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1. Introduction 

Leading-edge companies require flexible, reliable and robust systems with capabilities 
to adapt quickly to changes and/or disturbances. In order to be adaptable a flexible 
manufacturing systems must possess the ability to (i) reconfigure the existing shop 
floor and (ii) automatically recover from expected and unexpected errors. One of the 
major problems in flexible manufacturing systems is how to effectively recover from 
such anticipated and unanticipated faults. Traditional techniques have addressed the 
error recovery problem from the point of view of defining a set of actions for a pre-
specified set of errors. The main disadvantage of this approach is that not only a huge 
amount of coding is required but also that two undesirable situations still may occur: 
(i) some errors may not occur in a prespecified set during the lifetime of the system 
and (ii) there may be errors that cannot be anticipated. Pre-enumerating a large 
number of error occurrences will not guarantee that the system will not encounter a 
new error situation. Our intent here is to show the genesis of work into intelligent 
control of discrete event dynamic systems to overcome (ii) as exemplified by a Petri 
Net based model for large scale production systems. Petri Nets have been successfully 
used for modeling and controlling the dynamics of flexible manufacturing systems 
(Hilton & Proth, 1989; Zhou & DiCesare, 1993).  Generally, in a Petri net, the 
operations required on a part are modeled with combinations of places and transitions. 
The movement of tokens throughout the net models the execution of the required 
operations. The content of this chapter is multi-faceted. Topics include Petri Net 
modeling, state space representation and associated solution techniques, hierarchical 
decomposition and control, hybrid modeling, multiple agent systems, and, in general, 
issues pertaining to our work on intelligent control of  manufacturing systems. 
Our focus here is on the characteristics of physical error occurrences which impose 
difficult challenges to discrete event control. The majority of our effort has been on 
workstation/cell control within the hierarchical system originally proposed by the 
National Institute of Standards and Technology (NIST) e.g. (Albus, 1997). The 
controller must first handle simultaneously production and recovery activities, and 
second, treat unexpected errors in real-time to avoid a dramatic decrease in the 
performance of the system.  In the following sections we follow the modeling approach 
previously presented by (Odrey& Ma, 1995) which had its origins in the work of (Liu, 
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1993). This previous work included modeling, optimization, and control within the 
framework of hierarchical systems. In particular, the research was focused on efforts 
towards the foundations of a multilevel multi-layer hierarchical system for 
manufacturing control.  The Petri Net formalism can handle the complexities of the 
highly detailed activities of a manufacturing workstation such as parallel machines, 
buffers of finite capacity, dual resources (multiple resources required simultaneously 
on one operation), alternative routings, and material handling devices to name a few. 
Details on the mathematical structure and definitions pertaining to Petri nets can be 
found in numerous sources e.g., (Zhou & Dicesare, 1993; Murata, 1989). The reader is 
referred to this literature for detailed underlying mathematical models. A further 
thrust of our work has been to enhance a multilevel multi-layer model by the 
incorporation of intelligent agents with the purpose of adding flexibility and agility. 
Thus, one objective of our  effort is to determine whether it is possible to integrate 
Petri Nets constructs with object-oriented formalisms and have an “all in one” 
modeling and implementation tool for intelligent agent-based manufacturing systems. 
Several researchers have attempted to combine these techniques. One of the first 
approaches was Object Oriented Petri Nets (Lee and Park, 1993).  
More recent work pertains to addressing the issue of monitoring, diagnostics, and 
error recovery within the context of a hierarchical multi-agent system (Odrey & Mejia, 
2003). The system consists of production, mediator, and error recovery agents. 
Production agents contain both planner and control agents to optimize tasks and direct 
material flow, respectively. Here we address the error recovery agent within a 
hierarchical system at the workstation level in more detail. It is assumed that raw 
sensory information has been processed and is available. When an error is detected, 
the control agent requests the action of a recovery agent through a mediator agent.  In 
return, the recovery agent devises a plan to bring the system out of the error state. 
Such an error recovery plan consists of a trajectory having the detailed recovery steps 
that are incorporated into the logic of the control agent.  In the context of Petri Nets, a 
recovery trajectory corresponds to a Petri subnet which models the sequence of steps 
required to reinstate the system back to a normal state. After being generated, the 
recovery subnet is incorporated into the workstation activities net (the Petri Net of the 
multi-agent system environment). In this research, we follow the designation of others 
(Zhou & DiCesare, 1993) and denote the incorporation of a recovery subnet into the 
activities net as net augmentation. The terms “original net” or “activities net” refer to 
the Petri Net representing the workstation activities (within a multi-agent 
environment) during the normal operation of the system. The net augmentation brings 
several problems that require careful handling to avoid undesirable situations such as 
the occurrence of state explosions or deadlocks. Intelligent agents seem to be a 
promising approach to deal with the unpredictable nature of errors due to their 
inherent ability to react to unexpected situations.  Research on intelligent agents in the 
context of manufacturing have been mostly concentrated on the “production activities” 
e.g. scheduling, planning, processing and material handling (Gou, et al., 1998; Sousa & 
Ramos, 1999; Sun, et al., 1999) However the activities related to exception handling 
such as diagnostics and error recovery have received little attention. Our research aims 
to provide some evidence as to how the performance of a manufacturing system can be 
improved by using intelligent agents modeled with Petri Nets. 
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1.1 Statement of the problem 

The focus in this chapter is on physical error occurrences and is directed towards supporting 
effective procedures for error recovery in an attempt to arrive at a reconfigurable, adaptive, 
and “intelligent “manufacturing system. As such, a hybridization of Petri Nets and 
intelligent agents seem to be a promising approach to deal with the unpredictable nature of 
errors due to their inherent ability to react to unexpected situations. Within this context, we 
investigate system learning with a hybrid Petri net-neural net structure.  The following 
sections of this chapter first discuss the background on architectures for reconfigurable and 
adaptable manufacturing control. Subsequent discussions will be based on the genesis of 
work at Lehigh University on Petri nets from initial modeling and solution approaches to 
more recent work on embedding intelligent agents with Petri Nets. A hybrid nets consisting 
of a Petri Net with a Neural Net approach for the purpose of intelligent control is also 
discussed.  

2. Architectures 

Even though our focus in this chapter is on Petri Net modeling and error recovery , we 
would be remiss to not mention the underlying architecture of the systems being 
investigated, While some performance tests (Brennan, 2000; Van Brussel, et al.,1998) suggest 
that intelligent agent architectures for manufacturing systems outperform other 
architectures, the lack of standards on design methodologies, communication protocols and 
task distribution among the agents makes difficult their introduction to real-life 
applications. Opposed to intelligent agent-based architectures, hierarchical architectures 
have been conceived with the standardization issues in mind. A hierarchical architecture 
groups the elements of the manufacturing system into hierarchical levels, e.g. enterprise, 
factory, shop, cell, manufacturing workstation and equipment levels, with the purpose of 
coping with complexity. The major drawback of hierarchical architectures is that their 
structure is overly rigid and consequently difficult to adapt to unanticipated disturbances 
(Van Brussel, et al., 1998). To increase the functionality of the system, components at the 
same level may be linked. The purpose was to loosen the strict master-slave relationship of 
the proper hierarchical form. This resulted in the so termed, modified hierarchical form. 
Higher flexibility was reported with this architecture; however some problems arose in the 
communication links between entities of the same level mostly caused by the lack of 
development of the technology available at that time (Dilts et al., 1991). 
To overcome the difficulties of the hierarchical architectures a heterarchical (distributed) 
form was proposed (Duffie et al., 1988). In this architecture a single entity did not exist at the 
top level as in the hierarchical scheme. In this architecture there existed a number of parts or 
components which “negotiate” the utilization of scarce resources. As such, a feedback signal 
did not have to go one level up in the hierarchy to find a response and a corrective action. A 
system failure in the context of this architecture meant “lack of communication” between 
two entities. As one communication link failed other resources were capable of establishing 
the linkage. There was not a single information source as the information was distributed 
throughout the system. Ideally the system would have been very flexible and adaptable as 
new elements (software or hardware) could have been “attached” to the existing ones 
without major disruptions. The heterarchical control architectures coped very well with 
disturbances and reacted quickly to changes but the lack of hierarchy led to unpredictability 
in the system. Consequently global optimization was almost impossible because there was 
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neither global information nor a higher-level entity that controlled the overall performance 
of the system. Responses to perturbations that could be assimilated to “quick fixes” or 
expediting could have caused further disturbances. Further developments led to the concept 
of holonic manufacturing (Van Brussel et al., 1999; Valckernaers et al., 1994). The Holonic 
paradigm considers three primary (basic) types of agents: Order agents, product agents and 
resource agents, each with different goals and functionality. The basic agents are assisted by 
other specialized agents namely staff agents which take the role of higher-level controllers in 
a hierarchy (Van Brussel et al., 1999). These staff agents are at fact in a higher level of the 
hierarchy but their role is only to provide expert advice to the basic agents instead of 
enforcing rules. To tackle with complexity and to avoid a large number of low-level agents 
trying to interact, agents are grouped and classified into categories. An agent is dual entity 
that is both a part and an autonomous entity. Related agents form aggregated agents as in a 
hierarchical structure but that structure differs from the traditional approach which aims for 
a fixed structure. The holonic hierarchy is loosely connected. This means that the 
configuration of the system can be changed to adapt to new conditions (Bongaerts, 1999). 
The ease of adaptation implies a high degree of compatibility and ex-changeability between 
the software and hardware elements of the system. The following figure depicts the 
structure of different control architectures. Notice that in the Holonic model, the modules 
can be reconnected and form new hierarchies. The basic elemental structure of the discussed 
architectures is sketched in Figure 1. 

a) Hierarchical    b) Heterarchcal          c) Holonic  
Fig. 1. Basic Control Architectures 

The architecture adopted in our research consists of a multi-agent system inspired by the 
holonic architecture developed in Europe (Van Brussel et al., 1999) and the elementary loop 
function (ELF) modified from the work at NIST for intelligent systems (Meystel & Albus 
2002; Albus & Barbera, 2005). It has been noted that the ELF architecture is common to most 
intelligent systems (Meystel & Messina, 2000). In essence we are attempting to capture and 
implement the flexibility, adaptability, and reconfigurability required for an environment 
(production systems modeled via Petri nets) subject to various disturbances.  A later section 
provides more detail as to the status of this work. 

3. Workstation modeling  

3.1 Workstation modeling with alternative routing 

Earlier research on Petri Net modeling and analysis at Lehigh University was focused on a 
hierarchical structure for automated planning and control of a cellular-based shop. (Liu et 
al., 1997; Odrey and Ma, 1995)  The adopted architecture was a hierarchical structure that 
followed a model developed by Saleh (1988) that was based on the hierarchical model of the 
National Institute of Standards and Technology (NIST) (Jones and McLean, 1986). Saleh’s 
model incorporated both multi-levels and multi-layers. Multi-levels were designed to 
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partition the complex structure of the shop into smaller decision and control units such as 
shop, cell, workstation and equipment levels. In this research we developed three different 
layers of control, namely the optimization, regulation and adaptation layers. The purpose 
was to develop a near-optimal steady state schedule along with the corresponding 
regulatory actions in the event of disturbances. 
Following Saleh’s work, Liu (1993) constructed a Timed Colored Petri Net (TCPN) model for 
a manufacturing cell. A three attribute coloring scheme was used and is described later. One 
example of a cell contained two workstations; the first workstation was a material handling 
device and the other described a loading/unloading station. This is shown in Figure 2 on 
the next page. For brevity, only a partial description of all places is given. The objectives 
here were (i) the construction of a PN model with rerouting capabilities, and (ii) the 
development a state-space representation to predict and optimize the dynamics of this 
system. To model a flexible manufacturing cell a machine oriented approach was 
undertaken and was based on modular constructs. This approach provided a construct such 
that a sudden addition or reduction of system resources (e.g., machines) required a minimal 
restructuring of the workflow within the production system. It should be noted that it can 
still take a great amount of effort for modeling of a PN based system. The TCPN cell model 
in this earlier research was determined by the system capacity of the cell and the production 
workload. The system capacity included the number of workstation types, the number of 
parallel resources in a workstation, and the material handling system (MHS). The 
production workload included job types, the processing times, and the routing of jobs.  
From a Petri net viewpoint the system capacity dictated the configuration of the cell model 
whereas the production workload determined the number of job tokens and operational 
circuits in the workstation subnets. Figure 2 depicts a TCPN for the system but note that the 
recovery from machine breakdowns is not included in this figure. Two job types were 
modeled in the cell. The two workstation subnets and the load/unload (L/UL) subnet are 
connected in parallel through the MHS subnet. The parallel subconnections subnets fulfilled 
a requirement of a random direction material flow. The interface between cell entities are 
the two sets of places {P4, P7, and P15} and {P27, P25, and P26} which represent the input 
queues and output queues to the L/UL station and workstations W1 and W2, respectively. 
In this model the number of tokens in each closed-loop subnet represented the total 
availability of a particular resource in a cell entity. For example, two tokens in place P9 
represent two identical machine resources in workstation W1, whereas a single token in 
places P6 and P12 represent a single space for the input and output buffer, respectively, of 
workstation W1. In a TCPN cell model, token colors are useful for both visual identification 
and mathematical representation. Consider place p1 in Figure 2. Two job types identified by 
their different token colors (one black dot and a white circle pattern). In the case of parallel 
resources, i.e., two parallel machine tokens in P9, distinctive colors would be used for 
individual resource identification.  
In this modeling approach, a three-attribute coloring scheme (part number, workstation 
number, resource number), was used to differentiate token colors. Part number (pt#) 
represents the job number; Workstation numbers (wks#) indicates the workstation where a 
part is currently being processed or is to be processed; a resource number refers to either a 
buffer number (b#) or a machine number (m#) in a particular workstation, an equipment 
number (e#) in a load/unload station, or a device number (d#) for material handling 
systems. These resource attributes provide a tracking record for the resource assignment 
decisions. Hence, a token color, (i, j, m), indicates that the token is the ith job which uses the 
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mth resource in the jth workstation. The coloring scheme is embedded in the matrix 
representation of the TCPN cell model used in the system dynamic equations. 

 Fig. 2. Time Colored Petri Net for Two Workstations a load/Unload station, and a Material 
Handling System (Liu, et al. 1997; Liu, 1992)

In this research, the modular construct was a convenient restructuring method proved 
adaptable to changes in the production environment. The possible system configuration 
changes were categorized into two types: changes in a physical entity or changes affecting 
jobs. In the event of adding or deleting a physical entity (e.g., a workstation), the 
workstation subnet was connected or disconnected to/from the MHS subnet. In this earlier 
work, if machine breakdowns occurred the corresponding machine resource token was 
simply stopped from circulating in the subnet until recovery. For entity disruption, the 
overall model structure remained relatively the same. Any changes affecting jobs consisted 
of a cancellation of jobs or changes in the job routing information. Job routing changes 
involved the deletion of operation circuits from previous stations and the addition of 
operation circuits to the new stations. Furthermore, in this research, for each physical entity 
considered in a cell there existed a 1-to-1 representation in the TCPN model. As such, each 
operation performed had a corresponding processing time associated with the operation 
circuit in the processing workstation and each system resource corresponding token 
representation. Parallel resources were represented by multiple resource tokens of the same 
color in the cell model. The total number of token types represented the total number of that 
resource types available in the system. This TCPN development methodology provided a 
safe, bounded, and live model.  
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Naturally, an important consideration was the representation of a disruption (error) 
occurring and a possible rerouting strategy. This was approached by noting that machine 
breakdowns can be satisfied by regarding a machine breakdown as an external input (the 
firing of a transition in a Petri net model).  This additional structure provided an immediate 
transfer of tokens from a place (which represents processing) without waiting for the elapse 
of processing time. Figure 3 depicts a TCPN workstation which can be used to represent an 
alternative routing logic for machine breakdowns.   

Fig. 3. A Workstation Petri Net Representation with an Alternative Routing Logic (Liu, 1993)

Firing transition Tb represents the fact that a machine breakdown has occurred. The token in 
place P1 is released to Pul. In such an instance the remaining processing time (t1) is set to 
zero. This unload place may have a queue and waits for an output buffer to unload the part 
from the breakdown machine. In this representation 3 tokens are generated once an output 
buffer is generated. A machine token passes to a repair process Prp whereas a token in place 
Pr signals a service request for the material handling system (MHS). Simultaneously a job 
token is outputted to place Pob (place signifying an output buffer). Other transitions noted 
in Figure 3 consist of Talt (initiate re-rote mechanism to alternative machines) and Tc (to 
indicate recovery of machine from the breakdown). The firing of transition Tc causes the 
machine token to be returned to the common queue (place PQ) and stops the firing of the 
alternate machine transition Talt. At the time this scheme was developed to overcome 
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drawbacks associated with 1) an inhibitor arc approach (Teng & Black, 1990) and, 2) a timed 
Petri net representation by (Barad & Sipper, 1998). An inhibitor arc approach cannot provide 
a systematic mathematical representation in the event of changes in transition firing rules. 
The work here was a modification of the latter TPN approach. 

3.2 Workstation analysis 
The state space representation used to analyze the workstation Petri nets was a modification 
of the traditional state equation (Murata, 1989) with the incorporation of equations for the 
remaining processing times of every timed place. The conventional state space 
representation can be written as: 

M(k+1) = M(k) + L u(k)(1) 

where M(k) is the marking of the Petri Nets in time k, L is the incidence matrix and u(k) is the 
vector of transition firings. The reader is referred to Murata (1989) and Al-Jaar and 
Desrochers (1995) for details on this equation.  
The state space representation developed by Liu (1993) considers operational, precondition, 
post-condition and resource places. Only operational places (those where actions are carried 
out) have associated processing times. The other places, as  
their name suggest, represent conditions (e.g. idle, ready) (Liu et al., 1997). The modified 
structure contains two different “marking” vectors: the first marking vector (Mp(k)) is the 
conventional marking vector (Murata, 1989) that accounts for the number of tokens in each 
place; the second one (Mr(k)) is the remaining processing time vector i.e. a vector containing 
the remaining time for the next transition firing for each place.  
The state space equation is stated as follows (the dimensions of these matrices are omitted 
for simplicity): 

 X(k+1) = A(k) X(k) + B(k)u(k) (2)

u(k) is a control vector that determines which transitions fire at time k. Define uj(k) as the jth 
position of u at time k.  uj(k) = { 1 if transition j fires, 0 if it does not } Mp(k)  is the marking 
vector at after k transition firings; Mr(k) is the remaining processing time vector after k 
transition firings; A(k) is the system matrix and it is partitioned as follows: 

[0]  Zero matrix; 
[I]  Identity matrix  

(k) Time for the next transition firing. 
[P] Diagonal matrix that serves to distinguish operational places from resource, 
precondition and post-condition places.  
Pii = {1 if place pi is an operational place; 0 otherwise} 

Pij = 0 when i j

            Mp(k)  
X(k)=                     (3)
            Mr(k)

                   [I]     [0]
A(k)=                     (4)

            - (k)[P]    [I]
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B(k) is the distribution matrix that transforms the control action u(k) into token evolution i.e. 
addition and removal of tokens when firing a transition represented in vector u(k). 

[W] = Processing time matrix for operational places.  
[L]= Incidence matrix  [L] =[L]+ - [L]- 
[L]+ = Incidence output matrix that accounts for the addition of tokens in output places. 
[L]- = Incidence input matrix that accounts for the removal of tokens from input places.  
The dimension of these matrices is determined by the number of places, transitions and 
colors in the system. For a detailed discussion and explanation see (Liu, 1993; Liu et al., 
1997). This representation was the basis for an optimal control formulation for scheduling 
optimization. A near-optimal solution was found by using forward dynamic programming 
on the sequence of states (markings) generated by the state equations. 

3.3 Petri Net Decomposition 
In the process of establishing a hierarchical Petri net-based workstation model, issues can be 
categorized into different classes where each class occurs at different levels of the hierarchy.  

Fig. 4. An example of decomposition of a multi-layer Petri net model for an assembly station 
(Ma & Odrey, 1996)

At the Petri net modeling level two decision classes were identified, namely, generation of 
conflict-free sequences and the determination of process steps sequences.  In order to 
facilitate the decision-making and performance evaluation processes, a hierarchical system 

                   [L]
B(k)=                     (5)

              [W]    [L]+
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of state equations for the Petri nets based model was studied.  The general form of the 
hierarchical state equations have previously been state in equations 2 through 5. An 
example of the net decomposition for an assembly workstation is indicated in Figure 4. For 
the top level TCPN model (termed sublevel 1), the state dimension depends on three values: 
(1) the sum of all colors on tokens associated with places which represent the process of 
manufacturing individual parts, (2) the sum of all colors on tokens associated with places 
which represent the process of handling assembled final products, and (3) the sum of all 
colors on tokens associated with the resource places. When decomposing the TCPN model 
to a sublevel 2 TPN model the system can be viewed as a two-level hierarchical Petri net 
with one discolored TPN at the upper level and several subnets, which are also modeled by 
TPNs, at the lower level.  Between upper and lower levels, interface places are added that 
serve as connectors between two levels.  For a state space representation, the discolored 
TPN at the upper level and each detailed subnet at the lower level can be individually 
represented using TPN state equations.  Thus, the system state equations for the sublevel 2 
TPN workstation model are obtained by combining all the TPNs and augmented to 
incorporate the interface places, i.e. all the vectors/matrices in the subnets are become the 
subvectors/submatrices in the sublevel 2 TPN workstation state equation. For example, the 
distribution matrix for the sublevel 2 TPN model would have the form of the matrix given 

below. Li is a distribution submatrix of TPNi .The bottom row denotes the distribution 
submatrices of the interface places and the input/output transitions associated with TPNi.  
Details of this work can be found in (Odrey & Ma, 2001). This multi-level, multi-layer Petri 
net framework establishes layers to provide the linkage between high-level abstract 
information for discrete systems and

1

2

3

1 2 3

0 0 0

0 0 0

0 0 0

0 0 0 J

J

c c c c

L

L

L
L

L

L L L L

 (6) 

low-level numeric data for continuous systems. Different nets are used to represent different 
levels of complexity. Three functional distinct subnets which are the basic building blocks 
for the Petri net workstation model were proposed to represent higher level abstract 
commands such as “move,” “process,” and “assemble”.  These subnets allow basic routing 
information to be incorporated in the model through a bottom-up approach in a systematic 
manner.  The process task can then be decomposed into a Petri net representation of process 
steps which follow a feature-based process plan.  Alternative sequences and resources are 
incorporated in the process task model to provide flexible operation instructions.  Dynamic 
state space equations correspond to each sub-level in the hierarchical Petri net graphical 
representation.  These state equations are used in current research to evaluate various 
control strategies and performance workstation operations in a unifying way. 

4. Intelligent system approaches using Petri nets 

4.1 Intelligent agent approaches
 Current efforts are directed towards the aspects of error recovery associated with intelligent 
agent-based manufacturing systems and has been motivated by the work done at Lehigh 
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University. As noted above, previous work included modeling and optimization and control 
of hierarchical systems. Our focus is to enhance this multilevel multi-layer model with the 
in-corporation of intelligent agents with the purpose of adding flexibility and agility. This 
on-going effort investigates (i) architecture reconfigurations with enhanced capabilities of 
flexibility and adaptability, (ii) the adoption of adequate model-ing techniques and their 
mathematical representation (in particular, modifications to the previous Timed Colored 
Petri Net  models developed),  (iii) modeling the aforementioned intelligent agents with 
Petri Nets, and (iv) model testing.
Our motivation has its origins in the research mentioned in the previous sections in addition 
to  models incorporating intelligent agents for manufacturing operations which appeared in 
the eighties and nineties as an alternative to the shortcoming of hierarchical and 
heterarchical architectures. Some of these additional approaches include Bionic 
Manufacturing (Okino, 1993), Fractal methods (Warnecke, 1993), the MetaMorph 
Architecture (Wang et al., 1998; Maturana et al., 1998). These approaches preserve a 
hierarchy that controls the autonomy of individual agents, but unlike the hierarchical 
architectures, the relation-ship between low and high level controllers (agents) does not 
follow the master-slave scheme. The low level agents have a high degree of autonomy as in 
the heterarchical approach but still have “loose” links with higher-level agents. An 
intelligent agent based approach attempts to preserve the advantages of both hierarchical 
and heterarchical approaches but at the same time avoids their drawbacks.  The 
architectures mentioned present differences primarily in the definitions of the intelligent 
agents, the degree of reactivity versus long-term planning, the degree of adaptation and 
reconfiguration, and the communication methods between agents. For example, in the 
Holonic, Bionic, MetaMorph and Fractal approaches the intelligent agents are loosely 
connected and their structure can evolve over time; the RCS resembles a hierarchical 
architecture whose structure is primarily fixed. In the Holonic, MetaMorph and RCS 
approaches the system has a set of fixed predefined goals. In the Fractal approach the agents 
negotiate their goals (Tharumarajah et al., 1996). Bionic architectures (Okino, 1993) do not 
set long-term goals but seek essentially adaptation to the environment. In the Holonic 
manufacturing approach parts, computers and resources are considered as intelligent 
agents. The other approaches regard schedulers, planners, controllers and resources as 
agents, but exclude parts.
It should be noted that the concept of Intelligent Agents was built around the Object-
Oriented Programming (OOP) paradigm (Tharumarajah et al., 1996). The underlying 
principle of OOP is the encapsulation of attributes and methods into code units called 
classes. The code embedded in a class defines its internal actions and the relationships with 
other classes (Wyns and Langer, 1998). In the intelligent agent approach, each agent 
becomes an object with clearly defined functionality and attributes. Thus these concepts of 
OOP such as instantiation, inheritance, and polymorphism can be applied directly to the 
theory of intelligent agents (Venkatesh and Zhou, 1998). To date OOP platforms are the 
preferred choice for control software development (Gou et al., 1998). Some of its advantages 
over conventional programming include reusability, portability and expandability. OOP 
seems to be the natural approach to implement the control software for intelligent agent-
based architectures (Gou et al., 1998). Venkatesh and Zhou (1998) have pointed out need for 
integration of control and simulation and modeling software to expedite the system 
development. In other words, the control software should not be exclusively dedicated to 
issue commands to the components of the manufacturing systems but to optimize the 
system performance. It should also be noted that all agents are objects but not all objects are 
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agents. Agents are autonomous entities that have choices and control on their behavior; 
objects may be totally obedient (Jennings, 2000). 

4.2 Multi-agent systems with embedded Petri nets 
Our more recent work presents an architecture for control of flexible manufacturing systems 
which is a synthesis of hierarchical and intelligent agent-based systems (Odrey & Mejia, 
2003).  The approach undertaken provides responsive and adaptive capabilities for error 
recovery in the control of large scale discrete event production systems. A major advantage 
of this is the ability to reconfigure the system. The communication links between agents can 
be re-directed in order to form temporary clusters of agents without modifying the internal 
structure of the agent. At the same time, having the hierarchical structure greatly facilitates 
the organization of new groups of agents. In our approach, agents possess the freedom to 
move within their hierarchical level but cannot move out to another level. The approach, 
based on Petri Net constructs is expected to improve the performance of agent-based 
systems because (i) it decentralizes the control activity for complex and unusual failure 
scenarios (ii) provides basic autonomy to resource agents (iii) follows a proved design 
hierarchical design methodology and, (iv) defines clearly the responsibilities of control and 
resource agents. A thrust of this effort was to determine whether it is possible to integrate 
Petri Nets constructs with object-oriented formalisms and have an “all in one” modeling and 
implementation tool for intelligent agent-based manufacturing systems.  
At the time of this investigation the major focus was on the diagnostics and error recovery 
activities in the context of intelligent agent-based architectures for semi-automated or 
autonomous manufacturing systems. Our approach addressed the issue of combining the 
discipline of hierarchical systems with the agility of multi-agent systems. We adopted in-
part the holonic paradigm (Van Brussel et al., 1999) for description of the three primary 
(basic) types of agents: Order agents, product agents and resource agents, each with 
different goals and functionality. The basic agents are assisted by other specialized agents 
namely staff agents which take the role of higher-level controllers in a hierarchy. In 
particular, the focus was on the construction of a re-configurable system having production 
agents, error recovery agents, and a classifier/coordinator/ mediator agent structure 
connecting production and recovery agent hierarchies.  In addition, the relationship to the 
previous work at Lehigh University pertaining to a multi-level, multi-layer hierarchy 
control was established. This latter hierarchy, based on Petri net constructs, serves, in one 
sense, as a retrieval based resource for process planning and generation of re -cover plans to 
the production and recovery agents within the proposed multi-agent system. An objective of 
this effort was to provide a test-bed for comparison of purely hierarchical systems, non-
hierarchical but highly re-configurable multi-agent systems, and a hybrid combination 
which was the focus of the investigation presented here. Our primary efforts are on a 
hierarchical intelligent agent-based system linked to a structure of agents dedicated 
exclusively to diagnosis and error recovery tasks. Our work has focused primarily on error 
recovery strategies at the workstation level in an intelligent-agent based system and is still 
on-going.
Unlike the traditional structure (Albus, 1997) in which the control function is exerted top 
down, our approach provides the agents basic control capabilities that allow them to react to 
common and local disturbances. In addition, specialized control and recovery agents assist 
these production agents on complex diagnostics and recovery tasks. This approach is 
expected to combine the discipline of hierarchical systems, but with the inherent ability to 
react as would be congruent with intelligent agent-based systems. Here we adapt the 
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intelligent agent principles to hierarchical control models. The most significant difference 
lies in the definitions of a workstation controller and a workstation agent. In a broader 
scope, a workstation agent comprises a workstation controller, a number of resources 
(conveyors, machines, tools, fixtures, etc.) and their respective controllers [Van Brussel, 
1998]. The workstation agent acts as a single decision unit when negotiating with higher-
level agents. At the same time a workstation agent is considered as a system when 
controlling and coordinating its components (equipment agents and error recovery agents). 

4.2.1 System structure 
Our approach is based on prior work on hierarchical architectures as outlined in previous 
sections. As such our model shares a number of features with the prior work, namely, 
hierarchical decomposition of activities, sensor strategies, methods for diagnosis and error 
recovery, and modeling techniques. The reader is referred to (Odrey & Mejia, 2003) for a 
more detailed explanation of this section. A sketch of the integrated control architecture is 
shown in Figure 5. The architecture is partitioned into three segments. A mediator agents 
structure is positioned between and separates a production agents architecture and a 
recovery agents architecture. Each of these structures follows a hierarchy and 
communication can be at and among different levels within the hierarchy. To-date, we 
distinguish between cell level and workstation level production agents which communicate 
through mediator agents. In the schema adopted if an error occurs at the shop floor and the 
workstation agent cannot produce a satisfactory recovery plan by itself, such an agent 
requests the actions of the workstation mediator agent. The workstation agent provides all 
the available information pertaining to the error which should include sensor readings, 
location, priority, etc. The mediator agent classifies the error and matches the error with a 
recovery agent at the same hierarchical level. The recovery agent attempts to produce a 
recovery plan and if it succeeds the plan is communicated back to the mediator. At the same 
time, if the error exceeds a pre-determined time threshold, the workstation agent sends a 
message to the cell agent (higher level) informing of the abnormality. The cell agent takes 
this new input and determines whether or not rescheduling pending jobs is necessary. In 
order to keep the system running, the workstation agent adopts a temporary measure e.g., 
dispatching rules. At this point, this is the maximum the workstation agent can do since it 
lacks of the information and methods to perform global optimization. When a new schedule, 
generated by the cell agent, is available, the workstation agent attempts to adapt the new 
plan to the current conditions. In this way, each agent contributes independently to the 
overall optimization of the system. 
The workstation agent requires additional techniques to optimize the realization of the 
process plan of all the current jobs that have been allocated to it. In our approach, the 
workstation agent itself constructs a Petri Net model of the sequence of coordinated 
activities for all current jobs using a multi-level multi-layer Petri Net approach [14]. In this 
approach the sequence of activities at the workstation level and the required resources are 
modeled using several “layers” which represent degrees of modeling abstraction (from 
generic activities to highly specific tasks). As noted in the previous section the highest layer 
is modeled with a Timed Colored Petri Net (TCPN). The TCPN layer is then “unfolded” in 
several layers with different degrees of detail. Lower levels are represented by Timed Petri 
Nets and Ordinary Petri Nets. For each of these nets in order to track the system status state 
equations can be developed. These equations serve to determine the flow of tokens and the 
remaining process times for each operation place provided by a sequence of transition 
firings.
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Fig. 5. Error recovery agents within an intelligent agent hierarchical architecture (Odrey& 
Mejia, 2003) 

The BRIC (Block-like Representation of Interactive Components) was chosen as our initial 
modeling tool in that adoption serves very well to develop control software in that it 
provides the most important features of OOP (Object Oriented Programming). Additionally, 
BRIC provides a graphical representation of the behavior of a multi-agent system. In the 
BRIC approach each agent is modeled by a Petri subnet that comprises an internal net 
representing the agent’s methods and a set of “communication” places. Agents are linked 
together by through external transitions and arcs. Tokens flowing between communication 
places serve as message between agents. The complex data structure is embedded in the 
colored token coloring scheme. For example, a token in an input message interpreted as a 
work order could include several different labels such as sender id, job priority, job 
constraints , etc. Conventional token rules of Colored Petri Nets (CPN)  apply to the 
communication places. A token can go from a conventional place to a communication place 
and vice-versa. For further details the reader is referred to (Odrey & Mejia, 2003). It should 
be noted that the agent interaction/communication structure is an on-going investigation. 
Other techniques are currently being investigated. 

4.2.2 Mediator agent

Mediator agents are the link that connects the production structure with the recovery 
structure. Their function is to facilitate the communication between production and 
recovery agents. The primary functions of mediator agents are: 1) filtering/processing 
sensory information from production agents, 2) classifying errors and performing 
preliminary diagnostics based on feedback information, 3) matching errors that occur on the 
shop floor with error recovery agents, and 4) communicate recovery plans to production 
agents.  A BRIC model of the structure of a mediator agent is shown in Figure 6. Places are 
as defined. In this schema, a mediator agent first receives a request (P11) and classifies the 
error (P12) according to a set of corrective preliminary actions. We adopt here the approach 
of our previous work (Ma, 2000) in which error classification was performed using a Petri 
Net embedded in a neural network linked to an expert system. Next, a matching module 
embedded in the recovery agent attempts to match the error with recovery agents capable of 
generating a recovery plan for the error that occurred (P13). The issue of matching errors 
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with recovery agents is a subject of further research. If a suitable recovery agent is found, the 
mediator sends it a request for recovery (P14).  A token in P15 represents that a recovery 
plan (or a failure to generating a plan) has been received. The mediator agent evaluates the 
received plan (P16) and communicates it to the corresponding production agent (P19). 
Provisions are made should the mediator agents require aid from other mediators (places 
P17 and P18). 

P11: Receiving recovery request message 

P12: classifying errors 

P13: Matching classified error with recovery agents 

P14: Sending request messages 

P15: Receiving responses from recover agents  

P16: Evaluating responses 

P17: Receiving responses 

P18: Sending messages to mediators 

P19: Communicating recovery plans 

Fig. 6. A BRIC model of Workstation Mediator Agent (adapted from Odrey & Mejia, 2003) 

4.2.3 Error recovery agents 

The recovery agents at the workstation level are responsible of three major tasks: (i) 
screening recovery requests sent by mediators, (ii) performing in-depth diagnosis, and (iii) 
generate recovery plans for expected and unexpected errors. The BRIC model of a 
workstation recovery agent and place definitions are shown in Figure 7. Once an error is 
classified a token is placed in P20 and further diagnosis is performed when a marking 
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Mediator agent
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P13

P11

P17
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reaches P21. When a root cause is known and classified, a plan can be generated (P22) and 
sent to the appropriate agent via P23 and P24. 
Our current efforts here focus on developing an automated reasoning technique for 
generating recovery plans. The recovery plan generation primarily depends on whether or 
not the error has been anticipated. Anticipated and unanticipated errors require two 
different strategies: In the case of anticipated errors, a recovery plan is generated by 
matching the error with a recovery task in a lookup table (Odrey & Ma, 1995). Unexpected 
errors require more complicated (deep) reasoning that implies finding and matching error 
patterns with gross recovery plans or searching alternative paths to return or advance the 
system to an error-free state. Previous work at Lehigh University (Ma, 2000) was 
concentrated on generation of gross recovery plans using Neural Networks. The last stage of 
modeling our proposed architecture consists of linking the agents to form a Petri Net model 
of the control structure and can be found in (Odrey & Mejia, 2003).

Fig. 7. Workstation Recovery Agent Structure (Odrey & Mejia, 2003)

5. Error recovery approaches 

Error recovery is the set of actions that must be performed in order to return the system to 

its normal state (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). The key 

concept is that there should exist at least one sequence of actions to bring the system to its 

normal operation. The purpose of error recovery is to find the best actions that minimally 

disrupt the system while down-time is minimized.  Our work presented here follows 2 

approaches: 1) the first section used an augmented Petri Net approach and 2) a subsequent 

section was an attempt to provide a hybrid net by joining Neural Nets with Petri Nets. This 

was done for a workstation level controller with in a hierarchical system following the work 

done at NIST. Both of these approaches are discussed in subsequent sections.  

P20: Evaluating classified error 

P21:Diagnosing errors ( in-depth Diagnosis) 

P22: Generating recovery plan 

P23: Sending recovery plan to mediator agents 

P24: Receiving recovery requests messages 
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Recovery agent
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5.1 Definitions for diagnostics and error recovery 

An error occurs when the observed behavior conflicts with the desired behavior of the 

system (Odrey and Ma, 1995; Seabra-Lopes and Camarinha-Matos, 1996). Similarly, (Chang 

et al. 1991) defined that an error occurs when a resource reaches an undesired state. 

(Kokkinaki & Valavani, 1996) define errors as manifestations of faults. A fault is the cause of 

an error (Chang et al., 1991). As long as the error is not detected or does not produce a 

failure, it remains latent. A failure occurs when a re-source does not deliver a service. For 

example a worn gear in an automated fixture prevented a part to be accurately positioned 

on a machine tool. Because of this, the part could not be correctly machined and resulted in 

a bad assembly. The worn gear is the fault that generated the errors and failures. The error is 

a positional error (the undesired state) and the failure is the wrong assembly (a service that 

could not be delivered).  Diagnostics is the activity in which the source fault(s) is (are) 

determined and isolated (Odrey and Ma, 1995). When a failure is detected, the operation 

that failed is not necessarily the source of the failure. A source fault is propagated through 

the system generating errors and failures. Diagnostics involves backtracking the failed 

operations to the source fault. The failure propagation tree is the tool that serves the 

backtracking actions by linking operations until the one that failed is found (Chang et al., 

1991). In our research incorporating a multi-agent approach faults are considered as 

inconsistencies in the behavior or status of an agent or inconsistent interactions between 

agents and between agents and the environment. The environment is everything outside the 

boundaries of the intelligent agents. For example, a broken gear that produces paralysis in 

the machine spindle is an abnormal behavior of a resource agent; an out-of-tolerance part is 

an abnormal state of a part agent; failure to grasp a part is an inconsistent interaction 

between the robot agent and the part agent and blocking a robot agent by an external entity 

is an undesired interaction between the robot agent and the environment. When faults occur 

the workstation controller agents and the low level agents that depend on the workstation 

controller, namely machine and part, investigate the reasons of the failure. The low level 

agents investigate their own internal failures and the workstation controller investigates its 

own internal faults and the interactions between the part and machine agents and between 

those two and the environment. For now, the work has been focused on Petri net 

approaches.

5.2 Augmented Petri net approach for error recovery  

The approach taken here was based on integrating Petri subnet models within a general 

Petri net model for a manufacturing system environment, and, in particular, a workstation 

controller. In essence, the error recovery plan consists of a trajectory (Petri subnet) having 

the detailed recovery steps that are then incorporated into the workstation control logic. The 

logic was based on a Timed Petri Net (TPN) model of the total production system. The Petri 

subset models consist of a sequence of steps required to reinstate the system back to a 

normal state. Once generated, the recovery subnet is incorporated into the Petri net model of 

the original expected (error free) model. The workstation controller is the entity responsible 

for the coordination, execution and regulation of the activities at the physical workstation. 

The workstation controller receives a higher level command, generally form a higher level 

controller that issues a set of operations to be performed by the workstation with desired 
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