is
associated to the marking of a TPN to define its full state.

Definition 8 (TPN State). Let (R,d) bea TPN. Its state € = (fm., E) is given by:

www.intechopen.com

408 Petri Net: Theory and Applications

. . T M - .
e Its classical marking vector £, € N™ , associating to each place its number of tokens;

e A residual durations vector Er eN", associating to each active transition its

remaining duration, and zero if the transition is not active.
The set of all states of a TPN is denoted by S(R,d). The fundamental concept that

governs Timed Petri net behavior is the controlled execution, which associates to each
transition the sequence of its successive firing dates.

Definition 9 (CE - Controlled Execution) Let (R,d) bea TPN and t € T a transition. A

firing sequence for the timed transition t : (u,i) = ult,. .. ,uit € N s an increasing sequence of
firing dates, such that:

VkellLK, 1. +d()<ul,, @
A controlled execution is a family (u,’()z T kel[1.K, T of firing sequences for all transitions of the TPN.

Note that in the previous definition, equation (4) is used to forbid reentrance. For any

transition £, kt and u,i may be infinite. Hereafter, we only consider finite CEs. We denote
t

by v_.. the ending date of the last firing in the CE: v _, = rnax(u[t< +d (l)) After
teT 4

V.. the state of the TPN under the considered CE will never change and we

have: E, (Vmax) =0,.

The formal expression of a CE is used to define several characteristic vectors allowing to
verify the feasability of a CE. We assume that no transition is active at the initial state to
simplify the formulation.

Definition 10 (Characteristic Vectors of Controlled Executions) Let (R, d) be a TPN with its

initial state €, Z(Emo ,ON) given at initial date O and (u,i) a controlled

reT ke,]|

execution. Let v €[[0,v__ T|. We define three characteristic vectors associated to (ult{) in the

max

following way:

N(v) € N" is the vector corresponding to the number of firings that started within the
interval [0, V], defined by N (V) ‘ = card({u,{ ke[1.K. T | u,’{ < V}j;
' KLy

e D(v) € NV is the vector corresponding to the number of firings that started within

the interval [0,V] , defined by D(V) ‘ = card ({u,f ke[1.K T | u;{ < V});
1 KELLAy

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 409

e F(v) e N is the vector corresponding to the number of firings that ended within
the interval [0, V], defined by F'(v) ‘ = card ({uf keK.] | u, +d(t) < v})
t ’ t

We have introduced above the definitions of state and controlled execution of a TPN. We
define below how the state of a TPN is modified under a CE.

Definition 11 (Instantaneous State of a TPN under a Controlled Execution) Let (R,d) be

_—

a TPN with its initial state €, = (E , ON) given at date 0 and (u,tc)

Mo

a controlled
teT kel 1K,]|

execution. Let vV €[[0,v_ ||. The instantaneous state e = (Em (v) E, (v)) at date V is

max

given by:

E (v) = Q +CHF(v) =C -N(v) ®)

u, +d(t)—v ifIke[l,K,] st.velu,u +d®[

0 otherwise

VteT,E.(v) L :{ (6)

Informally, in the previous definition, the quantity C F (V) corresponds to the tokens

produced by the firings of transitions that ended strictly before the date V. Those tokens can
be used to fire transitions at date V. The quantity C~ - N(V) corresponds to the tokens

used by the firings of transitions that started until the date V. Thus, the quantity F)

corresponds exactly to the tokens remaining in the TPN at date V. The residual durations

vector £ (V) denotes the exact remaining time of transitions that are active at date V.

Obviously, there can only be one k €[1, K, JIst.ve IIu,i ,u,i +d(?)[[from equation (4).
Note that (Chretienne, 1984) defines also the quantity

m (v) =E, (0) +C"-F(v) —C -D(v) . This quantity does not consider the tokens
used by the firings of transitions that occur exactly at date V. Thus, it can be used to

formulate the fireability condition for a transition in a TPN, independently from possible
concurrent activations: under a controlled execution, a transition is fireable at date VvV

itt m(v) 2C -e,.

Obviously, like for Place/Transitions PNs, even if each transition is independently fireable
at every date, the full CE is not necessarily valid as a whole since token may be used by
several transitions at the same time. Thus, an improved condition for a CE to be feasible is
given below.

www.intechopen.com

410 Petri Net: Theory and Applications

Definition 12 (Feasible Controlled Execution). Let (R,d) be a TPN with its initial state

e, = (E ,ON) given at date O and (Lt,tc)teT,ke[[l,Kt]] a controlled execution. This controlled

Mo

execution is said to be feasible iff:

vvel0.v,,I.E,() 20,)

2 Vmax

The previous condition means that there must be enough tokens so that transitions may fire
simultaneously.

2.2.3 Timed Petri Net Reachability Problem
Using the previous notations, the Timed Petri nets reachability problem consists in
searching for a feasible CE allowing to reach a given final state from the initial state.

Definition 13 (Timed PN Reachability Problem). Let (R,d) be a TPN with its initial state

_

e, = (E ON) given at date 0. Let e, = (E _ ,ON) be a target state. The reachability

"o’ "1

problem for Timed Petri nets consists in finding a CE (ult()t€T kepl,k,] Such that
’ Ut

e, (B, () B (v) =e,.

ma:

As said before, it is quite simple to see a parallelism between a scheduling problem and a
Timed Petri net reachability problem. Indeed, let's consider for instance the Timed Petri net
of Fig. 4. One remarks obviously that solving a reachability problem between markings

my ={p,, Py Py, My, My, My} and M, ={p,, Ps, Ps, My, My, My} means exactly
finding a schedule of the production presented in the table on the left side.

Production To
Schedule:

job 1:
(ml,Z)(mz ,3)(n13,4)

job 2:
(mz :3)(’”3 ,2)(’"] ,3)(’”3 ,3)

job 3:
(my,2)(my A)(my ,2)

022(2) 04(3) 04(3)

Fig. 4. TPN modelling a Production To Schedule

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 411

Several approaches have been proposed to solve the Timed Petri net reachability problem,
either by restricting their study to a subclass of TPN, like Timed Event Graphs (where a
place has exactly one input and one output transition), either by using dedicated heuristics.
A complete bibliography can be found in (Richard, 2000).

Since the fire of a Timed transition can occur as soon as it is fireable and as late as one wants,
there may exist, from a given state, an infinite number of reachable markings (depending on
the time), and no reachability graph can be built. A first approach needs to consider Timed
PN as a subclass of Time PN, in order to use the state enumeration methods (state class
graphs) proposed by (Berthomieu and Diaz, 1991). On the other hand, when dealing with
early semantics (a transition is fired as soon as it is fireable), it is possible to proceed to an
enumerative and structural analysis (David and Alla, 1992).

The early semantics has been extensively studied for the special class of Timed Event
Graphs, using (max,+) algebra (Bacceli et al., 1992). Since their structure does not handle
conflicts, it is possible to obtain linear equations corresponding to the complete behaviour of
the net.

In the following, we will show that our incremental approach can lead to mathematical
programming models in the most general case.

3. Incremental approaches

As said before, the state equation (3) does not bring enough information to solve the
reachability problem in all cases. This comes from the fact that it does not take into account
the fireability conditions (1) of the individual transitions fired in the sequence O .
Incremental approaches improve this formulation by considering a given number of step
firings corresponding to parallel and reentrant transitions. In this section, we discuss the
interest of using steps and a fixed depth formulation.

3.1 Step based reachability formulation
Definition 14 (Step). Let R be a Petri net. A step (Janicky and Koutny, 1991) is a multiset over

*
the set of transitions T . We denote by T the set of steps built over T .
Informally, a step is a set that can contain several copies of the same element, e.g.

{t,,t,,t,}, which we would note hereafter simply 2-# +7,. We associate a step

N
Q= E & -t ; and its Parikh vector (in the classical way, as a linear combination
j=

with non negative integer coefficients & ; of the Parikh vectors of each transition, i.e.

N .
o = jzlaj -etj . A step is said empty, when @ =, i.e. when Vj GDl, ND, a; = 0.

Note that a step can contain the same transition more than once, corresponding to transition
reentrance. Thus, when working with Timed Petri nets, steps would only mean that several
different transitions are considered to be fired at the same time.

For a step to be fireable, its preceding marking must contain enough tokens so that each
transition of the step may consume its own tokens, as described in the following definition.

www.intechopen.com

412 Petri Net: Theory and Applications

Definition 15 (Step Firings). Let R be a Petri net, m be a marking and 0 be a step . The step
@ is fireable from m iff:

m=>C .o ®)

If this condition is satisfied, the new marking m' reached from m by the firing of @ is

defined as:

!

m =m+C.p)

Hereafter, we will use the notations already used previously: m[@), mo[(o)ml,

my[o,@, ...(/7k> and m,[Q,@, ...(pk>mk to denote that a step or a step sequence is
fireable, and the marking obtained in each case. The number of steps of a step sequence
D =0p,... isdenotedby | P |= K .

The definition of step firings corresponds naturally to the firing of the underlying
transitions. We will show that its use can lead to a formulation that is still equivalent to the
initial PN behavior, but that can be more conveniently used in a mathematical programming
framework. The following proposition explains the relation between step and transition
firings with respect to reachability issues.

Proposition 2 (Step Reachability Equivalence). Let (R,mo) be a Petri net and M, a
marking.

m, is reachable from m; <

Jk e N,
Im,m,,...,m_, eN", st.:
30,0y, 0 eT’

Proof. The proof of this proposition is not difficult but quite lengthly and hence is not given
in this chapter. It can be found in a technical report available at url:

http:/ /www.eclille.fr/tomnab/asr07/ . W
One must remark that the proof of the proposition 2 shows how it is possible to construct a

Vke[l,K-17, m,_[p)m,

A my [)m,

firing sequence leading to 7, from a corresponding step sequence. Thus, to compute a

firing sequence leading to a target marking, it will be sufficient to compute a step sequence
leading to the same marking.

The main interest of our formulation is to capture the parallelism caused by the interleaving of
actions, which is precisely one of the main advantages of using a Petri net as a model of a
system. This issue has already been followed by (Vernadat et al., 1996), from whom we
borrow the illustrative example of Fig. 5: ““When two (1 in the general case) components offer
independent actions in parallel, the interleaving semantics expresses this behaviour by a diamond (an
hypercube in the general case) within which each path lead to the same final state. Since all paths

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 413

converge to the same state, the key idea is to develop only one particular path among the set of possible
equivalent ones” .

Example 3 (Vernadat's steps). As shown in Fig. 5, there exists several ways to handle 3
independent transitions from the point of view of the reachability graph. One can consider them one
by one, which leads to handle 8 states and 12 firings. If we just refer to their corresponding
Mazurkiewicz's trace (see (Vernadat et al., 1996) for details), we only have to handle 3 transition
firings and 4 states. In the last case, one can capture the whole behavior in one unique firing that is
called a step by Vernadat (with the meaning of ~footstep”).

e1 63/ /
% ‘"() T_el—’/ (e, e, e5)

€2
[ES
Point of view Exhaustive Trace Step
States 2" (n+1) 2
Transition
nx2"—1 n 1

Firings
Fig. 5. Some ways to handle independent transitions, from Vernadat
The characterization given in proposition 2 can be used to build a mathematical programming
model based on steps which can be used to solve reachability-based PN analysis problems:
one has just to express the right side of equation (10) using the linear equations (8) and (9)
over integer variables. Such a model will be presented in section 4.
The advantage of using steps is that they allow to reduce the number of firings in our model
- and then the number of variables - while keeping an equivalence with the initial
properties. Thus it is not a modification of the semantics of PNs, but only a way to capture the
independence of transitions. Of course, this reduction does not systematically holds, since it is
easy to construct a Petri net where only one transition can be fired at a time. Thus, in the
worst of cases, the step firings formulation may not bring any improvement as far as the
number of firings used are concerned. However, this is a quite uncommon situation since it
means that the Petri net does not show any parallelism.

3.2 Incremental search

We have seen the interest of using steps to formulate the reachability problem in PNs as a
search for instanciations of integer variables constrained by a system of linear equations.
This formulation allows us to use the paradigm of mathematical programming to solve the
reachability problem. However, the initial definition of the reachability problem is not well
adapted to the kind of formulation we propose to use, since definition 5 does not make any
assumption concerning the number of steps needed to solve the reachability problem. In
this paragraph, we define two sub-problems associated with the original reachability problem
introduced before, which can be conveniently solved using the characterization of
proposition 2 in a mathematical programming framework.

www.intechopen.com

414 Petri Net: Theory and Applications

Definition 16 (Fixed Depth Reachability Problem). Let (R,m,,) be a Petri net, k € N and

m, amarking.
P (k Find a step sequence allowing to reach the marking m, from the marking
1() m in at most k steps .
Definition 17 (Shortest Length Reachability Problem). Let (R, mo) be a Petri net, and m ,
a marking reachable from m, .
Find the minimal length, denoted by K

P min
z reach the marking m, Sfrom the marking m, .

of a sequence of steps allowing to

Of course, each of these sub-problems is directly linked to the initial one defined before, and
each allows to solve a different kind of PN reachability analysis. For instance, the first

formulation P, (k) is highly useful for model-checking since it can serve to define an

exhaustive search of the reachability graph. On the other hand, the second formulation P2

is well designed to deal with performance analysis since it returns a firing sequence that
maximizes the parallelism of the system. It can also give an helpful bound for the definition of
additional heuristics. Finally, since it is clear that the complexity of the problem grows (w.r.t.
number of variables and constraints) as the length k of the sequence of steps used

increases, it seems also quite reasonable to search for the smallest value of the parameter k&
from which a solution exists.

The fixed depth reachability problem P, (k) has already been studied by (Benasser, 2000) using

the logical abstraction technique. His approach is based on the same notion of steps , but it
uses constraint programming techniques. His algorithm iterates the number of steps used,
adding one new step at each iteration, in order to test all the lengths of sequences of steps
lower than Kk . Benasser proved that his algorithm is correct since the sequences found are
effectively sequences of steps which produce the desired final marking. It is also complete
since it can enumerate all the solutions of length smaller than a given integer k. In each
iteration, the algorithm uses a mechanism of linear constraints solving. It has been
implemented using the constraint logic programming software Prolog IV. The interest of
using a constraint logic programming framework is that its resolution mechanism is
incremental (Jaffar et al., 1992). Indeed, it is not necessary to redefine in each iteration the
constraints incorporated into the previous stage. The constraints are added in the constraints
solver so that it can reuse the results of the previous constraints propagation. The search for
the concrete results is made at the end by an enumeration of all the possible integer solutions,

which corresponds exactly to the sub-problem formulation P, (k) .

In section 4, we will adapt Benasser's algorithm to our own mathematical programming
framework. To achieve the same kind of results, we will prove the correctness and

completeness of our mathematical programming formulation with respect to P1 (k). These

results will allow us to use integer linear programming techniques to find every solution of

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 415

P, (k) . Some objective functions would also be defined to guide the search directly to an
optimal solution in some way. Since P, can be easily expressed by iterating P, (k) instances

for growing values of the parameter & , it will also be solved using the same technique.
Here, Operational Research techniques replace Artificial Intelligence ones, but the algorithm
structure is the same. All techniques based on incremental approaches may share the same
search algorithms. The most basic algorithm consists in searching in an incremental way
amongst sequences the length of which are increased one by one.

3.2.1 Naive algorithm
This algorithm is fed with a bound K, on what we call the “search depth” in order to

prevent an infinite loop. Once chosen this value, the procedure generates iteratively a
sequence of mathematical models of increasing size, and search for solutions in the
corresponding search spaces using mathematical programming techniques. If there is no

solution in less than k max Steps, the algorithm stops. It is described in Fig. 6.

I k«0
DO

k< k+1
Generate MP(k) , a mathematical programming model for the problem Pl (k) (which

Wb

corresponds to characterization of proposition 2 with k steps).
S Solve the model MP(k) using branch & bound techniques (e.g. Cplex solver). Let

JE—

Xi[[l,k]] be an optimal solution of MP(k) if it exists.

IF (MP(k) has a solution), RETURN X F[LAT

7 WHILE (MP(k) is infeasible) AND (kK <K)

Fig. 6. Naive Search Algorithm

During the formulation of the mathematical programming model at step 4, one should take
care of the domain of variables representing the steps . Indeed: the definitions of step and
step firings do not forbid empty steps leaving the markings unchanged. By considering
empty steps valid in our formulations, we get the following result.

Proposition 3 (Satisfaction Monotony) Let k € N . If the problem P, (k) is feasible, then for
any integer k ">k, the problem P, (k ') is also feasible.
Proof. 1t is easy to construct a feasible solution for P, (k ') from a feasible solution of P, (k)

for k' > k by adding empty steps. W
Note the same result would be true when dealing with the family of mathematical
programming models MP(k) : if there exists K € N such that MP(k) admits a solution,

any model MP(k ') with k" >k would be feasible too. This property motivates the jump

search techniques proposed in the next paragraph.

www.intechopen.com

416 Petri Net: Theory and Applications

3.2.2 Jump search

From proposition 3 and the definition of parameter K . , we get:

Vk<K,_. P, (k) 1s infeasible

. . (11)
Vk>2K, . P, (k) is feasible

This property can help us to define new iterative techniques, since - for example - it shows
that it is not necessary to solve all the problems P (k) for k <K

min - like in the naive

search described before.

Of course, as said before, we must keep using an incremental procedure in order to avoid the

use of large models if they are not needed. We propose finally some techniques based on

jumps over the values of the search depth. These techniques allow to decrease the number of
iterations needed, thus improving the search efficiency. Several jump strategies are possible.

We describe briefly some elementary ones.

e Forward jump search The first family continously increases the value of the search depth.
We can distinguish two main politics, depending on how the amplitude of jumps is
defined.

- Fixed amplitude Its value must be chosen in order to obtain a high exploration
speed while minimizing the possible redundant steps. This type of strategy
allows to estimate the profit precisely.

- Dynamic amplitude This second strategy uses variable amplitudes. Increasing

amplitudes should be used for small values of k, and decreasing ones when
the exploration becomes more difficult. This kind of behavior is less easily
quantifiable.

These politics both can lead to overtake K . when a solution is found. In this
case, it is not anymore possible to answer precisely the problem P,, since we do

not get the exact value of Kmin . To compensate this lack of information, one can
use a dichotomic search.

e Dichotomic search This kind of procedure needs to know a maximal bound for k . Its
value is given by a previous successful execution of the forward jump search.

The main interest of jump search is that it allows to win in efficiency. Since we do not know

the number of steps needed to find a solution if it exists, the use of such a technique allows

us, when it is possible, not to have to develop the entire set of formulations of length lower

than K . . Numerical experiments show that even if the size of models is increasing, the

corresponding practical complexity does not always follows the same evolution.
Finally, it must be said that the procedure described in Fig. 6 is only a semi-complete one.

Indeed, in the context of unbounded PNs, the value of k__ is set arbitrarily, as we do not

X

know any information on the number of steps needed to find a possible solution. Thus, if no

solution is obtained before the value of k has been reached, one cannot conclude on the
reachability property.

www.intechopen.com

Incremental Integer Linear Programming Models for Petri Nets Reachability Problems 417

To the contrary, when dealing with bounded PN, it is possible to set K __ to the value of

the sequential depth of the net, a parameter we have defined in (Bourdeaud huy et al., 2004a)
and which guarantee the complete exploration of the reachability graph. Using this parameter
as search depth, it is always possible to conclude when the algorithm stops.

3.3 Adaptation to timed Petri nets

We have seen in the previous section the awaited benefits from using an incremental
approach made of step firings. Before introducing the mathematical models in section 4, we
propose to adapt the step based formulation to Timed Petri nets.

We start by adapting the previous formalism to Timed Petri nets. The key idea is again to
consider the evolution of a Timed Petri net ™" step by step .

Definition 18 (Timed step). Let (R,d) be a Timed Petri net. A timed step is a pair

v =(,V) such that:
. Q= Z/_E[[Ln]]aj ‘1, isa step € T for the Place/Transition Petri net R, such that

vjell,Nla, {0,1};
. Vv isadate € N .

The set of all timed steps of a Timed Petri Net is denoted by T.p .

*

Definition 19 (Timed steps Firings). Let (R,d) be a Timed Petrinet. Let e = (E, ,E) bea

state given at date V. Let V' 2 v and A, =V' —v € N. The timed step W = (p,V") is fireable

from e iff:

Vie go,E‘ <A, (12)
t
Cp<E,+C"- Y ¢ (13)
teT,
0<E;LSA"

If this condition is satisfied, the new state €' = (E' Er') reached at date V' from e by the firing

of ¥ = (o, V') is defined as:

E =E -C -g+C"- > e (14)
teT,
0<E;LSAV
d@) iftep
VieT,E| ={E| -A, itE]|-A,>0 (15)
t t t

0 otherwise

www.intechopen.com

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

@
Free-eBooks

http://www.free-ebooks.net/

