Open Access Database www.i-techonline.com

21

3D Face Recognition

Theodoros Papatheodorou and Daniel Rueckert
Department of Computing, Imperial College London
UK

1. Introduction

The survival of an individual in a socially complex world depends greatly on the ability to
interpret visual information about the age, sex, race, identity and emotional state of another
person based on that person’s face. Despite a variety of different adverse conditions
(varying facial expressions and facial poses, differences in illumination and appearance),
humans can perform face identification with remarkable robustness without conscious
effort.

Face recognition research using automatic or semi-automatic techniques emerged in the
1960s, and especially in the last two decades it has received significant attention. One reason
for this growing interest is the wide range of possible applications for face recognition
systems. Another reason is the emergence of affordable hardware, such as digital
photography and video, which have made the acquisition of high-quality and high-
resolution images much more ubiquitous. Despite this growing attention, the current state-
of-the-art face recognition systems perform well when facial images are captured under
uniform and controlled conditions. However, the development of face recognition systems
that work robustly in uncontrolled situations is still an open research issue.

Even though there are various alternative biometric techniques that perform very well
today, e.g. fingerprint analysis and iris scans, these methods require the cooperation of the
subjects and follow a relatively strict data acquisition protocol. Face recognition is much
more flexible since subjects are not necessarily required to cooperate or even be aware of
being scanned and identified. This makes face recognition a less intrusive and potentially
more effective identification technique. Finally, the public’s perception of the face as a
biometric modality is more positive compared to the other modalities (Hietmeyer, 2000).

1.1 Challenges for face recognition

The face is a three-dimensional (3D) object. Its appearance is determined by the shape as
well as texture of the face. Broadly speaking, the obstacles that a face recognition
systemmust overcome are differences in appearance due to variations in illumination,
viewing angle, facial expressions, occlusion and changes over time.

Using 2D images for face recognition, the intensities or colours of pixels represent all the
information that is available and therefore, any algorithm needs to cope with variation due
to illumination explicitly. The human brain seems also to be affected by illumination in
performing face recognition tasks (Hill et al., 1997). This is underlined by the difficulty of
identifying familiar faces when lit from above (Johnston et al.,, 1992) or from different
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directions (Hill and Bruce, 1996). Similarly it has been shown that faces shown in
photographic negatives had a detrimental effect on the identification of familiar faces (Bruce
and Langton, 1994). Further studies have shown that the effect of lighting direction can be a
determinant of the photographic negative effect (Liu et al., 1999). As a result, positive faces,
which normally appear to be top-lit, may be difficult to recognize in negative partly because
of the accompanying change in apparent lighting direction to bottom-lit. One explanation
for these findings is that dramatic illumination or pigmentation changes interfere with the
shape-from-shading processes involved in constructing representations of faces. If the brain
reconstructs 3D shape from 2D images, it remains a question why face recognition by
humans remains viewpointdependent to the extent it is.

One of the key challenges for face recognition is the fact that the difference between two
images of the same subject photographed from different angles is greater than the
differences between two images of different subjects photographed from the same angle. It
has been reported that recognition rates for unfamiliar faces drop significantly when there
are different viewpoints for the training and test set (Bruce, 1982). More recently, however,
there has been debate about whether object recognition is viewpoint-dependent or not (Tarr
and Bulthoff, 1995). It seems that the brain is good at generalizing from one viewpoint to
another as long as the change in angle is not extreme. For example, matching a profile
viewpoint to a frontal image is difficult, although the matching of a three-quarter view to a
frontal seems to be less difficult (Hill et al., 1997). There have been suggestions that the brain
might be storing a view-specific prototype abstraction of a face in order to deal with varying
views (Bruce, 1994). Interpolation-based models (Poggio and Edelman, 1991), for example,
support the idea that the brain identifies faces across different views by interpolating to the
closest previously seen view of the face.

Another key challenge for face recognition is the effect of facial expressions on the
appearance of the face. The face is a dynamic structure that changes its shape non-rigidly
since muscles deform soft tissue and move bones. Neurophysiologic studies have suggested
that facial expression recognition happens in parallel to face identification (Bruce, 1988).
Some case studies in prosopagnostic patients show that they are able to recognize
expressions even though identifying the actor remains a near-impossible task. Similarly,
patients who suffer from organic brain syndrome perform very poorly in analyzing
expressions but have no problems in performing face recognition. However, the appearance
of the face also changes due to aging and people’s different lifestyles. For example, skin
becomes less elastic and more loose with age, the lip and hair-line often recedes, the skin
color changes, people gain or lose weight, grow a beard, change hairstyle etc. This can lead
to dramatic changes in the appearance of faces in images.

A final challenge for face recognition is related to the problem of occlusions. Such occlusions
can happen for a number of reasons, e.g. part of the face maybe occluded and not
visiblewhen images are taken from certain angles or because the subject grew a beard, is
wearing glasses or a hat.

2. From 2D to 3D face recognition

2D face recognition is a much older research area than 3D face recognition research and
broadly speaking, at the present, the former still outperforms the latter. However, the
wealth of information available in 3D face data means that 3D face recognition techniques
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might in the near future overtake 2D techniques. In the following we examine some of the
inherent differences between 2D and 3D face recognition.

2.1 Advantages and disadvantages of 3D face recognition

As previously discussed, face recognition using 2D images is sensitive to illumination
changes. The light collected froma face is a function of the geometry of the face, the albedo
of the face, the properties of the light source and the properties of the camera. Given this
complexity, it is difficult to develop models that take all these variations into account.
Training using different illumination scenarios as well as illumination normalization of 2D
images has been used, but with limited success. In 3D images, variations in illumination
only affect the texture of the face, yet the captured facial shape remains intact (Hesher et al.,
2003).

Another differentiating factor between 2D and 3D face recognition is the effect of pose
variation. In 2D images effort has been put into transforming an image into a canonical
position (Kim and Kittler, 2005). However, this relies on accurate landmark placement and
does not tackle the issue of occlusion. Moreover, in 2D this task is nearly impossible due to
the projective nature of 2D images. To circumvent this problem it is possible to store
different views of the face (Li et al., 2000). This, however, requires a large number of 2D
images from many different views to be collected. An alternative approach to address the
pose variation problem in 2D images is either based on statistical models for view
interpolation (Lanitis et al., 1995; Cootes et al., 1998) or on the use of generative models
(Prince and Elder, 2006). Other strategies including sampling the plenoptic function of a face
using lightfield techniques (Gross et al., 2002). Using 3D images, this view interpolation can
be simply solved by re-rendering the 3D face data with a new pose. This allows a 3D
morphable model to estimate the 3D shape of unseen faces from non-frontal 2D input
images and to generate 2D frontal views of the reconstructed faces by re-rendering (Blanz et
al., 2005). Another pose-related problem is that the physical dimensions of the face in 2D
images are unknown. The size of a face in 2D images is essentially a function of the distance
of the subject from the sensor. However, in 3D images the physical dimensions of the face
are known and are inherently encoded in the data.

In contrast to 2D images, 3D images are better at capturing the surface geometry of the face.
Traditional 2D image-based face recognition focuses on high-contrast areas of the face such
as eyes, mouth, nose and face boundary because low contrast areas such as the jaw
boundary and cheeks are difficult to describe from intensity images (Gordon, 1992). 3D
images, on the other hand, make no distinction between high- and low-contrast areas. 3D
face recognition, however, is not without its problems. Illumination, for example, may not
be an issue during the processing of 3D data, but it is still a problem during capturing.
Depending on the sensor technology used, oily parts of the face with high reflectance may
introduce artifacts under certain lighting on the surface. The overall quality of 3D image
data collected using a range camera is perhaps not as reliable as 2D image data, because 3D
sensor technology is currently not as mature as 2D sensors. Another disadvantage of 3D face
recognition techniques is the cost of the hardware. 3D capturing equipment is getting
cheaper and more widely available but its price is significantly higher compared to a high-
resolution digital camera. Moreover, the current computational cost of processing 3D data is
higher than for 2D data.
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Finally, one of the most important disadvantages of 3D face recognition is the fact that 3D
capturing technology requires cooperation from a subject. As mentioned above, lens or
laserbased scanners require the subject to be at a certain distance from the sensor.
Furthermore, a laser scanner requires a few seconds of complete immobility, while a
traditional camera can capture images from far away with no cooperation from the subjects.
In addition, there are currently very few high-quality 3D face databases available for testing
and evaluation purposes. Those databases that are available are of very small size compared
to 2D face databases used for benchmarking.

3. An overview of 3D face recognition

Despite some early work in 3D face recognition in the late 1980s (Cartoux et al., 1989)
relatively few researchers have focused on this area during the 1990s. By the end of the last
decade interest in 3D face recognition was revived and has increased rapidly since then. In
the following we will review the current state-of-the-art in 3D face recognition. We have
divided 3D face recognition techniques broadly into three categories: surface-based,
statistical and model-based approaches.

3.1 Surface-based approaches

Surface-based approaches use directly the surface geometry that describes the face. These
approaches can be classified into those that extract either local and global features of the
surface (e.g. curvature), those that are based on profile lines, and those which use distance-
based metrics between surfaces for 3D face recognition.

3.1.1 Local methods

One approach for 3D face recognition uses a description of local facial characteristics based
on Extended Gaussian Images (EGI) (Lee and Milios, 1990). Alternatively the surface curvature
can be used to segment the facial surfaces into features that can be used for matching
(Gordon, 1992). Another approach is based on 3D descriptors of the facial surface in terms of
their mean and Gaussian curvatures (Moreno et al., 2003) or in terms of distances and the
ratios between feature points and the angles between feature points (Lee et al., 2005).
Another locally-oriented technique is based on using point signatures, an attempt to describe
complex free-form surfaces, such as the face (Chua and Jarvis, 1997). The idea is to form a
representation of the neighbourhood of a surface point. These point signatures can be used
for surface comparisons by matching the signatures of data points of a “sensed” surface to
the signatures of data points representing the model’s surface (Chua et al., 2000). To
improve the robustness towards facial expressions, those parts of the face that deform non-
rigidly (mouth and chin) can be discarded and only other rigid regions (e.g. forehead, eyes,
nose) are used for face recognition. In a similar approach this approach has been extended
by fusing extracted 3D shape and 2D texture features (Wang et al., 2002).

Finally, hybrid techniques that use both local and global geometric surface information can
be employed. In one such approach local shape information, in the form of Gaussian-Hermite
moments, is used to describe an individual face along with a 3D mesh representing the whole
facial surface. Both global and local shape information are encoded as a combined vector in
a low-dimensional PCA space, and matching is based on minimum distance in that space
(Xu et al., 2004).
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3.1.2 Global methods

Global surface-based methods are methods that use the whole face as the input to a
recognition system. One of the earliest systems is based on locating the face’s plane of
bilateral symmetry and to use this for aligning faces (Cartoux et al., 1989). The facial profiles
along this plane are then extracted and compared. Faces can also be represented based on
the analysis of maximum and minimum principal curvatures and their directions (Tanaka et
al.,, 1998). In these approaches the entire face is represented as an EGI. Another approach
uses EGIs to summarize the surface normal orientation statistics across the facial surface
(Wong et al., 2004).

A different type of approach is based on distance-based techniques for face matching. For
example, the Hausdorff distance has been used extensively for measuring the similarity
between 3D faces (Ackermann, B. and Bunke, H., 2000; Pan et al., 2003). In addition, several
modi- fied versions of the Hausdorff distance metric have been proposed (Lee and Shim,
2004; Russ et al., 2005). Several other authors have proposed to perform face alignment
using rigid registration algorithms such as iterative closest point algorithm (ICP) Besl and
McKay (1992). After registration the residual distances between faces can be measured and
used to define a similarity metric (Medioni and Waupotitsch, 2003). In addition, surface
geometry and texture can be used jointly for registration and similarity measurement in the
registration process, and measures not only distances between surfaces but also between
texture (Papatheodorou and Rueckert, 2004). In this case each point on the facial surface is
described by its position and texture. An alternative strategy is to use a fusion approach for
shape and texture (Maurer et al., 2005). In addition to texture, other surface characteristics
such as the shape index can be integrated into the similarity measure (Lu et al., 2004). An
important limitation of these approaches is the assumption that the face does not deform
and therefore a rigid registration is sufficient to align faces. This assumption can be relaxed
by allowing some non-rigid registration, e.g. using thin-plate splines (TPS) (Lu and Jain,
2005a).

Another common approach is based on the registration and analysis of 3D profiles and
contours extracted from the face (Nagamine et al., 1992; Beumier and Acheroy, 2000; Wu et
al., 2003). The techniques can also be used in combination with texture information (Beumier
and Acheroy, 2001).

3.2 Statistical approaches

Statistical techniques such as Principal Component Analysis (PCA) are widely used for 2D
facial images. More recently, PCA-based techniques have also been applied to 3D face data
(Mavridis et al., 2001; Hesher et al., 2003; Chang et al., 2003; Papatheodorou and Rueckert,
2005). This idea can be extended to include multiple features into the PCA such as colour,
depth and a combination of colour and depth (Tsalakanidou et al., 2003). These PCA-based
techniques can also be used in conjunction with other classification techniques, e.g. embed-
ded hidden Markov models (EHMM) (Tsalakanidou et al., 2004). An alternative approach is
based on the use of Linear Discriminant Analysis (LDA) (G okberk et al., 2005) or
Independent Component Analysis (ICA) (Srivastava et al., 2003) for the analysis of 3D face
data.

All of the statistical approaches discussed so far do not deal with the effects of facial
expressions. In order to minimize these effects, several face representations have been
developed which are invariant to isometric deformations, i.e. deformations which do not
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change the geodesic distance between points on the facial surface. One such approach is
based on flattening the face onto a plane to form a canonical image which can be used for
face recognition (Bronstein et al., 2003, 2005). These techniques rely on multi-dimensional
scaling (MDS) to flatten complex surfaces onto a plane (Schwartz et al., 1989). Such an
approach can be combined with techniques such as PCA for face recognition (Pan et al.,
2005).

3.3 Model-based approaches

The key idea of model-based techniques for 3D face recognition is based on so-called 3D
morphable models. In these approaches the appearance of the model is controlled by the
model coefficients. These coefficients describe the 3D shape and surface colours (texture),
based on the statistics observed in a training dataset. Since 3D shape and texture are
independent of the viewing angle, the representation depends little on the specific imaging
conditions (Blanz and Vetter, 1999). Such a model can then be fitted to 2D images and the
model coefficients can be used to determine the identity of the person (Blanz et al., 2002).
While this approach is fairly insensitive to the viewpoint, it relies on the correct matching of
the 3D morphable model to a 2D image that is computationally expensive and sensitive to
initialization. To tackle these diffi- culties, component-based morphable models have been
proposed (Huang et al., 2003; Heisele et al., 2001).

Instead of using statistical 3D face models it is also possible to use generic 3D face models.
These generic 3D face models can then be made subject-specific by deforming the generic
face model using feature points extracted from frontal or profile face images (Ansari and
Abdel- Mottaleb, 2003a,b). The resulting subject-specific 3D face model is then used for
comparison with other 3D face models. A related approach is based on the use of an
annotated face model (AFM) (Passalis et al., 2005). This model is based on an average 3D
face mesh that is annotated using anatomical landmarks. This model is deformed non-
rigidly to a new face, and the required deformation parameters are used as features for face
recognition. A similar model has been used in combination with other physiological
measurements such as visible spectrum maps (Kakadiaris et al., 2005).

A common problem of 3D face models is caused by the fact that 3D capture systems can
only capture parts of the facial surface. This can be addressed by integrating multiple 3D
surfaces or depth maps from different viewpoints into a more complete 3D face model
which is less sensitive to changes in the viewpoint (Lu and Jain, 2005b). Instead of using 3D
capture systems for the acquisition of 3D face data, it is also possible to construct 3D models
from multiple frontal and profile views (Yin and Yourst, 2003).
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Method Modality Reference Number of Dataset size Core matching Reported
subjects algorithm performance
Surface-based Approaches
Local Methods
D (Lee and Milios, 6 3 Correlation N/A
1990)
Feature Vector D (Gordon, 1992) 26 for Closest vector B0-100%
training, 8
for testing for testing
Feature Vector 3D (Moreno et al., 2003) 420 Closest vector 78%
Feature Vector D (Lee et al., 2005) 100 200 SVM 96%
Point set aD (Chua et al., 2000) 6 24 Point signature 100%
Feature Vector 20430 (Wang et al., 2002) 50 300 SVM, DDAG > 90%
Ler
Point set D (Xu etal, 2004) e 720 Min. distance el
+feature vector
Global Methods
Profile+surface 3D (Cartoux et al., 1989) 5 18 Min. distance 100%
EGI 3D (Tanaka et al., 1998) 37 37 Correlation 100%
ECGI Ein (Wong et al., 2004) 5 n/fa Min. Distance 80.08%
+Evolutionary
optimization
Point set ki (Ackermann, B. and 24 240 Hausdorff distance 100%
Bunke, H., 2000)
Point set / Hausdorff / 3-5%EER /
range image 3D Pan (Pan et al., 2003) 30 360 5-T9%EER
Range+curvature 3D (Lee and Shim, 2004) 42 B84 Weighted 98%
Hausforff
Point set 3D+2D (Lu et al., 2004) 10 63 cr 96%
Point set AD+2D (Lu and Jain, 2005a) 100 196 probes ICP+TPS 91%
Point set ki (Medioni and 100 700 cr 91%
Waupotitsch, 2003)
Point set D (Papatheodorou and 62 124 cr 100%
Rueckert, 2004)
Surface mesh 3D+2D (Maurer et al., 2005) 466 4,007 cr BT7% verification
at 0.01 FAR
Multiple 3D (Nagamine et al., 16 160 Closest vector 100%
profiles 1992)
Multiple aD+2D (Beumier and 27 gallery, 29 81 gallery, 87 Min. distance 1.4% EER
profiles Acheroy, 2001) probes probes
Multiple 3D (Wu et al., 2003) 30 a0 Min. distance 1.1-5.5% EER
profiles
Stafistical Approaches
)
Range images ID+2D ggzﬁal;kanidm etal, 40 80 PCA ggg ggtnzn]l)yj
Range images 3D+2D (Tsalakanidou et al., 50 3,000 EHMM 4% EER
2004)
Range images 3D (Hesher et al., 2003) 37 222 PCA 90%
0
Range images D (Chang et al., 2003) ‘fi{: rE)z?S 951 PCA 32 g gg;i%f
Point set 3D (Papatheodorou and 83 166 PCA 100%
Rueckert, 2005)
Various aD (Gokberk et al., 2005) 106 579 Various 99%
Point set 3D+2D (Bronstein et al., 30 220 “canonical forms” 100%
2003),
“Isomorphic” D (Pan et al., 2005) 276 943 PCA 95%, 3% EER
range image
Model-based Approaches
2D for testing, 2D+3D (Blanz et al., 2002) 68 4420 3D Morphable 92.8% when
3D for training Model correctly fit
2D for testing, 2D+3D (Huang et al., 2003) 10 200 Component-based 88%
3D for training 3D Morphable
Model
Feature points D (Ansari and 26 104 Generic model 96%
extr. from 2D Abdel-Mottaleb,
2003a,b)
Point set 3D+2D (Lu and Jain, 2005b) 100 598 ICP+LDA a6%
2D probes, 3D 3D+2D (Yin and Yourst, 60 240 Flexible model 91.2% rank 3
gallery 2003)
Surface mesh 3D (Passalis et al., 2005) 446 4,007 Deformable model 90%

Table 1. Overview Of Techniques



424 Face Recognition

3.4 Summary

The comparison of different 3D face recognition techniques is very challenging for a number
of reasons: Firstly, there are very few standardized 3D face databases which are used for
benchmarking purposes. Thus, the size and type of 3D face datasets varies significantly
across different publications. Secondly, there are differences in the experimental setup and
in the metrics which are used to evaluate the performance of face recognition techniques.
Table 3.4 gives an overview of the different methods discussed in the previous section, in
terms of the data and algorithms used and the reported recognition performance.

Even though 3D face recognition is still a new and emerging area, there is a need to compare
the strength of each technique in a controlled setting where they would be subjected to the
same evaluation protocol on a large dataset. This need for objective evaluation prompted the
design of the FRVT 2000 and FRVT 2002 evaluation studies aswell as the upcoming FRVT
2006 (http:/ /www .frvt.org/). Both studies follow the principles of biometric evaluation laid
down in the FERET evaluation strategy (Phillips et al., 2000). So far, these evaluation studies
are limited to 2D face recognition techniques but will hopefully include 3D face recognition
techniques in the near future.

4. 3D Face matching

As discussed before, statistical models of 3D faces have shown promising results in face
recognition (Mavridis et al., 2001; Hesher et al., 2003; Chang et al., 2003; Papatheodorou and
Rueckert, 2005) and also outside face recognition (Blanz and Vetter, 1999; Hutton, 2004). The
basic premise of statistical face models is that given the structural regularity of the faces, one
can exploit the redundancy in order to describe a face with fewer parameters. To exploit this
redundancy, dimensionality reduction techniques such as PCA can be used. For 2D face
images the dimensionality of the face space depends on the number of pixels in the input
images (Cootes et al., 1998; Turk and Pentland, 1991). For 3D face images it depends on the
number of points on the surface or on the resolution of the range images. Let us assume a set
of 3D faces I'y, I'y, T'3,..., I'm can be described as surfaces with n surface points each. The
average 3D face surface is then calculated by:

M
r:f?g;n M
and using the vector difference
v, =01-T 2
the covariance matrix C is computed by:
1w
Cz;gggmvs ®)

An eigenanalysis of C yields the eigenvectors ui and their associated eigenvalues \; sorted
by decreasing eigenvalue. All surfaces are then projected on the facespace by:

By =ui (I -T) )
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where k =1, ..,m. In analogy to active shape models in 2D (Cootes et al., 1995), every 3D
surface can then be described by a vector of weights BT = [B1, B, ..., Bu], which dictates how
much each of the principal eigenfaces contributes to describing the input surface. The value
of m is application and data-specific, but in general a value is used such that 98% of the
population variation can be described. More formally (Cootes et al., 1995):

== > 098

PRD Vi ©)
The similarity between two faces A and B can be assessed by comparing the weights f4 and
Bz which are required to parameterize the faces. We will use two measurements for
measuring the distance between the shape parameters of the two faces. The first one is the
Euclidean distance which is defined as:

de(B4.8p) =184 —Bsll = Z(-"jﬂf - 0B;)* (6)

i

In addition it is also possible calculated the distance of a face fromthe feature-space (Turk
and Pentland, 1991). This effectively calculates how “face”-like the face is. Based on this,
there are four distinct possibilities: (1) the face is near the feature-space and near a face class
(the face is known), (2) the face is near the feature-space but not near a face class (face is
unknown), (3) the face is distant from the feature-space and face class (image not a face) and
finally (4) the face distant is from feature-space and near a face class (image not a face). This
way images that are not faces can be detected. Typically case (3) leads to false positives in
most recognition systems.

By computing the sample variance along each dimension one can use the Mahalanobis
distance to calculate the similarity between faces (Yambor et al., 2000). In the Mahalanobis
space, the variance along each dimension is normalized to one. In order to compare the
shape parameters of two facial surfaces, the difference in shape parameters is divided by the
corresponding standard deviation o:

du(By,Bp) =

5. Construction of 3D statistical face models using registration

A fundamental problem when building statistical models is the fact that they require the
determination of point correspondences between the different shapes. The manual
identification of such correspondences is a time consuming and tedious task. This is
particularly true in 3D where the amount of landmarks required to describe the shape
accurately increases dramatically compared to 2D applications.

5.1 The correspondence problem

The key challenge of the correspondence problem is to find points on the facial surface that
correspond, anatomically speaking, to the same surface points on other faces (Beymer and
Poggio, 1996). It is interesting to note that early statistical approaches for describing faces
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did not address the correspondence problem explicitly (Turk and Pentland, 1991; Kirby and
Sirovich, 1990).

Anatomical points landmarked

Points Landmark Description

Clabella Area in the center of the forehead between the eyebrows, above the nose
which is slightly protruding (1 landmark).

E Both the inner and outer corners of the eyelids are landmarked (4

yes landmarks).

The intersection of the frontal and two nasal bones of the human skull

Nasion where there is a clearly depressed area directly between the eyes above
the bridge of the nose (1 landmark).

Nose tip The most protruding part of the nose (1 landmark).

Subnasal The middle point at the base of the nose (1 landmark).

Lips Both left and right corners of the lips aswell as the top point of the upper
lip and the lowest point of the lower lip (4 landmarks).

Gnathion The lowest and most protruding point on the chin (1 landmark).

Table 2. The 13 manually selected landmarks chosen because of their anatomical
distinctiveness

The gold standard to establish correspondence is by using manually placed landmarks to
mark anatomically distinct points on a surface. As this can be a painstaking and error-prone
process, several authors have proposed to automate this by using a template with annotated
landmarks. This template can be then registered to other shapes and the landmarks can be
propagated to these other shapes (Frangi et al., 2002; Rueckert et al., 2003). Similarly,
techniques such as optical flow can be used for registration. For example, correspondences
between 3D facial surfaces can be estimated by using optical flow on 2D textures to match
anatomical features to each other Blanz and Vetter (1999). Some work has been done on
combining registration techniqueswith a semi-automatic statistical technique, such as active
shape models, in order to take advantage of the strengths of each (Hutton, 2004).

Yet another approach defines an objective function based on minimum description length
(MDL) and thus treats the problem of correspondence estimation as an optimization
problem (Davies, 2002). Another way of establishing correspondence between points on two
surfaces is by analyzing their shape. For example, curvature information can be used to find
similar areas on a surface in order to construct 3D shape models (Wang et al., 2000).
Alternatively, the surfaces can be decimated in such a way that eliminates points from areas
of low curvature. High curvature areas can then assumed to correspond to each other and
are thus aligned (Brett and Taylor, 1998; Brett et al., 2000).

5.2 Landmark-based registration

One way of achieving correspondences is by using landmarks that are manually placed on
3D features of the face. The landmarks should be placed on anatomically distinct points of
the face in order to ensure proper correspondence. However, parts of the face such as the
cheeks are difficult to landmark because there are no uniquely distinguishable anatomical
points across all faces. It is important to choose landmarks that contain both local feature
information (eg. the size of the mouth and nose) as well as the overall size of the face (eg. the
location of the eyebrows). Previous work on 3D face modelling for classification has shown
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that there is not much difference between the use of 11 and 59 landmarks (Hutton, 2004). In
our experience 13 landmarks are sufficient to capture the shape and size variations of the
face appropriately. Table 2 shows the landmarks that are used in the remainder of the
chapter and Figure 1 shows an example of a face that was manually landmarked.

P T
1

-
.

.

Figure 1. The 13 manually selected landmarks chosen because of their anatomical
distinctiveness

5.2.1 Rigid registration

In order to perform rigid registration one face is chosen as a template face and all other faces
are registered to this template face. Registration is achieved by minimizing the distance
between corresponding landmarks in each face and the template face using the least square
approach (Arun et al., 1987). Subsequently, a new landmark set is computed as the mean of
all corresponding landmarks after rigid alignment. The registration process is then repeated
using the mean landmark set as a template until the mean landmark set does not change
anymore.

Figure 2 (top row) shows two faces aligned to the mean landmarks while the bottom row
shows a frontal 2D projection of the outer landmarks of the same faces before and after rigid
landmark registration. After registration it is possible to compute for each point in the
template surface the closest surface point in each of the faces. This closest point is then
assumed to be the corresponding surface point.

5.2.2 Non-rigid registration

The above rigid registration process assumes that the closest point between two faces after
rigid registration establishes the correct anatomical correspondence between two faces.
However, due to differences in the facial anatomy and facial expression across subjects this
assumption is not valid and can lead to sub-optimal correspondences. To achieve better
correspondences a non-rigid registration is required. A popular technique for non-rigid
registration of landmarks are the so-called thin plate splines (Bookstein, 1989). Thin-plate
splines use radial basis functions which have infinite support and therefore each landmark
has a global effect on the entire transformation. Thus, their calculation is computationally
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inefficient. Nevertheless, thin-plate splines have been widely used in medical imaging as
well as for the alignment of 3D faces using landmarks (Hutton, 2004).

Unregistered faces

Rigid Registration

maan
lnrdmgrks

Figure 2. Rigid registration of faces using landmarks. The top rowshows the two faces
aligned to the mean landmarks. The bottom row shows a frontal 2D projection of the outer
landmarks of the same faces before and after registration

An alternative approach for the non-rigid registration of 3D faces is to use a so-called free-
form deformation (FFD) (Sederberg and Parry, 1986) which can efficiently model local
deformations. B-spline transformations, contrary to thin-plate splines, have local support,
which means that each control point influences a limited region. Furthermore, the
computational complexity of calculating a B-spline is significantly lower than a thin-plate
spline. In the following, a nonrigid registration algorithm for landmarks based on multi-
resolution B-splines is proposed.

Lee et al. described a fast algorithm for interpolating and approximating scattered data
using a coarse-to-fine hierarchy of control lattices in order to generate a sequence of bicubic
B-spline function whose sum approximates the desired interpolation function (Lee et al.,
1997). We adopt this approach in order to calculate an optimal free-form deformation for
two given sets of 3D landmarks. A rectangular grid of control points is initially defined
(Figure 3) as a bounding box of all landmarks. The control points of the FFD are deformed in
order to precisely align the facial landmarks. Between the facial landmarks the FFD provides
a smooth interpolation of the deformation at the landmarks.

The transformation is defined by a 1 x n, x n. grid ® of control point vectors @, with
uniform spacing &:

3 3 3
T(z,y,2) = Z Z Z Bi(r)B;(s) Be() @1y it jntk 8)

i=0 j=0 k=0
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Where"l' = LEEJ_LT” = l%ﬂJ_]!n = lR&i.J_[?; = EJF_LI?'J!S = %E_L%Jandt = %_L}%J
and where B;, B; , By represent the B-spline basis functions which define the contribution of
each control point based on its distance from the landmark (Lee et al., 1996, 1997):

Bo(u) = (1—u)*/6
Bi(u) = (3u®—6u’>+4)/6
Bo(u) = (=3u® +3u®+3u+1)/6
Bs(u) = 4’/6
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Figure 3. A free-formdeformation and the corresponding mesh of control points

Given a moving point set (source) P = {(Pesspe,spe.)} and a fixed point set
q ={(9es:9eys4e2)}, the algorithm estimates a set of displacement vectors d = p - g
associated with the latter. The output is an array of displacement vectors @, for the control
points which provides a least squares approximation of the displacement vectors.

Since B-splines have local support, each source point pe is affected by the closest 64 control
points. The displacement vectors of the control points associated with this source point can
be denoted as ®;:

wy jkd
3 3 3
2 am0 2ob=0 20 “‘ﬁtm ©)

where wi = Bi(r) Bj(s) Bi(f) and i, j, k = 0, 1, 2, 3. Because of the locality of B-splines, the
spacing of control points has a significant impact on the quality of the least squares
approximation and the smoothness of the deformation: Large control point spacings lead to
poor approximations and high smoothness whereas small control point spacings lead to
good approximations but less smoothness. To avoid these problems, a multilevel version of
the B-spline approximation is used (Lee et al., 1997). In this approach an initial coarse grid is
used initially and then iteratively subdivided to enable closer and closer approximation
between

¢'a‘jk =
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two point sets. Before every subdivision of the grid the current transformation T is applied
to points p and the displacement vectors d are recomputed.

5.3 Surface-based registration

A drawback of the registration techniques discussed in the previous section is the need for
landmarks. The identification of landmarks is a tedious and time-consuming step which
typically requires a human observer. This introduces inter- and intra-observer variability
into the landmark identification process. In this section we will focus on surface-based
registration techniques which do not require landmarks.

5.3.1 Rigid registration

The most popular approach for surface registration is based on the iterative closest point (ICP)
algorithm (Besl and McKay, 1992): Given two facial surfaces, i.e. a moving face A = {z;} and a
fixed (template) face B = {b;}, the goal is to estimate the optimal rotation R and translation ¢
that best aligns the faces. The function to be minimized is the mean square difference
function between the corresponding points on the two faces:

|A|

H(Trigia) = 303 [bs = Ras — I (10)

where pointswith the same index correspond to each other. The correspondence is
established by looping over each point a on face A and finding the closest point, in
Euclidean space, on face B:

d(a,B) = min |6 — al| (11)

This process is repeated until the optimal transformation is found. As before it is possible
after this registration to compute for each point in the template surface the closest surface
point in each of the faces. This closest point is then assumed to be the corresponding surface
point.

5.3.2 Non-rigid registration

As Dbefore, rigid surface registration can only correct for difference in pose but not for
differences across the facial anatomy and expression of different subjects. Thus, the
correspondences obtained fromrigid surface registration are sub-optimal. This is especially
pronounced in areas of high curvature where the faces might differ significantly, such as
around the lips or nose. As a result the correspondence established between surface points
tends to be incorrect. In this section we propose a technique for non-rigid surface
registration which aims to improve correspondences between surfaces.

Given surfaces A and B, made up of two point sets a and b, the similarity function that we
want to minimize is:

[ Al

1 2
I(Trrnnrig;hf) - m Z ||b.l - Trunrrf-;;f:f(ai)““- (12)

i=1

where T yonrigia is a non-rigid transformation. A convienient model for such a non-rigid
transformation is the FFD model described in eq. (8). Once more one can assume that the



3D Face Recognition 431

correspondence between surface points is unknown. In order to pair points on two surfaces
to each other, just as with ICP, one can assume that corresponding points will be closer to
each other than non-corresponding ones. A distance metric d is defined between an
individual source point a and a target shape B:

d(a, B) = Llél}}”b—ﬁ.” (13)

Using this distance metric the closest point in B from all points in A is located. Let Y denote
the resulting set of closest points and C the closest point operator:

Y = C(A,B) (14)

After closest-point correspondence is established, the point-based non-rigid registration
algorithm can be used to calculate the optimal non-rigid transformation Tyrigia. This is
represented here by the operator M. In order for the deformation of the surfaces to be
smooth, a multi-resolution approach was adopted, where the control point grid of the
transformation is subdivided iteratively to provide increasing levels of accuracy. The non-
rigid surface registration algorithm is displayed in Listing 1.

Listing 1 The non-rigid surface registration algorithm.

1: Start with surfaces A and a target point set B.

2: Set subdivision counter k = 0, A©® = A and reset Thonrigid-

3: repeat

4: Find the closest points between A and B by: Y ®) = C (A®, B)

5: Compute the ideal non-rigid transformation to align Y ® and A©) by:
) = M(A©,Y®)

nonrigid ~

see section 5.2.2).
(k+1) _ (k) (0)
6: Apply the transformation: 4 = Tronrigia(A™")

7: until k equals user-defined maximum subdivisions limit

Figure 4 shows a colour map of the distance between two faces after rigid and non-rigid
surface registration. It can be clearly seen that the non-rigid surface registration improves
the alignment of the faces when compared to rigid surface registration. Similarly, non-rigid
surface registration also better aligns the facial surfaces than non-rigid landmark
registration:

Figure 5 (a) shows a color map of the distance between two paces after landmark-based
registration. Notice that the areas near the landmarks (eyes, mouth, nose, chin) are much
better aligned than other areas. Figure 5 (b) shows a colour map after surface-based
registration. In this case the registration has reduced the distances between faces in all areas
and provides a better alignment.

6. Evaluation of 3D statistical face models

To investigate the impact of different registration techniques for correspondence estimation
on the quality of the 3D model for face recognition, we have constructed a 3D statistical face
model using 150 datasets (University of Notre Dame, 2004). These datasets were acquired
using a Minolta VIVID 910 camera which uses a structured light sensor to scan surfaces. A
typical face consists of about 20,000 points. Figure 6 shows an example face.
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Figure 4. Two faces after (a) rigid and (b) non-rigid surface registration. The colour scale
indicates the distance between the closest surface points

Omm

Fmm

(b)

Figure 5. Two faces after (a) rigid landmark registration and (b) rigid landmark registration
followed by non-rigid surface registration. The colour scale indicates the distance between
the closest surface points

Figure 6. Example of a Notre Dame dataset
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Table 3. The first three principal modes variation of the landmark registration-based model
(frontal view)

6.1 Qualitative comparison

A visual comparison of the models generated shows some differences between them. Figure
7 shows two views of the landmark-based mean (left) and the surface-based mean (right). In
both cases non-rigid registration has been used. The facial features on the model built using
landmark-based registration are much sharper than the features of the model built using
surface registration. Given that the features of the surfaces are aligned to each other using
non-rigid registration, it is only natural that the resulting mean would be a surface with
much more clearly defined features. For example, the lips of every face in the landmark-
based model are always aligned to lips and therefore the points representing them would
approximately be the same with only their location in space changing. On the other hand
the lips in the surface-based model are not always represented by the same points. The
upper lip on one face might match with the lower lip on the template face, which results in
an average face model with less pronounced features. This is expected, as the faces are
aligned using a global transformation and there is no effort made to align individual
features together.

Another visual difference between the two models is the fact that facial size is encoded more
explicitly in the landmark-based model. The first mode of variation in Table 3 clearly
encodes the size of the face. On the other hand the surface-based model in Table 4 does not
encode the size of the face explicitly. It is also interesting to observe that the first mode of the
surfacebased model, at first sight, seems to encode the facial width. However, on closer
inspection in can be seen that the geodesic distance from one side of the face to the other (i.e.
left to right) changes very little. Figure 8 shows a schematic representation of a template
mesh and a face as seen from the top. The geodesic distance between points x and y in the
template mesh is the same as the geodesic distance between points p and g in the subject’s
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