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1. Chapter description 

This chapter is based on the author’s research activities during the last decade on the fields 
of Evolutionary Computation (EC)-based techniques applied to digital communications and 
medical image processing. Specifically, the chapter is organized in three main sections: 

• The first section (section 2) presents a concise introduction to metaheuristic EC-based 
strategies, mainly genetic algorithms (GA) and tabu search (TS) - for the sake of 
comparison, brief comments to simulated annealing (SA) are included, as well. Section 
2.1 shows a general description of the standard GA while section 2.2 focuses on the 
basic TS algorithm. 

• Next, section 3 develops the proposed hybrid GA-TS method. It begins with the 
description of a genetic algorithm with notable reduced complexity (known as a micro 
genetic algorithm, μGA) that uses a modification of the standard genetic operators in 
order to improve its convergence rate and computational load. Such features are 
achieved by on-line tuning up the probabilities of mutation and crossover by means of 
analysing the population individuals’ fitness entropy. This way, a new method to 
control and adjust the diversity of the population is obtained. The μGA here described 
was partially developed in (San José, 2005). Once the GA is obtained, it is then modified 
and improved using the main distinctive concepts of TS. Specifically, we introduce a 
systematic use of memory in order to keep information on the last visited solutions as 
well as on the concrete parts of the chromosomes, or population’s individuals, that have 
experimented alterations that have positively or negatively affected the fitness function. 
Besides, memory keeps track of the genes affected by the genetic operators and the tabu 
tenure depends on the explorative or exploitative sense of the search, which is 
estimated from the mean population fitness entropy previously described. This way, 
the TS main ideas will help to avoid both cycling and processing of non-interesting 
regions of the solutions’ space. The hybrid algorithm thus developed will be denoted as 
“GA-TS”. 

• The last part of the chapter is devoted to the description of two application examples: 
(1) Application of the GA-TS algorithm to symbol detection in synchronous wireless 
communications. Numerical results will analyze the performance in comparison to 
traditional methods such as the matched filter detector, the minimum mean square 
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error algorithm, the standard GA-based detector as well as some radial basis function 
(RBF)-based methods. 
(2) Application of the developed GA-TS method to estimate the parameters of a recently 
developed algorithm (San José, 2007) for fiber tracking in diffusion tensor (DT) fields 
acquired via magnetic resonance imaging (MRI). This algorithm is successfully tested 
with both intricate synthetic images and real white matter DT-MR images. Numerical 
experiments will show the performance gain over previous approaches, especially with 
respect to convergence and computational load. Tracking of white matter fibers in the 
human brain becomes an issue of essential importance nowadays since it will improve 
the diagnosis and treatment of many neuronal diseases. 

2. Introduction to metaheuristic EC-based strategies 

2.1 Genetic algorithms 
2.1.1 GA fundamentals 
Genetic algorithms are a part of evolutionary computation (EC), which is a rapidly growing 

area of artificial intelligence. GAs are inspired by Darwin's theory about evolution. Simply 

said, these algorithms encode a potential solution to a specific problem on a simple data 

structure (known as chromosome or individual) and apply genetic operators to a selected 

group of the whole set of potential solutions (known as population) so as to preserve critical 

information. This is motivated by the hope that the new population will be better than the 

old one. Those chromosomes selected to form new individuals (offspring) are selected 

according to their fitness - the more suitable they are, the more chances they have to 

reproduce. Following the analogy with natural systems, the complete set of chromosomes is 

called genome. A particular set of genes in genome is called genotype (Mitchell, 1996). 

Genetic algorithms are often viewed as function optimizers, although the range of problems 

to which they have been applied is quite broad. An implementation of a GA begins with a 

population of typically randomly generated chromosomes. These individuals are then 

evaluated and assigned reproductive opportunities so that those chromosomes representing 

a better solution to the target problem are given more chances to reproduce than those 

chromosomes which are poorer solutions. 

Under this particular description of a GA, the term “genetic algorithm” has two meanings: 

In a strict interpretation, the GA refers to a model introduced and investigated by John 

Holland and his colleagues (Holland, 1975). Most of the existing theory for GAs applies to 

this model as well as variations on what is frequently referred to as the “standard genetic 

algorithm”. In a broader usage of the term, a genetic algorithm is any population-based 

model that uses selection and recombination operators to generate new sample points in a 

multidimensional search space. 

Considering an application oriented GA implementation the size of the search space is 
related to the number of bits used in the problem encoding, i.e. for a bit string encoding of 
length L, the size of the search space would be 2L and it can be viewed as a hypercube. In 
this situation, the genetic algorithm can be considered as a method for sampling the corners 
of this L-dimensional hypercube. These type of problems are also known as “NP-complete 
problems”, where NP stands for nondeterministic polynomial and it means that it is possible to 
“guess” the solution (by some nondeterministic algorithm) and then check it, both in 
polynomial time. A well-known example of NP problem is the travelling salesman problem. 
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Since the number of good solutions to a problem is sparse with respect to the size of the 

search space, then random search or search by enumeration becomes an impractical form of 

problem solving. Besides, any search other than random search imposes some bias in terms 

of how it looks for better solutions and where it looks in the search space. Though genetic 

algorithms indeed introduce a particular bias in terms of what new points in the space will 

be sampled, they make relatively few assumptions about the problem that is being solved. 

As a weak method, GAs are robust but very general. If there exists a good specialized 

optimization method for a specific problem, then genetic algorithm may not be the best 

optimization tool for that application. On the other hand, some researchers work with 

hybrid algorithms that combine existing methods with genetic algorithms. In this chapter 

we propose to enhance the performance of a particular GA (San José, 2005) with specific 

concepts representative of tabu search. 

The theoretical concepts that explain how genetic algorithms work, i.e. how chromosomes 
evolve toward the optimum solution, are partially based on the Schema Theorem. For the sake 
of brevity, its description lies beyond the scope of this chapter. 

2.1.2 GA cycle 
In summary, a GA starts with a population or set of possible solutions represented by 
chromosomes. Solutions from one population are taken and used to form a new population. 
Solutions which are selected to form new solutions (offspring) are selected according to their 
fitness - the more suitable they are, the more chances they have to reproduce. This is 
repeated until some condition (for example number of populations or improvement of the 
best solution) is satisfied. Figure 1 outlines the main steps of the basic genetic algorithm. 
This outline of basic GA is very general and there exist many things that can be 
implemented differently in various problems, for instance: how to create chromosomes, 
what type of encoding choose, how to define the two basic operators of GA (crossover and 
mutation), how to select parents for crossover, and many other implementation issues. Some 
of the concerning questions will be discussed in the specific applications later described. 
 

 

Fig. 1. Outline of the basic genetic algorithm. 
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2.1.3 Encoding and genetic operators 
Crossover and mutation are the most important parts of a genetic algorithm. Performance is 
influenced by these two operators. However, the description of the chromosome encoding 
must be first commented. 
The chromosome should contain information about the solution that it represents. The most 
used way of encoding is a binary string, for instance: u1=[1101100100110110], 
u2=[1101111000011110]. Each bit in this string can represent some characteristic of the 
solution or the whole string can represent a number. Other ways of encoding include 
directly integer or real numbers encoding. 
Once encoding has been decided, the genetic operators (crossover and mutation) must be 
defined. Crossover selects genes from parent chromosomes and creates a new offspring. The 
simplest way to achieve this task is to choose randomly a few crossover points and 
interchange the genetic material separated by these points as illustrated in Figure 2. 
 

 

Fig. 2. Crossover example with two crossover points. 

Notice that it is also possible to define a crossover operator with only one or even with 
multiple crossover points. Crossover can be rather complicated and depends on the 
encoding of the chromosome. Specific crossover made for a specific problem can improve 
performance of the genetic algorithm. For instance, in our applications, the uniform crossover 
and the partially matched crossover (PMX) operators will be used. 
The crossover operator requires the definition of a selection procedure in order to select the 

parents (two chromosomes) from the population. According to Darwin's evolution theory, 

the best ones should survive and create new offspring. There are many methods for 

selecting the best chromosomes, for example roulette wheel selection, Boltzman selection, 

tournament selection, rank selection, steady state selection and some others. In our specific 

applications, the roulette wheel selection scheme will be used. Using this selection procedure, 

the better the chromosomes are, the more chances to be selected they have. 

Once crossover is performed, mutation takes place. Mutation changes randomly the new 

offspring. For binary encoding we can switch a few randomly chosen bits from 1 to 0 or 

from 0 to 1. Obviously, both mutation and crossover depend on the encoding. An example 

of mutation is shown in Figure 3. 

Consequently, there are two basic parameters of GA - the crossover probability and the 

mutation probability. Since we will propose a novel strategy for on-line adjusting these 

probabilities based on the entropy of the population individuals’ fitness, a detailed 

description of these parameters as well as their influence on global convergence will be 

explained in sections 3.6-3.7. 
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Fig. 3. Mutation example. 

Thus, the GA works repeating a cycle: every iteration, those chromosomes with highest 
fitness are selected for creating a new offspring. Then, those ones with the lowest fitness are 
removed and the new offspring is placed in their place. The remaining chromosomes of the 
population survive to next generation. 

2.1.4 Elitism and final remarks 
Finally, we will comment the concept of elitism which is implemented in many GAs. This 
strategy was developed with the aim of avoiding the possibility of loosing the best 
chromosome in the current population when the genetic operators are applied. When 
elitism is used, the best chromosome (or a few best chromosomes) is directly copied into the 
new population. The rest is done in the same way. Elitism can very rapidly increase 
performance of GA, because it prevents losing the best found solution. 
In summary, among the main advantages of GA we find: (i) their parallelism. GAs search 
the solutions‘ space with more individuals (and with genotype rather than phenotype) so 
they are less likely to get stuck in a suboptimal or local solution like some other methods. (ii) 
they are easy to implement. Once you have some GA, you just have to write the new 
chromosome (just one object) to solve a different problem. On the other hand, their main 
drawback is their computational load. If not properly designed, they can be slower than 
some other methods. 

2.2 The Tabu search strategy 
During the last decade, the tabu search (TS) technique has shown a remarkable efficiency on 
many problems. Tabu search was originally presented in its present form by Glover (Glover, 
1986); the basic ideas have also been sketched by Hansen (Hansen, 1986). Additional efforts 
of formalization are reported in (Glover, 1989; de Werra & Hertz, 1989; Glover, 1990). Up to 
now, there is no formal explanation of this good behaviour, though, theoretical aspects of 
tabu search have been investigated (Faigle & Kern, 1992; Glover, 1992; Fox, 1993). 
Tabu search belongs to the iterative techniques group, a type of optimization procedures. 
The general step of an iterative procedure consists in constructing from a current solution i a 
next solution j and in checking whether one should stop there or perform another iteration. 
Neighbourhood search methods are iterative procedures in which a neighbourhood N(i) is 
defined for each feasible solution i, and the next solution j is searched among the solutions 
in N(i). Simulated annealing (SA) and tabu search can be considered as neighbourhood 
search methods which are more elaborate than the classical descent method. The basic 
ingredients of tabu search are next described. 

2.2.1 Fundamentals 
In order to improve the efficiency of the search, it is necessary to keep track not only of local 
information (like the current value of the objective function) but also of some information 
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related to the exploration process. The use of memory is one of the essential features of TS. 
While most exploration methods keep in memory essentially the value f(i*) of the best 
solution i* visited so far, TS also keeps information on the itinerary through the last solutions 
visited. Such information will be used to guide the next move. Memory restricts the 
possibilities to some subset of N(i) by forbidding for instance moves to some neighbour 
solutions. Specifically, the structure of the neighbourhood N(i) of a solution i will vary from 
iteration to iteration. This is why TS is included in a class of procedures called dynamic 
neighbourhood search techniques. 
The formal description is as follows (Hertz, 1995): Let us consider an optimization problem 

in the following way: given a set S of feasible solutions and a function f: S→ℜ, find some 
solution i* in S such that f(i*) is acceptable with respect to some criterion (or criteria). 
Generally a criterion of acceptability for a solution i* would be to have f(i*) ≤ f(i) for every I 
in S. In this situation, TS would be an exact minimization algorithm provided the 
exploration process would guarantee that after a finite number of steps such an i* would be 
reached. 
However, in most contexts, no guarantee can be given that such an i* will be obtained. 

Therefore, TS could simply be viewed as a general heuristic method. Since TS includes in its 

own operating rules some heuristic techniques, it would be more appropriate to characterize 

TS as a metaheuristic. Frequently, its role will be to guide and to orient the search of another 

(more local) search procedure. As a first step towards the description of TS, the classical 

descent method can be formulated as follows: 

Step 1. Choose an initial solution i in S. 
Step 2. Generate a subset V* of solution in neighbourhood N(i). 

Step 3. Find the best j in V* (f(j) ≤ f(k) ∀k ∈ V*) and set i=j. 
Step 4. If f(j) ≥ f(i) then stop. Else go to Step 2. 

A descent method would generally take V*=N(i). Since this approach may often be too time-
consuming, an appropriate choice of V* may be a notable improvement. 
The opposite case would be to take |V*|=1; this would drop the phase of choice of a best j. 

Simulated annealing could be integrated within such a framework. A solution j would be 

accepted if f(j) ≤ f(i), otherwise it would be accepted with a certain probability depending 

upon the values of f at i and j as well as upon a parameter called temperature (there is no 

temperature in TS). Memory is used to choose V* so as to exploit knowledge extending 

beyond the function f and the neighbourhood N(i). 

Descent procedures often get trapped in a local minimum. So any iterative exploration 

process should in some instances accept also non-improving moves from i to j in V* (i.e. 

with f(j) > f(i)) if one would like to escape from a local minimum. Simulated annealing does 

this also, but it does not guide the choice of j, TS in contrast chooses a best j in V*. However, 

this strategy increases the risk of cycling and re-visiting solutions. This is the point where 

memory is helpful to forbid moves which might lead to recently visited solutions. This way, 

the structure of N(i) will depend upon the itinerary and hence upon the iteration k, so we 

may refer to N(i,k) instead of N(i). Taking this idea into account, the descent algorithm can 

be reformulated in a way which will bring it closer to the general TS procedure. It can be 

stated as follows (Hertz, 1995): 

Step 1. Choose an initial solution i in S. Set i*=i and k=0. 
Step 2. Set k=k+1 and generate a subset V* of solution in N(i,k) 

www.intechopen.com



A Hybrid GA-TS Technique with Dynamic Operators and its Application 
to Channel Equalization and Fiber Tracking 

 

115 

Step 3.Choose a best j in V* (with respect to f or to some modified function f# and  

              set i=j. 
Step 4. If f(i) < f(i*) then set i*=i. 
Step 5. If a stopping condition is met, then stop. Else, go to Step 2. 

Notice that we may consider the use of a modified f#  instead of f in some circumstances. 

Some of the stopping conditions are the following: (i) N(i,k+1) is empty, (ii) k is larger than 
the maximum number of iterations allowed, (iii) the number of iterations since the last 
improvement of i* is larger than a specified threshold, and (iv) there exists evidence than an 
optimum solution has been obtained. 
The definition of N(i,k) at each iteration k and the choice of V* are crucial for the final search 
result. The first one implies that some recently visited solutions are removed from N(i). They 
are considered as tabu solutions which should be avoided in the next iteration. Such a 
memory based on recency will partially prevent cycling. Specifically, keeping at iteration k a 
list T (tabu list) of the last |T| solutions visited will prevent cycles of size at most |T|. In 
such a case N(i,k)=N(i)-T. Since this list T may be extremely impractical to use, we will 
describe the exploration process in terms of moves from one solution to the next. For each 
solution i in S, we define M(i) as the set of moves which can be applied to i in order to obtain 

a new solution j (notation: j=i⊕m). Then N(i)={j / ∃ m∈M(i) with j=i⊕m}. So, instead of 
keeping a list T of the last |T| solutions visited, we may simply keep track of the last |T| 
moves. Obviously, this restriction losses information and that it does not guarantee that no 
cycle of length at most |T| will occur. For efficiency purposes, it may be convenient to use 
several lists Tr at a time. Then some constituents tr (of i or of m) will be given a tabu status to 
indicate that these constituents are currently not allowed. Generally, the tabu status of a 
move is a function of the tabu status of its constituents which may change at each iteration. 
A collection of tabu conditions can be formulated as 

 tr(i,m) ∈ Tr(r = 1,...,t).  (1) 

A move m will be a tabu move if all conditions are satisfied. A drawback of the replacement 
of solutions by moves is that unvisited solutions can be given a tabu status. We will then 
overrule the tabu status when some tabu solutions will look attractive. This is performed by 
means of aspiration level conditions. 
A tabu move m applied to a current solution i may appear attractive because it gives, for 
example, a solution better than the best found so far. We would like to accept m in spite of 
its status; we shall do so if it has an aspiration level a(i,m) which is better than a threshold 
value A(i,m). Parameter A(i,m) can be viewed as a set of preferred values for a function 
a(i,m). Thus, conditions of aspiration can be written in the form 

 ar(i,m) ∈ Ar(i,m) (r=1,...,a).  (2) 

If at least one of these conditions is satisfied, then m will be accepted. 
Finally, in some situations, it can be of interest to replace the process f by another function 

f# so as to introduce some intensification and diversification of the search. In the search 

process it is sometimes fruitful to intensify the search in some region of S because it may 
contain some acceptable solutions (exploitative search). Such intensification can be carried 
out by giving a high priority to the solutions which have common features with the current 
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solution. This can be done with the introduction of an additional term in the objective 
function that penalizes solutions far from the present one. This should be done during a few 
iterations and after this it may be useful to explore another region of S. On the other hand, 
diversification (explorative search) can be forced by introducing an additional term in the 
objective function in order to penalize solutions that are close to the present one. The 

modified objective function is the function f# that was mentioned earlier in the algorithm: 

f# = f + Intensification + Diversification. 

Gathering together all these concepts, the TS procedure can be finally stated as follows 
(Hertz, 1995): 

Step 1. Choose an initial solution i in S. Set i*=i and k=0. 
Step 2. Set k=k+1 and generate a subset V* of solution in N(i,k) such that either one of  

             the tabu conditions tr(i,m) ∈Tr is violated (r=1,...,t) or at least one of the  

             aspiration conditions ar(i,m) ∈Ar(i,m) holds (r=1,...,a). 

Step 3. Choose best j=i⊕m in V* (with respect to f or to the function f# ) and set i=j. 

Step 4. If f(i) < f(i*) then set i*=i. 
Step 5. Update tabu and aspiration conditions. 
Step 6. If a stopping condition is met, then stop. Else, go to Step 2. 

3. Proposed hybrid GA-TS algorithm 

This section describes a hybrid GA-TS algorithm whose main novelty comes from its very 
low computational load (similar to a μGA), the introduction of an on-line procedure to 
adjust the GA’s parameters in order to achieve and maintain a good population diversity, 
and the incorporation of memory concepts proper of TS that improve convergence speed 
and diversity, avoiding cycling and reducing computational load. This diversity is a key 
issue in the performance of any evolutionary algorithm, including GAs and TS methods 
(Ursem, 2002). For this reason, we first briefly comment the importance of diversity in 
relation to convergence properties, and, afterwards, we will present the specific GA-TS 
structure together with the diversity control algorithm. 

3.1 Diversity and suboptimal convergence in evolutionary computation 
As mentioned in section 2, both genetic algorithms and tabu search constitute robust global 
search and optimization strategies that can strike an attractive balance between the 
exploitation - vertical search in the proximities of an specified point or area in the solutions 
space - and the exploration - horizontal search throughout all the totality of the solutions 
space, allowing the test of new potential solutions - of possible problem solutions. However, 
simple GAs have a tendency to converge prematurely to local optima, mainly due to 
selection pressure and too high gene flow between population members (Ursem, 2002). 
First, a high selection pressure will fill the population with clones of the best fit individuals, 
since they have the highest survival probability. Diversity declines after a short while, and, 
because the population consists of similar individuals, the algorithm will have difficulties 
escaping the local optimum. Nonetheless, lowering the selection pressure will often lead to 
an unacceptable slow convergence speed. On the other hand, high gene flow is often 
determined by the population structure. In simple GAs any individual can mate with any 
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other individual. Therefore, genes spread fast throughout the population and the diversity 
drops quickly with fitness stagnation as a prevalent outcome. 
All these facts point out the key role of maintaining a suitable diversity in the population in 
order to appropriately converge to the optimal solution, thus avoiding, the inefficient 
presence of duplicated or very similar individuals, as well as the possibility of getting 
trapped into suboptimal solutions. Some authors have already dealt with the problem of 
diversity monitoring and control: For instance, the Diversity-Control-Oriented GA 
(Shimodaira, 1999) calculates a survival probability by means of a diversity measure based 
on the Hamming distance between the individual and the current best individual. Hence, 
diversity is preserved through the selection procedure. Another approach is the Shifting- 
Balance GA (Oppacher, 1999), where a containment factor between two subpopulations -
based on Hamming distances between all members of the two populations - determines the 
ratio between individuals selected on fitness and individuals selected to increase the 
distance between the two populations. A third, and more distantly related, approach is the 
Forking GA (Tsutsui, 1997), which uses specialized diversity measures to turn a subset of 
the population into a subpopulation. Two variants of the Forking GA exist. The first one 
operates on the genotype, whereas the second type bases the division on distances in the 
search space (on the phenotype). More recently, Ghosh et al. (Ghosh, 2003) proposed to vary 
the mutation probability in n equally-length intervals along the ng iterations of the 
algorithm, while the probability of crossover was kept constant (see Fig. 3 in (Ghosh, 2003), 
p. 863, for an example). The authors remark that this scheme increases the diversity of the 
population when the probability of mutation is increased and, conversely, as the optimal 
string is approached, the probability of mutation is reduced. 

3.2 Fundamentals and encoding 
The principle of GAs consists in representing a set of potential solutions (population) with a 
predetermined encoding rule. Each potential solution (chromosome) is associated to a figure 
of merit, or fitness value, in accordance to its proximity to the optimal solution, i.e., each 
chromosome is evaluated for its fitness in solving a given optimization task. When no prior 
knowledge of the solution is available, this initial set of potential solutions, P[0], which 
forms the whole population for each new signaling interval (iteration k=0), is randomly 

generated. We will denote [ ] { }
0

pn

i i
P k == u  to the population at iteration k, with np being the 

number of individuals ui per generation. For instance, the specific encoding scheme used for 
the first application later considered is explained in section 4.3. 

3.3 Genetic operators 
Once individuals are generated and given a fitness value, the next step consists in applying 
the genetic operators, mainly mutation and crossover. The first one modifies specific 
individuals with probability pm, changing (antipodal bit) the value of some concrete 
position/s in the encoding of ui. Both the position and the new value are randomly 
generated - see Fig. 2. A low level of mutation serves to prevent any element in the 
chromosome from remaining fixed to a single value in the entire population. However, a 
high level of mutation will essentially result in a random search. Hence, the value of pm must 
be chosen carefully in order to avoid excessive mutation. To maintain a satisfactory balance 
between such extremes a good initial value for pm in our applications is between 0.01 - 0.05. 
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Note that mutation promotes exploration by creating an opportunity to explore different 
areas of the solution space. A good element can even turn into a bad one. This is definitely 
undesirable, especially if the offspring, which constitutes the actual global optimum, is 
mutated to a suboptimum solution. Hence, the value of pm must be carefully chosen in order 
to prevent excessive mutation. 
On the other hand, the crossover operator requires two operands (parents) to produce two 
new individuals (descendants or offspring). These new individuals are created when merging 
parents by crossing them at specific internal points - see Fig. 3. This operation is performed 
as follows: parent individuals ui and uj are exchanged using the uniform crossover process 
(Mitchell, 1996) in order to produce two offspring individuals. The process of uniform 
crossover uses a so-called crossover mask, which is a sequence of randomly generated 0’s and 
1’s. The elements in ui and uj are exchanged at bit locations corresponding to a “1” in the 
crossover mask with probability pc. 

3.4 Elitism and termination criteria 
Since parents are much more likely to be selected from those individuals having a higher 
fitness, the small variations introduced within these individuals are intended to also 
generate high fit individuals. Using Markov chain modelling, it has been proved that Gas 
are guaranteed to asymptotically converge to the global optimum - with any choice of the 
initial population - if an elitist strategy is used, where at least the best chromosome at each 
generation is always maintained in the population (Bhandari, 1996). However, Bhandari et 
al. (Bhandari, 1996) provided the proof that no finite stopping time can guarantee the 
optimal solution, though, in practice, the GA process must terminate after a finite number of 
iterations with a high probability that the process has achieved the global optimal solution. 
In the proposed GA-TS algorithm, the elite Ek for P[k+1] is formed by selecting those 
individuals from both the elite of P[k] and the mutated elite of P[k] having the highest 
objective value in the population. The mutation of the elite is performed with a probability 
pm,e considerably smaller than pm (so as to avoid the destruction of good solution guesses). In 
our simulations we used pm,e = x pm, with x=0.2 (heuristical trials show little differences for 
values of x in the range [0.1,0.5]). No crossover is performed on the elite, since it implies, in 
most of cases, abandoning the exploitation of these good potential solutions. 
This procedure, whose flowchart is shown in Fig. 4, is iterated a predefined number of 
consecutive generations, ng. At the end, the string ui corresponding to the best fit individual 
is finally chosen as the problem solution. 

3.5 Diversity and entropy-dependent genetic operators 
Standard GAs suffer from an excessive computational load: the application of the genetic 
operators is often costly and the evaluation of fitness can also be a very time-consuming 
task. Populations sizes np normally are 100, 200 or even much higher - for instance, (Uursem, 
2002) uses populations with 400 individuals. 
Hence, we propose an algorithm works with much smaller population sizes (in the order of 
15 to 35 individuals). An elite of 2 to 5 individuals is kept and the crossover and mutation 
probabilities depend on the Shannon entropy of the population (excluding the elite) fitness 
which is calculated as 

 
(3) 
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with λi being the normalized fitness of individual ui. When all the fitness values are very 
similar, with small dispersion, H(P[k]) becomes high and pc is decreased (it is not worthwhile 
wasting time merging very similar individuals). This way, the exploration character of the 
search is boosted, while, conversely, exploitation decreases. On the other hand, when this 
entropy is small, there exists a high diversity within the population, a fact that can be 
exploited in order to increase the horizontal sense of search. Following a similar reasoning, 
the probability of mutation is increased when the entropy is high, so as to augment the 
diversity of the population and escape from local suboptimal solutions (exploration 
decreases, exploitation becomes higher). 
 

 

Fig. 4. Schematic representation of the GA structure and the genetic operators. 

Therefore, we have that probabilities pm and pc are directly/inverselly proportional to the 
population fitness entropy, respectively1, 

                                                 
1 Symbol “α ” denotes proportionality. 
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 (4) 

 (5) 

Some exponentially dependence on time k is also included in the model - making use of 
exponential functions - in order to relax (decrease), along time, the degree of dependence of 
the genetic operators’ probabilities with the dispersion measure2. This avoids abandoning 
good solution estimates when very noisy sporadic samples are received or when the whole 
population has converged to the global optimum. 
Hence, the proposed algorithm uses a much smaller population size than standard GAs, 
calculates crossover with a very low probability (and only on individuals not belonging to 
the elite), and the exploration/exploitation sense of the search is on-line tuned up by 
measuring the diversity of the population by means of its fitness entropy. 
Next section describes how the diversity of the population affects the genetic operators’ 
probabilities. 

3.6 Genetic operators and convergence cycle 
A typical estimation convergence process is depicted in Fig. 5. Notice that this is just one -
the most frequently found and representative - of the possible situations, which will greatly 
depend on the randomly generated initial population P[0] and the specific application. This 
is also a mere schematic representation and the vertical axis should have a different scale for 
each represented parameter. 
 

 

Fig. 5. Schematic representation of the alternating exploring and exploiting behavior in the 
diversity-guided GA-TS. The proportionality between different curves is not represented; 
only the increasing/decreasing tendency of each parameter is representative. 

                                                 
2 See, also, complementary discussion on the form of these two functions, pc and pm, in 
section 3.7 Genetic operators and convergence cycle. 
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Three different phases can be appreciated: 
(I)  Population P[0] has been randomly generated. Individuals ui share a very few bits I 

common. Their fitness values are very similar since all of them are, probably, wrong 
solution estimates and, thus, the entropy is high. The probability of mutation is kept 
high so as to explore new potential solutions and the probability of crossover is small. 

(II)  Some individuals begin to converge to good solution estimates. Their fitness increase 
while the remaining individuals of the population continue presenting low values. The 
entropy of the fitness considerably decreases. The probability of mutation is decreased 
gradually while the one associated to crossover becomes higher so as to exploit the 
genetic information of the good estimates. 

(III) Most of the population individuals have converged to good solutions. The fitness of all 
the individuals is very close (all of them tend to be equiprobable solutions). The entropy 
is again high and the exploitative behavior prevails over the explorative one. 

 

As an example, since concrete values greatly depend on the randomly generated initial 
population, Fig. 5 also shows the approximate range in which pc and pm evolve along the 
execution of a satisfactory-convergence typical cycle: pm(I)=0.1 → pm(III)≈0.01 and pc(I) = 0.05 
→ pc(III)≈0.1. 
Keeping these three different phases in mind, the determination of the form of functions pc 

and pm in Eqs. (4) and (5) is achieved as follows:  

• Probability of mutation: during phase I, where most of the individuals are wrong 
estimates and the entropy is high, pc is required to be high to as to increase the 
explorative sense of the search. Thus, pc is directly proportional to the entropy H and to 
another function, which is denoted as gm, and has the form gm(k) = exp(-ǃmk), which, for 
low values of k and ǃm < 1, is close to 1. Thus, we can write 

 (6) 

where Ǐm stands for a normalization parameter, which ensures that pm ∈ [0,1], and  
gm(k) = exp(-ǃmk) with 0 < ǃm < 1. 
Once the GA-TS algorithm has converged to some good solution estimates, H becomes 
high again (see Phase III in Fig. 5), but now pm must be lowered so as to switch from 
exploration to the exploitation of new individuals. This is achieved selecting gm such 
that its decreasing character prevails over the entropy values. In our particular system, 

exponential functions gm(k) = exp(-ǃmk) , with ǃm ∈ [0.1 , 0.05], were used. 

• Probability of crossover: in this case, pc should maintain low values in Phase I in order 
to allow an explorative search. In this phase H is high and pc is chosen to be inversely 
proportional: 

 
(7) 

If function gc has the form of an inverse exponential (logarithmic) function, durin Phase 
I, the product of gc and the inverse of H adopts low values (see Phase I in Fig. 5), while 
in the third phase the gc prevails over the low values of the inverse of the entropy, 
leading to high probabilities (Phase III), in accordance to the desired exploitative sense 
of the search. 

www.intechopen.com



 Local Search Techniques: Focus on Tabu Search 

 

122 

In both cases, probabilities must be properly normalized in the range [0,1] making use of the 
parameters Ǐm and Ǐc. The weight of this updating of both probabilities also decreases with 
time, so that when Phase II is widely surpassed, the mutation and crossover probabilities 
remain mainly constant. 

3.7 Eliminating the entropy ambiguity 
The use of the entropy function as defined in Eq. (3) with the aim of classifying populations, 
can lead, if not properly corrected, to ambiguous situations since a population with all its 
individuals being very similar and having high fitness values will show the same high 
entropy as another population with very similar individuals taking on, all of them, very low 
fitness values. Obviously, the dispersion in both cases is low, and the associated entropy 
will show a high value. In order to detect and differentiate these situations, the following 
simple strategy has been devised. 
Once a few generations have been processed (about 10–15), the following parameters are 
compared: 

 

(8) 

 

(9) 

The first one, 
1

( )k
αΓ , represents the averaged mean value of the individuals’ fitness in ǂ 

successive generations –the current one, k, and the α −1 generations before. The second 

parameter, 
0
( )k

αΓ , represents this same value but averaging the mean fitness values in a 

group of α iterations, ζ generations before. For instance, the simulations for the first 

application proposed in this chapter were carried out with α =3 and ζ=8, thus the mean 

value of the fitness values averaged over the last 3 successive iterations is compared to this 
value 8 generations before. 
For example, at generation k=11, the algorithm compares the averaged value of the mean 
fitness in generations 9, 10 and 11, with the averaged value of the fitness in the generations 
1, 2 and 3. 
In cases of good convergence (or, at least, when the GA-TS algorithm has begun to 

converge), the difference between 
1

( )k
αΓ and 

0
( )k

αΓ , will be higher than a predetermined 

threshold ƥth (heuristically determined). On the other hand, when the population contains 

low fitness individuals after 2α+ζ generations, it is a clear indicator of unsatisfactory 

convergence. In this case the whole population is randomly re-initialized. 
According to this, the difference between both averaged values, is compared to a threshold 
ƥth. Whenever condition 

 (10)

is satisfied, the whole population will be randomly re-initialized. 
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3.8 GA improvement with TS concepts 
The search algorithm described before has been improved by incorporating some of the 
most important and characteristic concepts of TS. Specifically, memory has been 
implemented so as to avoid revisiting solutions. Depending on the application, tabu 
conditions tr have been defined representing non-possible or incongruent solutions. This 
mechanism, together with an appropriate diversity control based on the entropy dependent 
operators leads to a very efficient hybrid GA-TS method that avoids cycling search, 
improves convergence (as a consequence of improving diversity) and can be implemented 
in a computationally efficient algorithm. 
The hybrid GA-TS thus implemented can be viewed as an advanced TS method with 
multiple hypotheses i evolving in parallel and with a powerful procedure to evolve to the 
next iteration using the dynamic operators here developed. This method can perfectly be 
classified as a hybrid evolutionary algorithm combining the advantages of both GAs and TS. 

4. Application I: multiuser detection for DS/CDMA communications 

This section shows the application of the previously described GA-TS algorithm to the 
problem of symbol detection in DS/CDMA multiuser communications. The thus obtained 
detector has an extremely low computational load and offers an interesting alternative to 
previous suboptimal algorithms whose performance is frequently subject to the near-far 
problem and multiple access interference degradations. Its performance is compared to that 
of standard GA-based detectors, as well as traditional multiuser detectors, such as the 
matched filter, the decorrelator and the MMSE detectors. This section is mainly based on 
(San José, 2005). 

4.1 Problem description 
During the last decade, the utilization of wireless communications has shown growth rates 
of 20-50% per year in various parts of the world. The use of Code-Division Multiple Access 
(CDMA) communications has received a considerable amount of attention as mobile cellular 
telephone providers look for schemes of transmission which can exploit the capacity of the 
available spectrum to the maximum (Glisic, 1997; Proakis, 1995; Verdú, 1998) 
Since CDMA systems give users access to very high data rates, intersymbol interference (ISI) 
cannot be neglected and, together with multi-access interference (MAI), constitutes the 
major drawback to the overall system performance (Proakis, 1995). Both effects, if not 
appropriately controlled, can seriously deteriorate the quality of reception. 
Numerous methods have been proposed for reducing the amount of MAI present in the 
received signal, such as power control, optimization of signature sequences or sectorized 
antennas. Conventional receivers, which rely on a filter matched to the signature of the user 
of interest, are only optimum when the set of received signatures is perfectly orthogonal, 
which is not the most common case found in practice. Thus, their performance is notably 
degraded, especially when near-far effects exist. In 1986, Verdú showed that this problem 
could be solved by jointly-extracting the information sequences of all the users (Verdú, 
1998). Unfortunately, the complexity of the optimum multiuser detector (MUD) based on 
the maximum likelihood (ML) rule increases exponentially with the number of active users, 
making it impractical for realistic environments. Consequently, the development of 
suboptimal detectors has deserved a considerable amount of attention during last years. 
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Many of these suboptimal schemes make use of Natural Computation techniques, such as 
genetic algorithms and neural networks (Ergun, 2000; Juntti, 1997; Shayesteh, 2001; 
Shayesteh, 2003; Wang, 1998; Yen, 2000). 
A GA-based MUD was first proposed by Juntti et al. in (Juntti, 1997). The analysis is based 
on a synchronous CDMA system and requires good initial guesses concerning the possible 
user symbol sequences obtained from the other detectors. However, Yen et al. (Yen, 2000) 
showed that, by incorporating an element of local search prior to invoking the GA, the 
performance approaches the single-user performance bound. The proposal by Ergün et al. 
(Ergun, 2000) uses a multistage MUD as part of the GA-aided detection procedure, in order 
to improve the convergence rate. Other interesting approaches briefly described in (San José, 
2005) include those by Yen and Hanzo (Yen, 2001) and Shayesteh et al. (Shayesteh, 2001; 
Shayesteh, 2003). 
In the following sections we propose to use a multiuser detector based on the GA-TS 
algorithm described in section 3. This detector offers an extremely low computational load 
as well as a remarkable diversity control based on the on-line adjustment of its internal 
parameters. This task is achieved by making use of an individuals’ fitness dispersion 
measure based on the Shannon entropy. Based on the ML rule, we develop a GA-TS based 
multiuser detector that estimates both the channel impulse response (CIR) and the 
transmitted bit sequences on the basis of the statistics provided by the bank of matched 
filters at the receiver. 

4.2 DS/CDMA system description 
Consider a symbol-synchronous binary communication system with K active users, 

employing normalized modulation waveforms }{ 1
( )

K

i i
s t = , and signaling through a dispersive 

channel with AWG noise. User i transmits a sequence of statistically-independent symbols, 
bi(n), which modulates the PN sequence, si(n), so that the spectrum is spread by a factor N 
(processing gain) (Glisic, 1997). Thus, the signal transmitted by the ith user is 

 
(11)

where T is the signalling interval, M is the number of data bits in a frame transmitted by 

each user, and the signature waveforms are given by 

 
(12)

where si=(si,0,...,si,N-1)T is the signature vector of user i, Tc=T/N is the chip interval and Ψ(t) 
represents the energy-normalized chip pulse. 
Due to the consideration of synchronous transmission and assuming that users transmit 
data packets over a single-path frequency-nonselective slowly Rayleigh fading channel, the 
received baseband signal is given by 

 
(13)

with 

www.intechopen.com



A Hybrid GA-TS Technique with Dynamic Operators and its Application 
to Channel Equalization and Fiber Tracking 

 

125 

 
(14)

where Tf is the frame duration, g(t) is a zero-mean complex additive white Gaussian noise 
uncorrelated with bi(n), hi(n) denotes the complex CIR coefficient of the ith user and Ei 
represents the bit energy of user i. We consider, also, the time variation model proposed in 
(Yen, 2001), where hi(n) varies over the frame duration according to a specified Doppler 

frequency, fd. The unknown variables in Eq. (14) are bi(n) ∈ {+1,-1} and hi(n), which denote 
the nth bit and the corresponding complex CIR coefficient of the ith user, respectively. 
At the receiver, a bank of filters matched to the set of users' signature sequences takes 
samples at every bit interval (see Fig. 6). 
 

 

Fig. 6. DS/CDMA multiuser communications system model. 

The developed GA-TS-based multiuser detector estimates symbol vector 
b(n)=[b1(n),…,bK(n)]T, containing the symbols transmitted in the nth symbol period. Using 
the maximization problem as stated in (Yen, 2001), the output of the matched filters can be 
written as 

 (15)

where R is the K×K user signature sequence cross-correlation matrix, ( ) ( ) ( )( )1
diag ,...,

K
n h n h n=H , ( )1

diag ,...,
K

E EE = , ( ) ( ) ( )1
,...,

K
n b n b n= ⎡ ⎤⎣ ⎦b  and 

( ) ( )1
= ,...,

K
g n g n⎡ ⎤⎣ ⎦g . 

Based on the observation of vector z, it can be shown that the log-likelihood function (LLF 
conditioned on both the channel matrix H(n) and the users' data vector b(n), is given by 
(Fawer, 1995) 

 

(16)

where symbol “*” denotes the conjugate operation. Thus, the optimal estimates of the 
diagonal channel gain matrix H(n) and the vector of transmitted symbols b(n) are given by 
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