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1. Introduction 

Fiber Bragg gratings (FBGs) are widely employed as optical filters for performing various 
functions such as add/drop multiplexers, dispersion compensators and 
multiplexers/demultiplexers for use in optical communication systems and optical sensors 
because of a number of advantages that include low insertion loss, low polarization 
sensitivity, all-fiber geometry, compactness, easy fabrication and low cost (Kashyap, 1999; 
Othonos & Kalli, 1999). In addition, the technology of ultraviolet (UV) photoinduced FBGs is 
quite mature to allow the fabrication of a wide variety of FBGs with complex characteristics. 
To meet the increasing demand for large capacity of the next generation of optical 
communication systems (i.e., wavelength division multiplexing (WDM) networks) and 
optical sensors, there is an important need for a powerful design tool that can be used for 
the synthesis or design of FBGs from the specified frequency responses that can be 
practically realized. This synthesis or inverse problem of determining a FBG structure from 
a given frequency response (i.e., magnitude and phase responses) is common in many 
application areas. The design tool must be efficient and reliable to enable the synthesis of 
FBG-based filters with prescribed frequency responses, depending on the application 
requirements. That is, the design tool must be able to determine the index modulation 
profile and hence the structure of an FBG from a given frequency response. In addition, the 
design tool must be powerful enough for use in the diagnosis or characterization during and 
after fabrication of an FBG. Although several synthesis methods such as those based on the 
layer-peeling algorithm have been proposed for the synthesis of FBGs from the specified 
frequency responses, the index modulation profiles of the synthesized FBGs are not 
optimized and are often complex, making practical realization difficult (Feced et al., 1999; 
Poladian, 2000; Skaar et al., 2001; Rosenthal & Horowitz, 2003). To overcome this problem, 
optimization methods have been demonstrated as an attractive approach because it allows 
weighting mechanisms to be incorporated into the desired frequency response of an FBG-
based filter to be synthesized, resulting in an optimum and practically realizable index 
modulation profile of the FBG structure. Furthermore, the optimization algorithms also 
allow additional constraints to be included in the weighting mechanisms of the specified 
frequency response to suit certain condition(s) or constraint(s) of a particular fabrication 
system. In optimization, the FBG synthesis problems are formulated as nonlinear objective 
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functions and the optimized solution of the FBG design is obtained by finding the global 
optimum of the objective function. Although several global optimization algorithms such as 
the global genetic algorithm (GA) (Skaar & Risvik, 1998; Gill et al., 2004; Cheng & Lo, 2004), 
the global simulated annealing (SA) (Dong, Azana & Kirk, 2003) and the local optimization 
method such as the Levenberg-Marquardt algorithm (Plougmann & Kristensen, 2004) have 
been applied to solving the FBG synthesis problems, the obtained solutions are, in general, 
not optimum, making practical implementation difficult. This is because, in general, it is 
important to employ a global optimization algorithm to solve an FBG synthesis problem to 
ensure that a global optimum can be obtained; however, convergence of the global 
optimization method is normally not as good as that of a local optimization algorithm. 
Unfortunately local optimization methods also cannot easily solve the FBG synthesis 
problems due to the multimodal and ill-conditioned character of the nonlinear objective 
functions. To improve the convergence of the global optimization algorithm, a hybrid 
algorithm combining a global optimization algorithm and a local optimization algorithm 
has been shown to be a better approach for the synthesis and fabrication of FBG-based 
bandpass filters (Zheng et al., 2004; Ngo et al., 2007). This is the motivation of this chapter 
which describes the use of a hybrid Tabu algorithm for the synthesis and fabrication of FBG-
based bandpass filters and linear phase filters from the given frequency responses. (Ngo et 
al., 2004; Zheng et al., 2005) presented the first reports of employing the standard and 
improved Tabu search algorithms (Glover & Laguna, 1998; Chelouah & Siarry, 2000) for the 
synthesis of FBG-based bandpass filters and linear phase filters. The hybrid Tabu algorithm 
is a two-tier search that employs a global optimization algorithm (i.e., a staged continuous 
Tabu search (SCTS) algorithm (Zheng et al., 2005) which performs better than the standard 
Tabu search (Ngo et al., 2004)) and a local optimization algorithm (i.e., the Quasi-Newton 
method (Shanno, 1970) which has high efficiency in solving multimodal nonlinear 
optimization problems). First, the global SCTS algorithm, in which a dynamic mechanism 
for weighting of different requirements of the magnitude and phase responses is employed 
to enhance the optimization efficiency, is used to find a “promising” FBG structure that has 
a frequency response as close as possible to the target one. The local Quasi-Newton 
algorithm is then applied to further optimize this “promising” FBG structure obtained from 
the global SCTS algorithm to obtain the final optimum solution. To demonstrate the 
effectiveness of the hybrid Tabu method which has high convergence rate and high 
reliability, the synthesis and fabrication of several FBG-based bandpass filters and linear 
phase filters for application in optical communications are presented in this chapter. It is 
worth mentioning that other stochastic search algorithms of various types have also been 
applied to the design of FBGs: the Nelder-Mead Simplex hill climbing algorithm 
(Caucheteur et al., 2004) and particle swarm optimization (Baskar et al., 2005a), evolutionary 
strategies such as the covariance matrix adapted evolution (Baskar et al., 2005b; Baskar et al., 
2006), and a multi-objective evolutionary algorithm (Manos & Poladian, 2005). 

2. Transfer matrix method for solving non-uniform Bragg gratings 

2.1 Theory of fiber Bragg grating 

There are two main types of fiber Bragg gratings (FBGs), namely, uniform FBG (which has 

equal grating periods) and non-uniform FBG (which has unequal grating periods). Single-

moded FBGs are considered here because they are commonly used in many areas of optics 

and photonics. For ease of discussion, the uniform FBG is considered in this section. An FBG 
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is essentially a filter written into the core of a segment of optical fiber via the interference of 

two ultraviolet (UV) beams from a UV laser (see Fig. 1). The interference pattern forms a 

periodic refractive index change (or index perturbation) along the longitudinal direction of 

the fiber. Due to the index change, the FBG acts as a series of reflectors, reflecting back a 

small amount of the input light with wavelength components that are close to the Bragg 

wavelength.  
 

 
 

Fig. 1. Schematic diagram of a typical interferometric system used for the fabrication of fiber 
Bragg gratings (FBGs). The FBG shown here is of a uniform type with equal grating periods.  

The Bragg wavelength, ( )B zλ , of a uniform FBG is the wavelength that fulfills the Bragg 

condition: 

 eff( ) 2 ( ) ( )B z n z zλ = Λ
  (1) 

 

where z is the longitudinal coordinate along the length of the grating and ( )zΛ  is the 

perturbation period or grating period (see Fig. 2). The average effective refractive index on 

the grating is defined as (see Fig. 2) 

 eff 0 dc( ) ( )n z n n z= + Δ
  (2) 

where 0n  is the effective index without UV exposure and dc ( )n zΔ  is the “dc” (or average) 

index change spatially averaged over the grating. Fig. 2 shows the quasi-sinusoidal profile 

of the effective index, eff ( )n z , which is described by 
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 effeff ac

2
( ) ( ) ( ) ( ) cos ( )

( )

z
n z n z n z f z z

z

π φ⎡ ⎤= + Δ ⋅ ⋅ +⎢ ⎥Λ⎣ ⎦   (3) 

where ac ( )n zΔ  is the “ac” index change (i.e., index modulation), ( )f z  is the normalized 

apodization function, and ( )zφ  is the chirp profile of the grating. Putting Eq. (2) into Eq. (3), 

the index perturbation, eff ( )n zδ , is given by 

 eff eff 0 dc ac

2
( ) ( ) ( ) ( ) ( ) cos ( )

( )

z
n z n z n n z n z f z z

z

πδ φ⎡ ⎤= − = Δ + Δ ⋅ ⋅ +⎢ ⎥Λ⎣ ⎦   (4) 

Thus Eq. (4) shows that the optical properties of an FBG are essentially determined by the 
variation of the index perturbation along the grating length.  
 

 
 

Fig. 2. Schematic showing an example of an FBG and its refractive index profile. The FBG 
shown here is of a uniform type with equal grating periods. 

Figure 3 shows the index perturbation profiles of a uniform FBG, an apodized FBG with 
variable-dc index change, and an apodized FBG with zero-dc index change, which are 
considered in this work. Other types of index perturbation profiles such as chirped FBG, 
phase-shifted FBG and super-structured FBG can also be employed, depending on the 
desired filter responses (Erdogan, 1997). 
 

 
Fig. 3. Index modulation profiles of the types of FBGs considered here. (a) A uniform FBG 
with a constant dc index change. (b) An apodized FBG with variable-dc index change. (c) An 
apodized FBG with zero-dc index change. 

Effective

Length, z 
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The length of the FBG typically ranges from several millimeters to tens of centimeters, 
depending on the desired filter responses. Because there are tens of thousands of these 
perturbation periods of index changes or reflectors in a row, an FBG-based filter generally 
has a near-squared reflective magnitude response. In the reflection mode, the reflective 
magnitude response has a very narrow bandpass response (with a typical 3-dB bandwidth 
of 0.2 nm or 25 GHz in the 1550 nm wavelength window) at the Bragg wavelength; whereas 
in the transmission mode, the transmissive magnitude response has a very narrow notch 
response at the Bragg wavelength (see Fig. 1). The phase-mask technique is one of the most 
effective methods used in the fabrication of FBGs because it employs a simple diffractive 
optical element (or a phase mask) to spatially modulate the UV beam (Kashyap, 1999; 
Othonos & Kalli, 1999). Compared with two other main types of optical filters, namely, thin 
film filters and arrayed waveguide gratings, FBG-based filters have many unique 
advantages such as low loss, low polarization sensitivity, simple all-fiber geometry, easy 
fabrication, and low cost.  

2.2 Transfer matrix method for solving non-uniform fiber Bragg gratings 

The coupled-mode theory has been widely used for the analysis of FBGs because it allows 
one to determine the effect of the grating structure on the frequency response (i.e., 
magnitude and phase responses) (Erdogan, 1997; Hill & Meltz, 1997; Kashyap, 1999; 
Othonos & Kalli, 1999). A uniform FBG is the simplest type of FBG to design and fabricate 
because it simply has equal grating periods and a constant modulation depth of the 
refractive index (see Fig. 1, Fig. 2, Fig. 3(a)). The uniform FBG can be easily designed 
because an analytical solution to the coupled-mode equation can be easily obtained. 
However, due to the finite length of the uniform FBG, the roll offs on the two edges of the 
reflective magnitude response are not sharp enough due to the presence of sidelobes on 
both sides of the bandpass response. This drawback has limited the application of uniform 
FBGs. This limitation can be overcome by using a non-uniform FBG which has a more 
squared reflective magnitude response with much smaller amplitudes of the sidelobes. 
However, analytical solutions to the coupled-mode equations describing the non-uniform 
FBGs cannot be easily obtained. The transfer matrix method (TMM) has been widely 
employed for solving the non-uniform FBGs due to its high computational efficiency and 
high reliability (Erdogan, 1997; Kashyap, 1999). The TMM method allows the magnitude 
and phase responses of a non-uniform FBG to be easily obtained with reasonably high 
accuracy. In TMM, a non-uniform FBG can be modeled using two methods, depending on 
the requirements of the magnitude and phase responses: (1) A non-uniform FBG model 
using the cascade of serially-connected uniform sub-gratings (this model is sufficient for 
obtaining the magnitude response when the phase response is not important); and (2) A 
non-uniform FBG model using the cascade of serially-connected apodized sub-gratings (this 
model must be used when both the magnitude and phase responses are important). These 
two methods are described below. 

2.2.1 A non-uniform FBG model using the cascade of uniform sub-gratings 

When only the magnitude response of a filter (whose phase response is not important) is 
required to be designed, the TMM method can be used to model a non-uniform FBG as the 
cascade of serially-connected uniform sub-gratings. The non-uniform FBG can be divided 
into a number of serially-connected N uniform sub-gratings or sections (as shown in Fig. 4). 
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Each uniform sub-grating section can be described by an analytic transfer matrix. The 
transfer matrix for the entire non-uniform FBG structure can be obtained by simply 
multiplying the individual transfer matrices of the uniform sub-gratings. 
 

 

Fig. 4. Schematic diagram of a non-uniform FBG model based on the cascade of serially-
connected uniform sub-gratings. 

Each uniform sub-grating section is described by an index perturbation defined in Eq. (4). 
Note that Eq. (4) is a general equation describing the index perturbation of all kinds of FBGs. 
To apply Eq. (4) to each uniform sub-grating section, the parameters in this equation are re-
defined as follows. A uniform sub-grating section requires ( ) 1f z =  and ( ) 0zφ =  in Eq. (4). 

Putting these conditions into Eq. (4) gives a simpler index perturbation, eff ( )n zδ , for each 

uniform sub-grating which is given by 

 ( )eff dc ac( ) ( ) ( ) cos 2 ( )n z n z n z z zδ π= Δ + Δ ⋅ Λ   (5) 

Equation (5) is schematically shown in Fig. 3(a). In Fig. 4, f ( ; )E j λ  and b ( ; )E j λ  are the 

complex electric fields of the forward and backward propagation waves, respectively, 

describing the jth section. Also, jlδ , jΛ , ac, jnΔ  and eff , jn  (and hence dc, jnΔ  according to 

Eq. (2)), which are the parameters to be optimized in this particular model, are the length, 
period, ‘ac’ index change (i.e., index modulation) and average effective index of the jth 
section, respectively. In this model, the parameters that are not optimized are jΛ  and 

dc, dc, ( )j jn z nΔ = Δ  (and hence eff , jn  according to Eq. (2)), which are the period and the “dc” 

index change, respectively, and they are fixed or constant values. gL  is the total length of 

the non-uniform FBG. The designer has the choice of choosing which of these four (4) 

variables (i.e., jlδ , jΛ , ac, jnΔ  and eff , jn ) are to be optimized, depending on the fabrication 

condition(s) or constraint(s) of a particular fabrication system. The complex electric fields at 

the input ports ( f (0; )E λ , b (0; )E λ ) and output ports ( f ( ; )E N λ , b ( ; )E N λ ) of the non-

uniform FBG are described by 

 
f f

b b 1

(0; ) ( ; )
;       

(0; ) ( ; )

N

j
j

E E N
T T T

E E N

λ λ
λ λ =

⎡ ⎤ ⎡ ⎤= ⋅ = ∏⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦   (6) 

where 11 12

21 22
j

T T
T

T T

⎡ ⎤= ⎢ ⎥⎣ ⎦  is the 2 × 2 transfer matrix of the jth section. The elements of the 

transfer matrix are defined as 
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ˆ
cosh( ) sinh( ),

j
j j j j

j

i
T S l S l

S

σδ δ= −   22

ˆ
cosh( ) sinh( )

j
j j j j

j

i
T S l S l

S

σδ δ= +   (7) 

 12 sinh( ),
j

j j
j

i
T S l

S

κ δ= −   21 sinh( )
j

j j
j

i
T S l

S

κ δ=   (8) 

where 1i = − . The ‘ac’ coupling coefficient, jκ , is defined as 

 ac, j ji n
πκ λ= Δ   (9) 

where λ is the optical wavelength. The ‘dc’ coupling coefficient, ˆ jσ , is defined as 

 ˆ j j jσ δ σ= +   (10) 

where ( )eff, B, 2 1 1
jj j jj jnδ β π π λ λ= − Λ = −  is the detuning parameter at the wavelength 

jλ , jβ  is the propagation constant, eff, B, 2 jj jnλ = Λ  is the Bragg wavelength, and  

eff, 0 dc, j jn n n= + Δ  (see Eq. (2)). The coefficient jσ  is defined as 

 dc, 
2

j j
j

n
πσ λ= Δ   (11) 

where dc, jnΔ  is given in Eqs. (2) and (4). jS  in Eqs. (7) and (8) is defined as 

 
2 2 2ˆj j jS κ σ= −

  (12) 

Applying the boundary condition b ( ; ) 0E N λ =  (i.e., there is no input to the right side of the 

FBG), the reflection frequency response ( )ρ λ  and the transmission frequency response 

( )xt λ  are given by 

 b

f

(0; )
( )

(0; )

E

E

λρ λ λ=   (13) 

 f

f

( ; )
( )

(0; )
x

E N
t

E

λλ λ=   (14) 

The reflection magnitude response and the transmission magnitude response are simply 

given by 
2

( )ρ λ  and 
2

( )xt λ , respectively. The reflection phase response and the 

transmission phase response are defined as arg ( )ρ λ⎡ ⎤⎣ ⎦  and arg ( )xt λ⎡ ⎤⎣ ⎦ , respectively, where 

arg stands for argument. We here consider only the reflection frequency response (i.e., 
magnitude and phase responses) or Eq. (13) because we are interested in the bandpass 
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response of the filter. The transmission magnitude response will give a bandstop or notch 

response. The delay time, ( ),ρτ λ  of light reflected off a grating corresponds to the phase 

change of ( )ρ λ  relative to the optical wavelength λ , and is given by (Erdogan, 1997) 

 
2

( )
2

d

c d

ρρ θλτ λ π λ= − ⋅   (15) 

where arg ( )ρθ ρ λ= ⎡ ⎤⎣ ⎦  is the phase response of ( )ρ λ  and c is the speed of light in vacuum. 

The dispersion of the grating, ( ),dρ λ  is therefore given by 

 
22

2

2
( )

2

d d d
d

d c dd

ρ ρ ρρ τ θ θλλ λ π λ λλ
⎛ ⎞⎜ ⎟= = − + ⋅⎜ ⎟⎝ ⎠

  (16) 

The non-uniform FBG model based on the cascade of serially-connected uniform sub-
gratings described here is useful for use in the design of the magnitude response (but not 
the phase response) of a bandpass filter. The model will be used for the design and 
fabrication of bandpass filters (where the phase responses are not of interest) which are 
described in Section 4.3. When both the magnitude and phase responses of the filter (e.g., a 
linear phase filter) are required to be designed, the non-uniform FBG model based on the 
cascade of serially-connected apodized sub-gratings must be used and it is described below. 

2.2.2 A non-uniform FBG model using the cascade of apodized sub-gratings 

When both the magnitude and phase responses of a filter are required to be designed, the 

TMM method can be used to model a non-uniform FBG as the cascade of serially-connected 

apodized sub-gratings. The non-uniform FBG can be divided into a number of serially-

connected N apodized sub-gratings or sections (as shown in Fig. 5). Each apodized sub-grating 

section can be described by an analytic transfer matrix. The transfer matrix for the entire 

non-uniform FBG structure can be obtained by simply multiplying the individual transfer 

matrices of the apodized sub-gratings. 
 

 

Fig. 5. Schematic diagram of a non-uniform FBG model based on the cascade of serially-
connected apodized sub-gratings. 

Each apodized sub-grating section is described by the index perturbation defined in Eq. (4). 
Note that Eq. (4) is a general equation describing the index perturbation of all kinds of FBGs. 
To apply Eq. (4) to each apodized sub-grating section, the parameters in this equation are re-
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defined as follows. An apodized sub-grating section requires ( ) 0zφ = in Eq. (4). Putting this 

condition into Eq. (4) gives a simpler index perturbation, eff ( )n zδ , for each apodized sub-

grating which is given by 

 ( )eff dc ac( ) ( ) ( ) ( ) cos 2 ( )n z n z n z f z z zδ π= Δ + Δ ⋅ ⋅ Λ   (17) 

Equation (17) is schematically shown in Fig. 3(b). In Fig. 5, f ( ; )E j λ  and b ( ; )E j λ  are the 

complex electric fields of the forward and backward propagation waves, respectively, 

describing the jth section. Also, jlδ , ac, jnΔ and jf , which are the parameters to be 

optimized in this particular model, are the length, ‘ac’ index change (i.e., index modulation) 
and apodization function of the jth section, respectively. In this model, the parameters that 

are not optimized are jΛ  and dc, dc, ( )j jn z nΔ = Δ  (and hence eff , jn  according to Eq. (2)), 

which are the period and the “dc” index change, respectively, and they are fixed or constant 

values. gL  is the total length of the non-uniform FBG. The designer has the choice of 

choosing which of these five (5) variables (i.e., jlδ , ac, jnΔ , jf , jΛ  and dc, jnΔ ) are to be 

optimized, depending on the fabrication condition(s) or constraint(s) of a particular 
fabrication system. Unlike a uniform FBG (i.e., no apodization) which has sidelobes of about 

10 dB−  in the reflective magnitude response, applying apodization to a non-uniform FBG 

can significantly suppress the sidelobes to 40 dB> −  in the reflective magnitude response. 

Listed below are several commonly used apodization functions which can be applied to 
each sub-grating section 

 Raised cosine: 
( )21

( ) 1 cos
2

j

j
j

z l
f z

l

π δ
δ

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥= +⎨ ⎬⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
  (18) 

 Gaussian: 
( )( )( )

2

2

4ln 2 2
( ) exp

3

j

j

j

z l
f z

l

δ
δ

⎡ ⎤−⎢ ⎥= −⎢ ⎥⎢ ⎥⎣ ⎦
 (19) 

 Sine: ( )( ) sinj jf z z lπ δ=   (20) 

 Quadratic sine: ( )2( ) sinj jf z z lπ δ=   (21) 

Note that the only difference between a uniform sub-grating (as described in Section 2.2.1) 
and an apodized sub-grating is that the former has an index perturbation described by Eq. (5) 
while the latter has an index perturbation described by Eq. (17). In general, the number of 
apodized sub-gratings is smaller than the number of uniform sub-gratings to achieve a 

particular desired frequency response. Thus Eqs. (6)−(12) are also applicable to the apodized 

sub-gratings by putting the right condition defined in Eq. (17) into Eqs. (6)−(12). Putting Eq. 

(17) into Eqs. (6)−(12), the reflection frequency response, ( )ρ λ , and the transmission 

frequency response, ( )xt λ , can be computed using Eqs. (13) and (14), respectively. Also, the 
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delay time, ( ),ρτ λ  of light reflected off a grating can be determined using Eq. (15) and the 

dispersion of the grating, ( ),dρ λ  can be calculated using Eq. (16). This model will be used 

for the design of FBG-based linear phase filters which is described in Section 4.4. 

3. Staged continuous Tabu search algorithm 

3.1 Review of Tabu search algorithm 

Tabu search (TS) is an iterative search method originally developed by Glover and Laguna 
(Glover & Laguna, 1998) which has been successfully applied to a variety of combinatorial 
global optimization problems (Ho et al., 2001; Machado et al., 2001; Chelouah & Siarry, 
2000). The TS algorithm has been used for the synthesis of FBG-based linear phase filters 
using the non-uniform FBG model based on the cascade of serially-connected apodized sub-
gratings (Ngo et al., 2004). A good analogy of how TS works is mountain climbing, where 
the climber must selectively remember key elements of the path traveled (using adaptive 
memory) and must be able to strategize choices along the way (using responsive exploration). A 
rudimentary form of this algorithm can be summarized as follows. It starts from an initial 
solution s that is randomly selected. From this current solution s, a set of neighbors, called s’, 
is generated by pre-defining such a set of “moves” or perturbations of the current solution. 
To avoid the endless reiterative cycle, the neighbors of the current solution, which belong to 
a subsequently defined “tabu list”, are systematically eliminated. The objective function to 
be minimized is then evaluated for each generated solution s’, and the best neighborhood of 
s becomes the new current solution s’ even if it is worse than s. The “move” that generates 
the new current solution will also be stored in the tabu list, which is circular. When the tabu 
list is full, it is updated by eliminating the previous estimated solution. Then a new 
“iteration” is performed; the previous procedure is repeated by starting from the new 
current solution until a pre-defined stopping condition is satisfied. The TS algorithm has a 
small probability of becoming trapped in a local optimum. Compared to other traditional 
methods such as the genetic algorithm (GA) and the simulated annealing (SA), the TS 
algorithm has one unique advantage in that it can also be organized to take advantage of 
problem-specific information and thus has higher convergence velocity as well as higher 
level of reliability. TS also includes “candidate list strategies” for generating and sampling 
neighbors. These candidate list strategies are very important because often only a relatively 
small subset of neighbors is generated at any given iteration, especially when a large 
number of neighborhoods is used, as in the case of multi-variable problems whose 
neighbors are generated in a multi-dimensional space.  

3.2 Review of continuous Tabu search algorithm 

As an enhancement to the TS algorithm described above in terms of higher convergence 
velocity and higher level of reliability, a continuous Tabu search (CTS) algorithm, which 
employs a special “candidate list strategy” to generate neighbors, has been proposed for the 
optimization of nonlinear objective functions (Siarry & Berthiau, 1997). In this method, the 
solution space is divided into several regions. Neighbors are generated in these regions and 
the remainder of the method consists of an elementary form of TS that uses only the simple 
tabu list construction as described in Section 3.1. A brief review of the CTS algorithm is 
described here because it will be used for the development of a staged continuous search 
(SCTS) algorithm in the subsequent section. For the following optimization problem: 
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∈Ψ

Φ⎡ ⎤⎣ ⎦( )min
ks

s ,  (22) 

where Φ( )s  is the objective function to be minimized, and = A T
1 2[ , , , ]ks x x x  is defined as 

 ∈ ks Ψ  and = ≤ ≤{ | }kΨ s a x bj j j ,  j = 1, 2, …, k.  (23) 

where aj and bj are the boundary values of the jth element (or jx ) of s, and k represents the 

dimension of the problem or the number of variables. The basic process of the CTS method, 
which is organized around a simple version of the tabu search, can be summarized as 
follows. 

1. Generate a random point s that belongs to the space kΨ  as the current solution. 

2. A set of neighbors, ∈' ks Ψ , is then generated by applying s with a series of 

perturbations or “moves”. Generation of neighbors is defined as follows. The 

neighborhood space kΨ  of the current solution, s, is deemed as a ball ( , )B s r  centered 

on s with a radius r. Considering a set of concentric balls with radii h0, h1, …, hn, the 
space is partitioned into n concentric ‘crowns’. Hence n neighbors of s are obtained by 
selecting one point randomly inside each crown and eliminating those neighbors that 
belong to the “tabu list”. Figure 6 shows an example that demonstrates the generation 
of neighbors for a problem with two variables 1x  and 2x  (k = 2), where the space is 

partitioned into four (n = 4) concentric “crowns”, and four neighbors are produced 
randomly in their own crown areas. 

3. Evaluate these neighbors with the objective function, choose the best neighbor s* and 
replace the starting point s with s* even if it is worse than the current solution. Then 
update the “tabu list”.  

4. Clear the “tabu list”: in particular those solutions that belong to the “tabu list” can 
release their tabu status if their “aspiration levels” are sufficiently high.  

5. Check the stopping condition and return to step 2 if the condition is not met. Otherwise, 
stop the iteration procedure and report the results. 

 

 

Fig. 6.  Partition of the current solution neighborhood, where 1x  and 2x  are two variables (k 

= 2)  and n = 4 concentric “crowns”. The neighborhood sj (j = 1, 2, 3, 4) is selected randomly 
in its own crown area (Siarry & Berthiau, 1997). 
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Figure 7 shows the flow chart of the CTS algorithm, where the main stages include the initial 
solution, generation of neighbors, selection of the solution and tabu list clearance. The 
strategy of generating neighbors in CTS is more efficient than a naive candidate-list strategy 
based solely on random sampling, and usually produces neighbors distributed over the 
whole solution space. Although the method is effective for optimizing functions with two or 
three variables, its efficiency decreases with an increase in the number of variables of a 
function such as the case for high-dimension problems. These difficulties can be overcome 
using a staged continuous Tabu search (SCTS) algorithm which is described next. 
 

Initial solution

Randomly select a solution s as an initial

current point

Generation of neighbors

Apply to s available moves to generate n

neighbors that do not belong to the tabu list

Selection

Select the best neighbor s* as the new

current point; update the tabu list; update

the best known solution

Is the stopping condition

reached?

Exhibit the best solution found

Stop

No

Yes

 

Fig. 7. General flow chart of a continuous Tabu search (CTS) algorithm. 

3.3 Staged continuous Tabu search algorithm 

The staged continuous Tabu search (SCTS) algorithm employs the same rudimentary form 
of tabu search embodies in the CTS algorithm (Zheng et al., 2005). However, SCTS provides 
an enhanced candidate-list strategy that subdivides the CTS approach into three 
independent processes that generate candidate neighbors in a different way (see Fig. 8). The 
first stage attempts to survey the whole solution space to localize a “prospective point”, 
which is a solution likely to produce a global optimum. The objective of the second stage is 
to find a point close to the global optimum. The third stage starts from the solution found in 
the second stage, and eventually converges to the global optimum point. The SCTS 
algorithm is described below with reference to Fig. 8 which shows the steps of the 

algorithm. The following notations are used in Fig. 8: kΨ : space of feasible solutions (k 

dimensions); 0s : current solution; 1n : length of neighbors generated in the first stage (which 
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is equal to k here); 2n : section number divided within the boundary of every element of 0s ; 

3n : length of neighbors generated in the third stage; 's : the neighborhood of 0s ; *s : the 

best solution in 's ; opts : current best solution found; and ( )Mv j : maximum number of 

iterations without improvement of opts  in the jth stage. 

 

Is the stopping condition of

the first stage reached?

Generation of      neighbors

that do not belong to the tabu list
1n

Initial solution

Randomly select a solution

               as an initial current point
kΨs ∈0

Selection and updating

Select the best neighbor       as the new

current point; update the tabu list; update

the best known solution opts

*s

Generation of             neighbors

that do not belong to the tabu list
2nk×

Selection and updating

The first stage

The second stage

The third stage

No

No

Yes

Yes

Is the stopping condition of

the second stage reached?

Generation of             neighbors

that do not belong to the tabu list

Selection and updating

3nk×

No

Yes

Is the stopping condition of

the third stage reached?

Output the best solution        and stopopts

opt0 ss =Reset 0s

opt0 ss =Reset 0s

 

Fig. 8. Algorithmic description of the SCTS algorithm. 
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Generation of Neighborhoods: Neighborhoods are generated in a ball ( , )B s r  centered on s with 

a radius r (see Fig. 6). All neighbors 's  meet the condition: − ≤'s s r . In the first stage, the 

radius 1r  is defined so that the ball 1 1( , )B s r  contains the whole k-dimension space kΨ . 

With radii A 11 2
1 1 1, , ,

n
r r r , the ball is partitioned into k  concentric “crowns” centered on the 

current solution. One neighbor is produced in each crown. Thus the jth neighbor, 'js , is 

generated with the condition 

 
− ≤ − ≤1

1 1'
j j

jr s s r ,   ( =0
1 0r ).  (24) 

As the ball 1 1( , )B s r  includes the whole space kΨ , it should be possible for all solutions 

within it to become neighbors of the current solution, s, so that the process can investigate 
the whole solution space. We define the “moves” to generate neighbors such that some 
elements of the current solution are randomly replaced. The number of replaced elements 
depends on different crowns. For example, the jth neighbor, 'js , is generated by replacing 

any j element of the current solution. The radius 2r  for the generation of neighbors in the 

second stage is defined as the minimum radius of radii A 11 2
1 1 1, , ,

n
r r r  defined in the first 

stage. Followed with another partition process with a set of radii A 21 2
2 2 2, , ,

n
r r r , the ball 

2 2( , )B s r  is divided into 2n  sections. The jth neighbor, 'js , is generated with a condition 

given by 

 
− ≤ − ≤1

2 2'
j j

jr s s r ,     ( =0
2 0r ). (25) 

The minimum radius defined in the first stage is propagated in only one dimension of the 
current solution. Considering the condition defined in Eq. (23), the boundary can be 
proportionally divided for every dimension into 2n  partitions. The neighbors can then be 

generated by replacing the jth element of the current solution, 'jx , with a number computed 

by: 

 μ −= + + ×2
2

' ( ) ,
j j

j j

b a
x a j

n
  where j = 1, 2, …, k;  j2 = 1, 2, …, 2n ;  (26) 

where μ is a random value between 0 and 1, ja  and jb  are defined in Eq. (23), and × 2k n  is 

the number of neighbors in the stage. The minimum of radii A 21 2
2 2 2, , ,

n
r r r  is set as radius 3r  

to generate neighbors in the third stage. Instead of partitioning to generate neighbors, the 

radius of the ball 3 3( , )B s r  decreases with an increase in the iteration number. The 

generation of the jth neighbor is defined as  

 μ − −= + × × 3

2 3
'

j j
j j j

b a M m
x x

n M
  (27) 
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where jx  and 'jx  are the jth elements of the current solution s and the neighbor 's  

produced, respectively, m is the iteration number without any improvement on the current 

solution, and 3M  is the maximum allowable number of iterations without any 

improvement on the current solution. As pointed out previously, the neighbors in the first 
stage are generated in the largest possible range so as to explore most of the space. While in 
the last stage, only a reduced space is used so that the solution will eventually converge to 
the global optimum. 
Tabu list: In the underlying TS algorithm, a tabu list stores some solutions that have recently 

been selected. It is used to qualify the algorithm to select solutions that have not been 

selected before so as to escape from being recycled. Because the three stages in the SCTS 

algorithm are independent of each other, the tabu lists in these stages are thus independent 

of each other. The list obtained in the first stage will store those ‘prospective solutions’ 

found in recent iterations. In the second and third stages, the lists will store the attributes of 

‘moves’ or perturbations that generate the best neighbors in recent iterations. The tabu list in 

each stage is always reset at the beginning of each stage. 

Stopping conditions: The stopping conditions for the three processes are defined below. 
1. The program will stop after a given number of iterations when there is no improvement 

on the value of the objective function. The number of iterations varies in different 
stages. 

2. The result satisfies the prescribed condition. An example of the prescribed condition is 
the known global optimum of a benchmark test function.  

3. The search procedure will stop after it has completed a pre-defined maximum number 
of iterations.  

All stages will be terminated if any one of these stopping conditions is satisfied. That is, if 

the process is in the first or second stage, it will move into the next stage. However, if the 

process is in the third stage, the algorithm will stop and report the result. 

The sensitivities of several main parameters of the CTS algorithm were discussed (Siarry & 

Berthiau, 1997). Usually, these parameters should be adjusted empirically according to the 

nature of the problem so as to achieve an efficient optimization. As the SCTS algorithm is 

derived from the CTS algorithm, it is found that the properties of some parameters in the 

SCTS algorithm are similar to those of the CTS algorithm. These parameters are not 

analyzed individually, and instead a set of empirical values is applied in the experiments for 

testing the benchmark functions. These empirical values are listed in Table 1. 
 

Parameters used in the SCTS algorithm 
Parameters used in the 
benchmark functions 

Number of neighbors in the first stage ( 1n ) Number of variables 

Number of sections in the second stage ( 2n ) 5 

Number of neighbors in the third stage ( 3n ) Number of variables 

Number of neighbors in the second stage 5 × number of variables 

Maximum number of iterations without any 
improvement on the objective function value (Mv) 

{20, 8, 5} for 
{1st stage, 2nd stage, 3rd stage} 

Maximum number of iterations of the SCTS algorithm 8000 

Table 1. Parameters of the SCTS algorithm used for testing the benchmark functions. 

www.intechopen.com



 Local Search Techniques: Focus on Tabu Search 

 

158 

Numerical experimental results: To demonstrate the effectiveness of the SCTS algorithm, the 
important parameters to be studied are convergence, speed and robustness. Convergence 
refers to the evaluation of the search for the global optimum of a function. The test for 
convergence employed here is the relative error between the optimum obtained by the 

algorithm, optX , and a theoretical (or known) value of the optimum, theoX , of the function. 

The relative error, relativeE , is defined as (Andre et al., 2000) 

 
−= opt theo

relative
theo

X X
E

X
  (28) 

If theoX  = 0, Eq. (28) is reduced to  

 = −relative opt theoE X X  (29) 

The criterion of speed refers to the time taken by the algorithm to find the global optimum 
of an objective function. As the computation time also depends on the speed of the 
computer, it is better to define the speed criterion by determining the number of evaluations 
of the objective function required till a global optimum is found. Robustness means that the 
algorithm is versatile and can be applied to solving a variety of functions. A set of 
commonly used benchmark functions with known global optima (as listed in the Appendix) 
is employed to test the algorithm. These benchmark test functions represent various 
practical problems in engineering. To obtain a statistical comparison of the optimization 
results, every test is performed 100 times (starting from various randomly selected points) to 
ensure that the results obtained are reliable.  
Table 2 shows the results obtained from the CTS (Siarry & Berthiau, 1997) and SCTS 
algorithms for the four test functions with two and three variables. The criterion of success 
is the percentage of trials (out of 100 tests for each function) required to obtain the global 
optimum with a relative error of < 1%. From the table, both algorithms can successfully find 
the global optima of all the four test functions which are given in the Appendix. However, 
the number of evaluations of the Goldprice and Shubert test functions required by the SCTS 
algorithm (i.e., 696 and 521, respectively) is much smaller than those required by the CTS 
algorithm (i.e., 1636 and 1123, respectively). This means that the SCTS algorithm has a faster 
computation rate than that of the CTS algorithm for these two particular test functions. 
However, the two algorithms have about the same computation rate for the Hartmann1 and 
Branin functions. 
 

Success rate (%) 
Number of evaluations of 
objective or test functions Function 

CTS SCTS CTS SCTS 

Goldprice 100 100 1636 696 

Hartmann1 100 100 528 691 

Branin 100 100 668 491 

Shubert 100 100 1123 521 

Table 2. Experimental data of the SCTS and CTS algorithms. 

www.intechopen.com



Hybrid Tabu Algorithm for the Synthesis and Fabrication of Fiber Bragg Gratings 

 

159 

Table 3 shows a comparison of the experimental data of various test functions obtained by 
the SCTS algorithm and an improved genetic algorithm (IGA). Note that the IGA algorithm 
can potentially yield a complete set of optima of multimodal problems (Andre, Siarry & 
Dognon, 2000). These test functions have variables ranging from 1 to 20 as given in the 
Appendix. In the table, Max and Min are, respectively, the maximum and minimum values 
of a set of optima found over 100 tests. The SCTS algorithm outperforms the IGA algorithm 
in two ways. The SCTS algorithm has one advantage in that it can find the global optima of 
the test functions (i.e., Brown1, Brown 3 and F10n functions) with 100% success rate and 
with very low relative errors; while the IGA algorithm has very low success rates and very 
high relative errors of these test functions. The other advantage of the SCTS algorithm over 
the IGA algorithm is that it has a much smaller computation time due to the smaller number 
of evaluations of the test functions. In addition, for 100% success rates of the test functions 
achieved by both algorithms, the SCTS algorithm has much smaller relative errors than 
those of the IGA algorithm. It can thus be concluded from the results shown in Tables 2 and 
3 that the SCTS algorithm outperforms the CTS algorithm and the IGA algorithm in terms of 
higher success rate and higher computation efficiency. Next section describes the use of the 
SCTS algorithm for the development of a hybrid Tabu search algorithm which is a hybrid of 
the global SCTS algorithm and the local Quasi-Newton algorithm. 

4. Hybrid Tabu search algorithm for optimization and fabrication of non-
uniform fiber Bragg gratings 

4.1 Staged continuous Tabu search algorithm for optimization of non-uniform fiber 
Bragg gratings 

This section describes the SCTS algorithm (as described in Section 3.3) for use in the 
optimization of non-uniform FBGs, and it is schematically shown in Fig. 9. 
 

 

Fig. 9. Block diagram of the SCTS algorithm for use in the optimization of FBGs. 

The synthesis problem of an FBG is formulated as an objective function which measures the 
error between the designed reflection frequency response of the FBG using the SCTS 
algorithm and the target frequency response. The synthesized FBG using the SCTS 
algorithm can be carried out using the steps as described below. 
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