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1. Introduction 

Methods of computed tomography are well developed and widely used in medicine and 
industry. If tomographic data are complete, it is possible to reconstruct the images with sub-
millimeter resolution. If the data are incomplete, tomograms may blur, i.e. their resolution 
degrades, noise increases and artifacts form. The situation is worst if measurement data are 
so poor that the system of equations which describe the discrete reconstruction problem 
appears to be strongly underdetermined. In this situation, images of acceptable quality can 
be obtained with algorithms that regularize the solution and use a priori information about 
the object, and do post-processing of reconstructed tomograms also with the use of a priori 
information, as a rule. This chapter provides two examples demonstrating the 
reconstruction of the internal structure of an object from strongly incomplete measurement 
data: few-view computed tomography (FVCT) and diffuse optical tomography (DOT) of 
strongly scattering media. The problem of reconstruction from a small number of 
views (<10) arises, for example, in experimental plasma research (Pickalov & Melnikova, 
1995) or nondestructive testing (Subbarao et al., 1997). DOT is now deemed to hold much 
promise for cancer detection (Arridge, 1999; Hawrysz & Sevick-Muraca, 2000; Yodh & 
Chance, 1995). Here the strong incompleteness of data is caused by the fact that the number 
of source-receiver relations that define the number of measurements is strictly limited. 
Despite that these types of tomography use different wavelength bands (X-ray and near 
infrared) and different mathematical models (linear and non-linear), we think it is not only 
possible, but also interesting to consider them together because in both cases we successfully 
use similar reconstruction algorithms and similar post-processing methods. The unique 
possibility to do that comes from the fact that in case of DOT, we use a simplified 
reconstruction method (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) 
reducing the inverse problem to a solution of the integral equation with integration along a 
conditional photon average trajectory (PAT) – an analog of the Radon transform in 
projection tomography.  
In case of FVCT, we use actual data from measurements in a simple experimental 
radiography setup (Konovalov et al., 2006 ). The FVCT procedure is simulated by rotation 
of the object from exposure to exposure about the centre of the reconstruction region. For 
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objects, we use a spatial resolution test and an iron sphere with quasi-symmetric cracks 
resulted from shock compression.  
In case of DOT, we use model data from the numerical solution of a time-dependent 
diffusion equation with an instantaneous point source (time-domain measurement 
technique). We consider a traditional geometry where sources and receivers are on the 
boundary of a scattering object in the form of a flat layer (Konovalov et al., 2006b). The 
object contains periodic structures created by circular absorbing inhomogeneities.  
In both cases, the inverse problem is solved using algebraic reconstruction techniques 
(additive and multiplicative) which we modernized to attain the better convergence of the 
iterative reconstruction process (Konovalov et al., 2006 ; 2006b). Procedures used to 
calculate the weight matrices are described in detail. Solution correction formulas are 
modified with respect to distributions of weight sums and solution correction numbers over 
image elements. Weighted smoothing is performed at each iteration of solution 
approximation. We use a priori information on whether the solution is non-negative and on 
the presence of structure-free zones in the reconstruction region.  
For post-processing of reconstructed tomograms, we use space-varying restoration 
(Konovalov et al., 2007), methods for enhancing informativity of images based on its 
nonlinear color interpretation (Mogilenskikh, 2000) and methods for estimating image 
informativity based on binary operations and visualization algorithms (Mogilenskikh & 
Pavlov, 2002; Mogilenskikh, 2003).  
Results of investigation help decide how spatial resolution depends on the degree of data 
incompleteness and draw inferences on whether the modified reconstruction techniques are 
effective and on the investigated post-processing methods are capable of making 
tomograms more informative.  
The chapter is organized as follows. Section 2 gives a general formulation of the 
tomography problem. It is shown that the inverse problem of DOT, like the problem of 
reconstruction from X-ray projections, can be reduced to a solution of an integral equation 
with integration along the trajectory. The Section describes a discrete model of a 2D 
reconstruction problem and modernized algebraic techniques. Section 3 gives examples of 
2D reconstruction from experimental radiographic data and model diffusion projections 
from optical inhomegeneities. The Section makes a quantitative analysis of the spatial 
resolution of tomograms reconstructed from strongly incomplete data. Section 4 describes 
post-processing methods and gives examples of their use.  Section 5 draws inferences and 
outlines further research in the area.  

2. Generality of our approach to reconstruction from strongly incomplete 
data

2.1 From the Radon transform to the fundamental equation of the PAT method 

The problem of reconstruction in computed tomography is known to be formulated as 

follows: find the best estimation of a function of spatial coordinates )(rf , called an object 

function, from a discrete set of its measured projections. Generally, each projection can be 
written as a weighting integral 

∞
= rdfwg 3)()( rr , (1) 
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where )(rw  is a weighting function which depends on source and receiver positions in 

space, the type of actual physical measurements and the way of data recording.  
In transmission X-ray tomography where the spatial distribution of the extinction coefficient 

)(rμ  is reconstructed, it is usually assumed that the weighting function is unity along a line 

L  connecting a point source and a point receiver, and zero elsewhere. Then expression (1) 
turns into the linear integral

=
L

dlg )(rμ . (2) 

In computed tomography, it is known as the Radon transform. Integral (2) is inverted with a 
linear reconstruction model implemented with the use of both integral algorithms (Kak & 
Slanay, 1988) and algebraic techniques (Herman, 1980).  
Divergence of the probing beam in, for example, proton (Hanson, 1981; 1982) or diffraction 
(Devaney, 1983) tomography makes it necessary to consider not a line but a narrow 3D strip 
of a finite length. In this case, it may be needed to change from linear integration (2) to 
volume one (1) and pose restrictions on the use of the linear reconstruction model.  
Diffuse optical tomography (DOT) of strongly scattering media is the most demonstrative 
example of non-linear tomography. Laser beams used for probing undergo multiple 
scattering, so photon trajectories are not regular and photons are distributed in the entire 

volume V under study. As a result, each point in the volume significantly contributes to the 

detected signal. If, for example, we deal with absorbing inhomogeneities of tissues 
examined by pulsed probing with the time-domain measurement technique, integral (1), in 
the approximation of the perturbation theory by Born or Rytov, takes the form (Lyubimov et 
al., 2002; 2003)  

→=
V

a

t

ds rddtvPtg 3

0
)()],()0,(,[)( rrrr δμττ , (3) 

where t  is the time-gating delay of the receiver recording the signal, v  is the light velocity 

in the media, )],()0,(,[ tP ds rrr →τ  is the density of the conditional probability that a 

photon migrating from a space-time source point )0,( sr  to a space-time receiver point 

),( tdr  reaches an intermediate space point r  at time τ , and )(raδμ  is the distribution 

function of the absorbing inhomogeneities. Local linearization of the inverse problem of 
DOT is usually done with multi-step reconstruction algorithms based on the variational 
formulation of the radiation transport equation (or its diffusion approximation). The 
Newton-Raphson algorithm with the Levenberg-Marquardt iterative procedure (Arridge, 
1999) is a typical example of these algorithms. The multi-step algorithms provide a 
relatively high spatial resolution (~5 mm) for diffusion tomograms, but they are not as fast 
as required for real-time diagnostics because we have to solve a forward problem, i.e. the 
problem of propagation of radiation through matter, many times by adjusting at each 
linearization step the matrix of coefficients of a system of algebraic equations describing the 
discrete reconstruction model.  
There is a unique opportunity to accelerate the reconstruction procedure: to change in 
expression (3) from volume integration to integration along a conventional line connecting 
point source and point receiver. Using a probabilistic interpretation of light transfer by 
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means of the conditional probability density P , Lyubimov et al. (2002; 2003) proved that 
integral (3) could be presented as  

dl
lv

tg
L

Pa
=

)(

)(
)(

rδμ
, (4) 

where L  is a curve defined by coordinates of the mass centers of the instantaneous 

distributions P  in accordance with  

rdtP
V

ds
3)],()0,(,[)( →= rrrrR ττ , (5) 

which we call a photon average trajectory (PAT). Here l  is a distance along the PAT, )(lv  is 

the relative velocity of the mass center of the distribution P  along the PAT as a function of 

l ,            is the operator of averaging over the spatial distribution P . Integral equation (4) is 

a fundamental equation of the photon average trajectories method (PAT method) in case of 
time-domain measurement technique. It is an analog of Radon transform (2) and can be 
inverted with the fast algorithms of projection tomography. In other words, converting (3) 
into (4) offers an opportunity to change from multi-step to one-step reconstruction in the 
sense that the system of algebraic equations describing the discrete reconstruction model is 
only inverted once and hence, to achieve significant savings in computational time.  
Equation (4) has definitely a number of differences from equation (2), specifically:  
(a) Integration is performed along not a straight but curved line;  

(b) Under integral (4), there is a weighting distribution )(/1 lv  which depends on spatial 

coordinates; and 
(c) Trajectory integration is applied not to the object function itself, but to a function 

averaged over the spatial distribution P .
The latter means that the reconstructed image is degraded by a priori blur which requires 
additional work, i.e. post-processing of tomogram. With the above differences, it becomes 
clear that the inversion of equation (4) with the linear reconstruction model requires certain 
assumptions which may affect the quality of reconstructed images. Nevertheless, our earlier 
studies (Konovalov et al., 2003; 2006b; 2007; Lyubimov et al., 2002; 2003) and results 
presented in Sections 3 and 4 show that the PAT method is quite effective in the context of 
the tomogram quality versus reconstruction speed trade-off.  

2.2 Discrete image reconstruction model 

In medical applications of X-ray computed tomography, equation (2) is usually inverted by 
means of integral reconstruction algorithms such as the backprojection algorithm with 
convolution filtering (Kak & Slanay, 1988). In FVCT where the number of views is small, 
reconstruction with the integral algorithms gives aliasing artifacts which are present on 
tomograms as “rays” tangential to reproduced structures (Palamodov, 1990). Different 
smoothing and regularization methods can be applied to remove these artifacts which 
strongly restrict the resolution of small details. But the quality of reconstructed images still 
remains far from satisfactory.   
It is also difficult to invert equation (4) with integral algorithms. Here problems arise from 
not only incomplete data, but also from curved PATs. Our attempts to implement the 

P
⋅
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backprojection algorithm for diffusion tomograms (Konovalov et al., 2003; 2007; Lyubimov 
et al., 2003) are based on the assumption that the PATs are almost straight lines inside the 
scattering object. But with this approach it is impossible to reconstruct the spatial 
distribution of absorbing inhomogeneities near boundaries where photons escape from the 
object like an avalanche and the PATs strongly bend.  
In this case, both in FVCT and in DOT, it is appropriate to use iterative algebraic algorithms 
implementing a discrete reconstruction model. In this chapter, without loss of generality, we 
will only consider examples of 2D reconstruction, i.e. reconstructions of 2D images. The 
generalized discrete model of 2D reconstruction is formulated traditionally (Herman, 1980). 
Let us establish a Cartesian grid for square image elements so that it covers the object. 

Assume that the reconstructed object function takes a constant value klf  in an element with 

indices k  and l  (hereafter, ),( lk -cell). Let ijL  be a straight line or PAT connecting 

i -source and j -receiver, and ijg  be a projection measured by j -receiver from i -source.

Then the discrete reconstruction model can be characterized by a system of linear algebraic 
equations

,
,

=
lk

klijklij fWg , (6) 

where ijklW  is the weight contributed by the ),( lk -cell to the measured value ijg . In the 

traditional setup of 2D reconstruction, the weight ijklW  is proportional to the length of 

intersection of the trajectory ijL  with the ),( lk -cell (Herman, 1980; Lyubimov et al., 2002). 

i

Dj

Xxk Xxk +1

Xyl +1 Sijkl

Sijkl

 xk  xk +1

yl

yl +1

i

 j

a b 

Figure 1. Calculation of weights: (a) X-ray tomography; (b) DOT 

In this case, the matrix of coefficients of system (6) (hereafter,  weight matrix) appears to be 
highly sparce because each trajectory intersects very few cells. This fact markedly worsens 



Vision Systems: Applications 492

convergence of algorithms used to solve system (6) that is strongly underdetermined due to 
incomplete data. To reduce the number of zero elements in the matrix, we modernized the 

method for calculation of ijklW  having changed the infinite narrow trajectory by a strip of a 

finite width (Konovalov et al., 2006 ; 2006b). 
 In X-ray tomography, the strip is  long trapeze (Figure 1(a)). Its bases are source aperture 
(the linear size of the focal spot) and receiver aperture (as a rule, the intrinsic resolution of 
the recording system). In this case, the weights can be calculated with the formula  

δ/ijklijkl SW = , (7) 

where ijklS  is the area of intersection of the strip corresponding to i -source and j -receiver 

(hereafter, ),( ji -strip) with the ),( lk -cell, and δ  is the linear size of the cell. It is obvious 

that the calculation of  ijklS  for trapezoidal strips must not cause difficulty.  

The situation is more complicated in DOT. The configuration and size of the appropriate 
strip must be selected with account for the spatial distribution of the trajectories of photons 

migrating from the point )0,( sr  to the point ),( tdr . According to the above statistical 

model, the most probable trajectories are distributed in a zone defined by the standard root-
mean-square deviation (RMSD) from the PAT in accordance with the formula 

2/1
32

)],()0,(,[)()( →−=Δ rdtP
V

ds rrrRr τττ . (8) 

This zone is shaped as a banana (Lyubimov et al., 2002; Volkonskii, 1999) with vertices at the 
points of source and receiver localizations on the boundary of the scattering object. 

Therefore, for the ),( ji -strip we take a banana-shaped strip (Figure 1(b)) whose width is 

directly proportional to the RMSD: )()( τγτε Δ⋅= . The problem is thus reduced to finding 

statistical characteristics (5) and (8) of photon trajectories. Note that the exact analytical 

calculation of )(τR  and )(τΔ  is difficult for even simple configurations such as a circle or a 

flat layer. The use of numerical techniques is undesirable because of the necessity to save 
computational time. Therefore, a number of simplifying assumptions should be done. 
Lyubimov et al. (2002) and Volkonskii et al. (1999) propose to approximate the PAT by a 
three-segment broken line whose end segments are orthogonal to the boundary of the 
scattering object and the middle segment connects the end ones. This approach is effective if 
inhomogeneities are located inside the object, but causes distortions if inhomogeneities are 
near the boundaries where the PATs bend. In this chapter we configure banana-shaped 
strips in the geometry of a flat layer using a simplified analytical approach based on the 
analysis of PAT bending near a plane boundary. The approach uses the time-dependent 
radiation transport equation in the diffusion approximation. Konovalov et al. (2006b) 
showed that in the case where a instantaneous point source was in a homogeneous half-

space (a half-plane in 2D) 0≥y  at a point ),0( 0y  and a receiver was at a point )0,( 0x  on 

the boundary 0=y , coordinates of the mass center of the distribution P , moving from the 

source point to the receiver point could be expressed as  
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where 2
04 yKvt=α , K  is the diffusion coefficient of the media, )(erf ξ  is the probability 

integral. If assume that PAT bending near the plane (straight line) of a source S  is similar to 

bending near the plane (straight line) of a receiver D  and there is no influence of the 
opposite boundary, analytical expressions (9) can be easily used to construct the PAT for the 

flat layer geometry (Figure 2). Indeed, the mass center passes the distance SO  and the 

distance OD  during the time 2/t . If the mass center moved in the half-space 0≥y  from a 

point 0S  to the point D  through the point O , the time 2/t  would correspond to the 

distance OS0 .  Since component velocity along the X-axis is constant, the point 0S  lies on 

the perpendicular SS ′  to the media boundaries. The distance SS ′0  can be found through 

the numerical solution of the equation 2/
2/

dY
t

=
=τ

, where d  is the width of the layer, for 

0y  (see expressions (9)). After that the distance OD  is calculated with (9) and the distance 

SO  is obtained through its symmetric reflection about the point O .

x

 y
 S

 S0  O

 S ’ D

Figure 2. PAT construction for a flat layer Figure 3.  Geometry of data recording for a 
rectangular object 

Figure 3 shows the geometry of data recording we chosen for simulations. Red triangles 
denote the positions of sources and blue circles do the positions of receivers. It also shows, 

as examples, six average trajectories reproduced with the above algorithm for 3000=t  ps 

and optical parameters 066.0=K  cm and 0214.0=v  cm/ps. Blue lines show piecewise-

linear approximations of the PATs. Coordinates of the indicated sources and receivers (in 
centimeters) are as follows: S5 – (-2.52, 4), D17 – (-5, -4), D20 – (-3.06, -4), D23 – (-1.13, -4), 
D26 – (0.81, -4), D29 – (2.74, -4), D32 – (4.68, -4). In this chapter we study the probing regime 
in transmission, i.e. only relations between sources and receivers located on the opposite 
boundaries of the object are considered. The total number of average trajectories therefore 

2

-2

2 4-2-4 Xx, m

Yy, m
S5

D17 D20 D23 D26 D29 D32
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equals to 32×16 (32 sources and 16 receivers). In the reconstruction we will vary the number 
of sources to study how the spatial resolution depends on the degree of data 
incompleteness.  
High accuracy of RMSD calculation is not crucial for the construction of banana-shaped 
strips. Therefore, in accordance with the inference of Volkonskii et al. (1999) that RMSD is 
actually independent of the form of the object, we can use the following simple formula for 
infinite space:  

[ ] 2/1
/)(2)( ttKv τττ −≅Δ . (10) 

Boundaries of banana-shaped strips are defined as follows.  

(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at PAT points corresponding to times }{ pτ

(Figure 4).

(c) Lay off sections of the length )( pτε  in both directions along each perpendicular.  

(d) Construct lines connecting the points which we obtained for different }{ pτ .

Figure 4. Definition of boundaries for 
banana-shaped strip 

Figure 5. Definition of the discrete relative 

velocities of mass center of the distribution P

Boundaries of the strips are thus defined by piecewise-linear functions. To calculate the 

areas ijklS , we find the points where the strip boundaries intersect the sides of the cell. A 

polygon with vertices at the obtained points and cell nodes is treated as the intersection of 

the ),( ji -strip and the ),( lk -cell (Figure 1(b)). Weights are calculated with the formula  

)/( δijklijklijkl vSW =  (11) 

where ijklv  is the discrete velocity of the mass center of the distribution P  for the 

),( ji -strip and the ),( lk -cell. Analytically, the velocities )( pv τ  are determined through 



Algebraic Reconstruction and Post-processing 
in Incomplete Data Computed Tomography: From X-rays to Laser Beams 495

differentiation of expressions (9). The array of discrete values }{ ijklv  is defined with the 

following algorithm.  

(a) Define a set of discrete times }{ pτ .

(b) Construct perpendiculars to tangential lines at points of ijL  corresponding to the 

times }{ pτ  (Figure 5).  

(c) Assign a loop for p , in which the following sequence of steps is performed:  

• Find cells where the ),( ji -strip intercepts a strip created by two neighbor 

perpendiculars corresponding to the times pτ  and 1+pτ . In Figure 5, these cells 

are shown in green.  

• To all cells found, assign a value which equals the velocity averaged over two 

times: 2/)]()([ 1++ pp vv ττ .

• If some value old
ijklv  has already been assigned to a cell, it is updated with the 

formula

1+

+⋅
=

N

vNv
v

new
ijkl

old
ijkl

ijkl , (12) 

where new
ijklv  is the new value and N  is the number of previous updates.  

Figure 6. The area of the object filled with banana-shaped strips for different values of 
coefficient γ : (a) – 0; (b) – 0.05; (c) – 0.15; and (d) – 0.25 

a b 

c d 



Vision Systems: Applications 496

(d) All PATs are searched sequentially and, for each of them, the procedure is repeated 
beginning from step (b).  

The proportionality coefficient )1,0(∈γ  which defines the width of the banana-shaped 

strip is selected from a condition dictating that all strips must sufficiently fill the area of the 
object. Figure 6 shows the filling of the rectangular object presented in Figure 3 for ratio of 
sources and receivers (hereafter, measurement ratio) 32×16 and γ  equal to 0, 0.05, 0.15, and 

0.25. In Figure 6(a), (b), and (c), there are extended regions with no strips (shown in blue). 
This means that, if the grid is of high resolution, there are cells where corrections won’t be 
introduced during the process of reconstruction. In Figure 6(d) these regions are very small 
in size which minimizes the probability that “dead” cells will appear. That is why we 
reconstruct the absorbing inhomogeneities embedded in the scattering object shown in 

Figure 3 using banana-shaped strips whose width is )(25.0)( ττε Δ= .

It should be noted that the problem of area filling in FVCT is not as decisive as in DOT if 
even the strips are very narrow. Despite the small number of views, the number of strips 
corresponding to one view is rather large (> 100).  

2.3 Algebraic reconstruction techniques and methods of their modification 

When selecting an algorithm to invert system (6), we must remember that in case of very 
incomplete data, the system appears to be strongly underdetermined. That is why the 
problem of solution regularization is of great importance in the context of the need to 
approximate the solution correctly and hence, to obtain tomograms which are free of 
artifacts. It is well known that the minimum of artifacts corresponds to the minimum of 
information contained in images. Under these circumstances, it seems appropriate to do 
reconstruction with an approach based on entropy optimization (Levine & Tribus, 1978). In 
this chapter we study the multiplicative algebraic reconstruction technique (MART) which 
implements the entropy maximum method. The problem of solution regularization is 

formulated as follows. Find the array of values }{ klf  which satisfies system (6) and the 

conditions  

maxln,0
,

→≥
lk

klklkl fff . (13) 

For the purpose of comparison and to demonstrate advantages of the MART, we also 
consider a well-known additive algebraic reconstruction technique (AART) which does not 
optimize entropy.  
Both MART and AART are based on an iterative procedure of correction of certain initial 

approximation }{
)0(

klf . At each )1( +s -iteration trajectories (strips) from one source only are 

considered. Thus, the correction is introduced into the elements of the approximation 

}{
)(s

klf  which correspond to the cells intersected by the given strips. Upon a transition from 

one iteration to another, the sources are searched cyclically. Original formulas for the 
correction of the s -th approximation to the solution are written as follows (Herman, 1980) 
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+

=
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λ

δλ

 (14) 

where )1,0(∈λ  is the parmeter which controls the rate of iterative process convergence and 

F
⋅  is the Frobenius norm. 

Our experience of using the algebraic techniques in FVCT (Konovalov et al., 2006a) and 
DOT (Konovalov et al., 2006b; Lyubimov et al., 2002) suggests that a number of 
modifications to formulas (14) are needed to improve convergence in case of strongly 
incomplete data.  So, expressions (14) does not allow for  
(a) the non-uniform distributions of weight sums and solution correction numbers over the 
cells; and 
(b) any a priori information on the spatial distribution of reproduced structures.  
As a result, both algorithms including the MART with regularization (13) often converge to 
a wrong solution. Because of the incorrect redistribution of intensity, images exhibit distinct 
artifacts which are often present in the regions where the structures are actually absent.  
To avoid these shortcomings, we here use the following formulas for modified algebraic 
techniques  
Step 1 

,~:AART

:MART

2

)(

,)()1(

~
/
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,
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⋅⋅=
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klijkl

δ
λ

λ

W

 (15) 

where Lji ijklkl NWW =
,

~
 is the reduced weight sum for the ),( lk -cell, LN  is the total 

number of strips used in reconstruction, and w  is the matrix of correction factors which 

allow for a priori information on the object function (see below).  
Step 2 

,)norm()
~

norm(
)12(

1
,,

)1(
,2

)1(
nlmknlmk

r

rm

r

rn

s
nlmk

s
kl AWf

r
f ++++

−= −=

+
++

+

+
=  (16) 

where the integer r  specifies the size rr ×  of the smoothing window, klA  is the number of 

corrections to the solution element corresponding to the ),( lk -cell, and  

−−= )(min)(max)(min)norm(
,,,

kl
lk

kl
lk

kl
lk

klkl ξξξξξ  (17) 

is the operator which normalizes the distributions }
~
{ klW  and }{ klA .
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Accounting for the distributions of reduced weight sums and correction numbers over the 
cells is most crucial for DOT where they are markedly non-uniform (Figure 7). Figure 8 
shows an example of reconstruction of the scattering object with two circular absorbing 
inhomogeneities 0.8 cm in diameters (see Section 3.2). Here and after the red triangles 
represent the localizations of the sources used for reconstruction. The Figure demonstrates 
advantages of the modified MART. We have bad results without taking into account the 

distributions }
~
{ klW  and }{ klA  (Figure 8 (b) and (c)).  

Figure 7. Distributions of reduced weight sums (a) and solution correction numbers (b) over 
137×100 grid which cover the object shown in Figure 3  

a

b c 

Figure 8. The 0.8-cm-in-diam absorbing inhomogeneities defined on a triangular mesh (a) 
and results of their reconstruction by the MART: without (b) and with (c) the distributions 

}
~
{ klW  and }{ klA

To use a priori information on the presence of structure-free zones in the reconstruction 
region, we developed an algorithm illustrated by Figure 9 which shows the reconstruction 
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of the middle section of the iron sphere compressed by an explosion from radiographic data 
(see Section 3.1). The algorithm is described by the following sequence of steps:  

(a) Reconstruct the image }{ 1
klf  from projections corresponding to the first source only 

(Figure 9 ( )).

a b 

c d 

Figure 9. Generation of a useful part of the tomogram: (a) – the image }{ 1
klf ; (b) – the image 

}
~
{ 2

klf ; (c) – the image }
~
{ 24

klf ; (d) – the set of multilevel regions  

b) Reconstruct the image }{ 2
klf  from projections corresponding to the second source only 

and compare it with the result obtained at step (a). Following from the result of the 

comparison, form the image }
~
{ 2

klf  such that ),min(
~ 212

klklkl fff =  for each ),( lk -cell

(Figure 9(b)).

 (c) Repeat step (b) for each following i -source forming the image }
~
{ i

klf  such that 

),
~

min(
~ 1 i

kl
i

kl
i

kl fff −=  (Figure 9(c)). Search all given sources.   
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(d) For the last image }
~
{ last

klf , define certain ascending sequence of relative thresholds 

M
m 1}{ε , the largest of which does not exceed, for example, 0.1-0.2 and determine correction 

factors }{ klw  using the following relations:  

.}
~

max{
~

,1

}
~

max{
~

}
~

max{

,}
~

max{
~

,0

1

1

last
klM

last
klkl

last
klm

last
kl

last
klm

M

m
kl

last
kl

last
klkl

ffifw

fffifw

ffifw

⋅≥=

⋅<≤⋅=

⋅<=

+

ε

εε
ε

ε

ε

 (18) 

a b 

Figure 10. Reconstructions of the sphere section from 24 views by the MART without (a) and 

with (b) the correction factors }{ klw

Such a definition of the set of multilevel regions with values that monotonically decrease 
from unity to zero (Figure 9(d)) allows artifacts to be avoid in the structure-free zones, i.e. 

where the object function must be zero or close to zero. The effect of accounting for }{ klw  is 

demonstrated in Figure 10 which illustrates the reconstruction of the section of a sphere 
from 24 views by the MART. For visual demonstration, reconstructions are presented as 
surface plots.  
It should be noted that in the case of the AART, it is also appropriate to use a priori 
information on whether the reconstructed object function is non-negative. For this end, all 
negative elements in the solution approximation are changed by zeros at each iteration. In 
the case of the MART, this is not needed because the algorithm works with a priori positive 
values.

3. Examples of reconstruction of test objects and quantitative analysis of 
tomograms

3.1 Reconstruction of strongly absorbing structures from few X-ray views  

This section gives examples of 2D reconstruction of objects with strongly absorbing 
structures from experimental radiographic data. The objects include  
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(a) a foam plastic cylinder 6 cm in diameter with periodical spatial structures in the form of 
rows of coaxial thin steel rods whose diameters are 1.5, 2.5, 5 and 8 mm, and  
(b) an iron sphere 4.8 cm in diameter with lots of internal damages from shock compression.  
X-ray projections are detected with a simple experimental setup (Figure 11 (a)). The 
radiation source is a pocket-size betatron with a small focal spot (about 1 mm) and a 
relatively small effective energy of the photon spectrum (about 2 MeV). The recording 
system combines a luminescent amplifying screen and an X-ray film. The object is placed 
between the source and the recording system so as to ensure that the film fully covers the 
object’s shadow. To determine parameters of the characteristic curve of the recording system 
(photometric density versus exposure), we register the image of a step lead wedge with the 
object, as shown in Figure 11. Distances between the source and the object and between the 
source and the recording system are, respectively, 150 and 220 cm for the cylinder with 
periodic structures and 120 and 180 cm for the shocked sphere.  

1 2 3 4

1 - Recording system
2 - Wedge
3 - Test object
4 - Radiation source

a b 

Figure 11. Experimental setup (a) and X-ray photograph of the shocked iron sphere (b)  

To collect information, each film with the X-ray image is scanned using a laser scanner with 
a small focal spot. Digital data collected are converted from scanner counts into film 
exposures with a technique (Kozlovskii, 2006) developed and experimentally adjusted at 
Russian Federal Nuclear Center – Zababakhin Institute of Applied Physics. The technique is 
based on the approximation of the characteristic curve by the relation  

)lgexp(max0

c
HbaIII −⋅−+= , (19) 

where I  is the photometric density, H  is the exposure, 0I  is a parameter which 

characterizes the density of film fogging, maxI  is a parameter which characterizes the 

maximum density the film permits, a  and c  are inclination and shape parameters, and b

is a parameter which defines sensitivity of the recording system. The characteristic curve 

parameters I , maxI , a , b  and c  are found through solving the problem of optimization 

for the objective function  

min)(
1

2/1

1

2 →−
=

Z

i

meas
ii II

Z
, (20) 
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where iI  is the photometric density calculated by expression (19) for i -step on the wedge, 

meas
iI  is the experimental density found with the image of the step wedge (Figure 11(b)) and 

Z  is the number of steps on the wedge. 

MART AART 

12

8

6

4

Figure 12. Tomograms of a cross section of the cylinder with periodic structures 
reconstructed from 12, 8, 6, and 4 views 
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a b 

c d 

Figure 13. A photograph of the middle section of the sphere (a) and its reconstructions by 
the modified MART from 24 (b), 12 (c), and 8 (d) views 

 We assume that each X-ray in the conic beam is detected by a conventional receiver whose 
aperture is larger than the size of one cell of the digitized x-ray photograph. It is appropriate 
to take the aperture to be equal to the intrinsic resolution of the recording system. So, in 

order to calculate projections, we must average the exposures H  over aperture areas. 
Projections are calculated as  

)log( 0HHg −= , (21) 

where 0H  is film exposure without the object (background).  

Figure 12 shows the tomograms of a cross section of the cylinder with periodic structures 
reconstructed from the 1D arrays of projections by the modified MART and AART 
described in Section 2.3. On the left of the Figure there are the numbers of views used for the 
reconstruction. It is seen that the quality of reconstructions by the entropy optimizing 
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