

GATE 2015 2016

COMPUTER SCIENCE / IT GATE papers with answer keys and Solution

GATE Solved Papers

www.gateinstructors.in

Contents Page No. **Topic** GATE 2012 question paper - computer science 1 - 16 **GATE 2012 Answer Keys & Solutions - CS 17 - 18** GATE 2013 question paper - computer science 19 - 31 **GATE 2013 Answer Keys & Solutions - CS** 32 - 34 **GATE 2014 question paper SET 1 - computer science** 35 - 50 **GATE 2014 Answer Keys & Solutions - CS** 51 - 52 **GATE 2014 question paper SET 2 - computer science** 53 - 69 **GATE 2014 Answer Keys & Solutions - CS** 70 - 71 **GATE 2014 question paper SET 3 - computer science** 72 - 87 **GATE 2014 Answer Keys & Solutions - CS** 88 - 89

GATE 2016 Online Test Series

FREE (No Hidden Costs!!!):
Now Enjoy 25+ GATE 2016 Tests in each
branch (CS, IT, EC, ME, EE, and CE) Free!!!
By GATE Instructors Free Online Test Series.

http://gateinstructors.in

http://gateinstructors.in/test_series_registration.php

GATE Instructors: FREE GATE/PSUs COMPLETE STUDY MATERIAL, GATE/PSUs FULLY SOLVED PAPER (20-YEARS), ALL Subjects Full Descriptive NOTES, eBooks, Video Lectures...

FREE (No Hidden Costs!!!) AVAILABLE

www.gateinstructors.in

Download gate computer science question bank pdf gate question papers CSE gate question paper gate paper cs previous year question papers GATE Examination Solved Question Papers Previous GATE papers with answer keys GATE Computer Science question papers Previous Years' GATE Papers - COMPUTER SCIENCE GATE solved papers CS Computer Science

Q. 1 – Q. 25 carry one mark each.

- Q.1 Consider the following logical inferences.
 - I₁: If it rains then the cricket match will not be played.

The cricket match was played.

Inference: There was no rain.

I₂: If it rains then the cricket match will not be played. It did not rain.

Inference: The cricket match was played.

Which of the following is **TRUE**?

- (A) Both I_1 and I_2 are correct inferences
- (B) I₁ is correct but I₂ is not a correct inference
- (C) I_1 is not correct but I_2 is a correct inference
- (D) Both I₁ and I₂ are not correct inferences
- Q.2 Which of the following is **TRUE**?
 - (A) Every relation in 3NF is also in BCNF
 - (B) A relation R is in 3NF if every non-prime attribute of R is fully functionally dependent on every key of R
 - (C) Every relation in BCNF is also in 3NF
 - (D) No relation can be in both BCNF and 3NF
- Q.3 What will be the output of the following C program segment?

```
char inChar = 'A';
switch ( inChar ) {
  case 'A' : printf ("Choice A\ n") ;
  case 'B' :
  case 'C' : printf ("Choice B") ;
  case 'D' :
  case 'E' :
  default : printf ( " No Choice" ) ; }
```

- (A) No Choice
- (B) Choice A
- (C) Choice A

Choice B No Choice

- (D) Program gives no output as it is erroneous
- Q.4 Assuming $P \neq NP$, which of the following is **TRUE**?
 - (A) NP-complete = NP

(B) NP-complete \cap P = \emptyset

(C) NP-hard = NP

(D) P = NP-complete

- Q.5 The worst case running time to search for an element in a balanced binary search tree with $n2^n$ elements is
 - (A) Θ ($n \log n$
- (B) $\Theta(n2^n)$
- (C) $\Theta(n)$
- (D) Θ (log n)

Q.6 The truth table

X	Y	f (X , Y)
0	0	0
0	1	0
1	0	1
1	1	1

represents the Boolean function

- (A) X
- (B) X + Y
- (C) $X \oplus Y$
- (D) Y

Q.7 The decimal value 0.5 in IEEE single precision floating point representation has

- (A) fraction bits of 000...000 and exponent value of 0
 - (B) fraction bits of 000...000 and exponent value of -1
- (C) fraction bits of 100...000 and exponent value of 0
- (D) no exact representation

O.8 A process executes the code

fork();

fork();

fork():

The total number of **child** processes created is

- (A)3
- (B) 4
- (C) 7
- (D) 8

Q.9 Consider the function $f(x) = \sin(x)$ in the interval $x \in [\pi/4, 7\pi/4]$. The number and location(s) of the local minima of this function are

- (A) One, at $\pi/2$
- (B) One, at $3\pi/2$
- (C) Two, at $\pi/2$ and $3\pi/2$
- (D) Two, at $\pi/4$ and $3\pi/2$

Q.10 The protocol data unit (PDU) for the application layer in the Internet stack is

- (A) Segment
- (B) Datagram
- (C) Message
- (D) Frame

Q.11 Let A be the 2×2 matrix with elements $a_{11} = a_{12} = a_{21} = +1$ and $a_{22} = -1$. Then the eigenvalues of the matrix A^{19} are

(A) 1024 and -1024

(B) $1024\sqrt{2}$ and $-1024\sqrt{2}$

(C) $4\sqrt{2}$ and $-4\sqrt{2}$

(D) $512\sqrt{2}$ and $-512\sqrt{2}$

Q.12 What is the complement of the language accepted by the NFA shown below? Assume $\Sigma = \{a\}$ and ϵ is the empty string.

- $(A) \varnothing$
- (B) $\{\epsilon\}$
- (C) a*
- (D) $\{a, \epsilon\}$

2012			COMI CILICOC	illitel & itti oldinii illeii.	
Q.13	What is the correct translation of the following statement into mathematical logic? "Some real numbers are rational"				
	(A) $\exists x \text{ (real}(x) \lor \text{ ratio}(x) \Rightarrow \text{ ratio}(x$	$\operatorname{onal}(x)$)			
	(D) $\exists x \text{ (rational}(x) \rightarrow$				
Q.14	Given the basic ER an	nd relational models, whi	ch of the following is IN	CORRECT?	
	(B) An attribute of an (C) In a row of a relati	entity can have more that entity can be composite ional table, an attribute c ional table, an attribute c	an have more than one v		
Q.15	Which of the followin	g statements are TRUE	about an SQL query?		
	Q: An SQL query can R: All attributes used	contain a HAVING clau contain a HAVING clau in the GROUP BY claus sed in the GROUP BY c	use only if it has a GROV se must appear in the SE	UP BY clause LECT clause	
	(A) P and R	(B) P and S	(C) Q and R	(D) Q and S	
Q.16	The recurrence relation <i>n</i> discs is	on capturing the optimal	execution time of the To	owers of Hanoi problem with	
	(A) $T(n) = 2T(n-2) + 1$ (C) $T(n) = 2T(n/2) + 1$		(B) $T(n) = 2T(n-1) +$ (D) $T(n) = 2T(n-1) +$	n · 1	
Q.17	_	directed planar graph on bunded faces in any emb	_	es. If G is a connected graph, e is equal to	
	(A) 3	(B) 4	(C) 5	(D) 6	
Q.18		denote respectively, the an input of size <i>n</i> . Which		ge case running time of an LWAYS TRUE?	
	(A) $A(n) = \Omega(W(n))$ (C) $A(n) = O(W(n))$		(B) $A(n) = \Theta(W(n))$ (D) $A(n) = O(W(n))$		
Q.19	The amount of ROM	needed to implement a 4	bit multiplier is		
	(A) 64 bits	(B) 128 bits	(C) 1 Kbits	(D) 2 Kbits	
Q.20	Register renaming is o	lone in pipelined process	ors		
			-		
Q.21		ariable X that takes value ution function $F(x)$ at $x = $	_	bility 0.5 each. The values of	
	(A) 0 and 0.5	(B) 0 and 1	(C) 0.5 and 1	(D) 0.25 and 0.75	

2012				ER SCIENCE & INFORMATION TECH. – C
Q.22	Which of the fo	ollowing transport layer	r protocols is used to suppor	t electronic mail?
	(A) SMTP	(B) IP	(C) TCP	(D) UDP
Q.23			mber of networks allowed ur	
	(A) 2^{14}	(B) 2^7	(C) 2^{21}	(D) 2^{24}
Q.24	Which of the fo	ollowing problems are	decidable?	
			n ever produce an output?	
	2)		anguage, then, is L also con	
			age, then, is \overline{L} also regular	
	4)	If L is a recursive lang	guage, then, is L also recurs	sive?
	(A) 1, 2, 3, 4	(B) 1, 2	(C) 2, 3, 4	(D) 3, 4
Q.25	Given the langu	$uage L = \{ab, aa, baa\}$, which of the following stri	ngs are in L^* ?
		abaabaaabaa		
	,	aaaabaaaa baaaabaaaab		
	4)	baaaaabaaaab baaaaabaa		
	(A) 1, 2 and 3		(B) 2, 3 and 4	
	(A) 1, 2 and 3 (C) 1, 2 and 4		(D) 1, 3 and 4	
	(-, -,			
				Ç\$, C
				*
				Ġ°
				C
			.0	
			,XV	
			X	
			9	
		0		
		X,		
		20		
		0)		
		.4 •		
		7.		
		~		

Q. 26 to Q. 55 carry two marks each.

Q.26 Which of the following graphs is isomorphic to

(A)

(B)

(C) (D)

Q.27 Consider the following transactions with data items P and Q initialized to zero:

```
\begin{split} T_1: & \text{read } (\text{P}) \,; \\ & \text{read } (\text{Q}) \,; \\ & \text{if } \text{P} = \text{O} \text{ then } \text{Q} := \text{Q} + \text{1} \;; \\ & \text{write } (\text{Q}) \,. \end{split} T_2: & \text{read } (\text{Q}) \,; \\ & \text{read } (\text{P}) \,; \\ & \text{if } \text{Q} = \text{O} \text{ then } \text{P} := \text{P} + \text{1} \;; \\ & \text{write } (\text{P}) \,. \end{split}
```

Any **non-serial** interleaving of T_1 and T_2 for concurrent execution leads to

- (A) a serializable schedule
- (B) a schedule that is not conflict serializable
- (C) a conflict serializable schedule
- (D) a schedule for which a precedence graph cannot be drawn
- Q.28 The bisection method is applied to compute a zero of the function $f(x) = x^4 x^3 x^2 4$ in the interval [1,9]. The method converges to a solution after ______ iterations.
 - (A) 1
- (B) 3
- (C) 5
- (D) 7
- Q.29 Let G be a weighted graph with edge weights greater than one and G' be the graph constructed by squaring the weights of edges in G. Let T and T' be the minimum spanning trees of G and G', respectively, with total weights t and t'. Which of the following statements is **TRUE**?
 - (A) T' = T with total weight $t' = t^2$
 - (B) T' = T with total weight $t' < t^2$
 - (C) $T' \neq T$ but total weight $t' = t^2$
 - (D) None of the above

Q.30 What is the minimal form of the Karnaugh map shown below? Assume that **X** denotes a don't care term

ab	00	01	11	10
00	1	X	X	1
01	X			1
11				
10	1			X

- (A) $\bar{b}\bar{d}$
- (B) $\overline{b}\overline{d} + \overline{b}\overline{c}$
- (C) $\overline{b}\overline{d} + a\overline{b}\overline{c}d$
- (D) $\overline{bd} + \overline{bc} + \overline{cd}$
- Q.31 Consider the 3 processes, P1, P2 and P3 shown in the table.

Process	Arrival time	Time Units Required
P1	0	5
P2	1	7
P3	3	4

The completion order of the 3 processes under the policies FCFS and RR2 (round robin scheduling with CPU quantum of 2 time units) are

- (A) **FCFS:** P1, P2, P3 **RR2:** P1, P2, P3
- (B) **FCFS:** P1, P3, P2 **RR2:** P1, P3, P2
- (C) **FCFS:** P1, P2, P3 **RR2:** P1, P3, P2
- (D) **FCFS:** P1, P3, P2 **RR2:** P1, P2, P3
- Q.32 Fetch_And_Add(X,i) is an atomic Read-Modify-Write instruction that reads the value of memory location X, increments it by the value i, and returns the old value of X. It is used in the pseudocode shown below to implement a busy-wait lock. L is an unsigned integer shared variable initialized to 0. The value of 0 corresponds to lock being available, while any non-zero value corresponds to the lock being not available.

This implementation

- (A) fails as L can overflow
- (B) fails as L can take on a non-zero value when the lock is actually available
- (C) works correctly but may starve some processes
- (D) works correctly without starvation
- Q.33 Suppose a fair six-sided die is rolled once. If the value on the die is 1, 2, or 3, the die is rolled a second time. What is the probability that the sum total of values that turn up is at least 6?
 - (A) 10/21
- (B) 5/12
- (C) 2/3
- (D) 1/6

- Q.34 An Internet Service Provider (ISP) has the following chunk of CIDR-based IP addresses available with it: 245.248.128.0/20. The ISP wants to give half of this chunk of addresses to Organization A, and a quarter to Organization B, while retaining the remaining with itself. Which of the following is a valid allocation of addresses to A and B?
 - (A) 245.248.136.0/21 and 245.248.128.0/22
 - (B) 245.248.128.0/21 and 245.248.128.0/22
 - (C) 245.248.132.0/22 and 245.248.132.0/21
 - (D) 245.248.136.0/24 and 245.248.132.0/21
- Q.35 Suppose a circular queue of capacity (n-1) elements is implemented with an array of n elements. Assume that the insertion and deletion operations are carried out using REAR and FRONT as array index variables, respectively. Initially, REAR = FRONT = 0. The conditions to detect *queue full* and *queue empty* are
 - (A) *full*: (REAR+1) mod *n* == FRONT *empty*: REAR == FRONT
 - (C) full: REAR == FRONT empty: (REAR+1) mod n == FRONT
- (B) full: (REAR+1) mod n == FRONT empty: (FRONT+1) mod n == REAR
- (D) *full*: (FRONT+1) mod *n* == REAR *empty*: REAR == FRONT

Q.36 Consider the program given below, in a block-structured pseudo-language with lexical scoping and nesting of procedures permitted.

```
Program main;
Var ...

Procedure A1;
Var ...
Call A2;
End A1

Procedure A2;
Var ...
Procedure A21;
Var ...
Call A1;
End A21

Call A21;
End A2

Call A1;
End main.

Consider the calling chain: Main → A1 → A2 → A21 → A1
```

The correct set of activation records along with their access links is given by

- Q.37 How many onto (or surjective) functions are there from an *n*-element $(n \ge 2)$ set to a 2-element set?
 - (A) 2^{i}
- (B) $2^n 1$
- (C) $2^n 2$
- (D) $2(2^n-2)$
- Q.38 Let G be a complete undirected graph on 6 vertices. If vertices of G are labeled, then the number of distinct cycles of length 4 in G is equal to
 - (A) 15
- (B) 30
- (C) 90
- (D) 360
- Q.39 A list of n strings, each of length n, is sorted into lexicographic order using the merge-sort algorithm. The worst case running time of this computation is
 - (A) O $(n \log n)$
- (B) O $(n^2 \log n)$
- (C) O $(n^2 + \log n)$
- (D) O (n^2)
- Q.40 Consider the directed graph shown in the figure below. There are multiple shortest paths between vertices S and T. Which one will be reported by Dijkstra's shortest path algorithm? Assume that, in any iteration, the shortest path to a vertex v is updated only when a strictly shorter path to v is discovered.

- (A) SDT
- (B) SBDT
- (C) SACDT
- (D) SACET
- Q.41 A file system with 300 GByte disk uses a file descriptor with 8 direct block addresses, 1 indirect block address and 1 doubly indirect block address. The size of each disk block is 128 Bytes and the size of each disk block address is 8 Bytes. The maximum possible file size in this file system is
 - (A) 3 KBytes
 - (B) 35 KBytes
 - (C) 280 KBytes
 - (D) dependent on the size of the disk
- Q.42 Consider the virtual page reference string

on a demand paged virtual memory system running on a computer system that has main memory size of 3 page frames which are initially empty. Let LRU, FIFO and OPTIMAL denote the number of page faults under the corresponding page replacement policy. Then

- (A) OPTIMAL < LRU < FIFO
- (B) OPTIMAL < FIFO < LRU

(C) OPTIMAL = LRU

- (D) OPTIMAL = FIFO
- Q.43 Suppose $R_1(\underline{A}, B)$ and $R_2(\underline{C}, D)$ are two relation schemas. Let r_1 and r_2 be the corresponding relation instances. B is a foreign key that refers to C in R_2 . If data in r_1 and r_2 satisfy referential integrity constraints, which of the following is **ALWAYS TRUE**?
 - (A) $\Pi_B(r_1) \Pi_C(r_2) = \emptyset$
 - (B) $\prod_{C}(r_2) \prod_{B}(r_1) = \emptyset$
 - (C) $\Pi_{B}(r_1) = \Pi_{C}(r_2)$
 - (D) $\prod_{B}(r_1) \prod_{C}(r_2) \neq \emptyset$

- Q.44 Consider a source computer (S) transmitting a file of size 10⁶ bits to a destination computer (D) over a network of two routers (R₁ and R₂) and three links (L₁, L₂, and L₃). L₁ connects S to R₁; L₂ connects R₁ to R₂; and L₃ connects R₂ to D. Let each link be of length 100 km. Assume signals travel over each link at a speed of 10⁸ meters per second. Assume that the link bandwidth on each link is 1Mbps. Let the file be broken down into 1000 packets each of size 1000 bits. Find the total sum of transmission and propagation delays in transmitting the file from S to D?
 - (A) 1005 ms
- (B) 1010 ms
- (C) 3000 ms
- (D) 3003 ms
- Q.45 Consider an instance of TCP's Additive Increase Multiplicative Decrease (AIMD) algorithm where the window size at the start of the slow start phase is 2 MSS and the threshold at the start of the first transmission is 8 MSS. Assume that a timeout occurs during the fifth transmission. Find the congestion window size at the end of the tenth transmission.
 - (A) 8 MSS
- (B) 14 MSS
- (C) 7 MSS
- (D) 12 MSS
- Q.46 Consider the set of strings on {0,1} in which, every substring of 3 symbols has at most two zeros. For example, 001110 and 011001 are in the language, but 100010 is not. All strings of length less than 3 are also in the language. A partially completed DFA that accepts this language is shown below.

The missing arcs in the DFA are

(A)

	00	01	10	11	q
00	1	0		27	
01					
10	0				
11			0		

(B)

	00	01	10	11	q
00		0			1
01		1			
10				0	
11		0			

(C)

	00	01	10	11	q
00		1			0
01	1	1			
10			0		
11		0			

(D)

	00	01	10	11	q
00		1			0
01				1	
10	0				
11			0		

Q.47 The height of a tree is defined as the number of edges on the longest path in the tree. The function shown in the pseudocode below is invoked as height(root) to compute the height of a binary tree rooted at the tree pointer root.

```
int height (treeptr n)
{ if (n == NULL) return -1;
  if (n → left == NULL)
      if (n → right == NULL) return 0;
      else return
                     B1
                                                     // Box 1
  else { h1 = height (n \rightarrow left);
         if (n → right == NULL) return (1+h1);
         else { h2 = height (n \rightarrow right);
                                                     // Box 2
                 return
                          B2
       }
}
```

The appropriate expressions for the two boxes B1 and B2 are

- (A) B1: $(1+\text{height}(n \rightarrow \text{right}))$ B2: (1+max(h1, h2))
- (C) B1: height($n \rightarrow right$) B2: max(h1, h2)

- (B) B1: (height(n \rightarrow right)) B2: (1+max(h1,h2))
- July of a Leith British Cores in the Cores of the Cores o (D) B1: $(1 + height(n \rightarrow right))$ B2: max(h1, h2)

Common Data Questions

Common Data for Questions 48 and 49:

Consider the following C code segment.

```
int a, b, c = 0;
void prtFun(void);
main( )
                                       Line 1 */
   static int a = 1;
   prtFun();
   a += 1;
   prtFun();
   printf(" \n %d %d ", a, b);
}
void prtFun(void)
                                       Line 2 */
   static int a = 2;
   int b = 1;
   a += ++b;
   printf(" \n %d %d ", a, b);
}
```

Q.48 What output will be generated by the given code segment?

```
(A)
                         (B)
                                                   (C)
 3
                                  2
                                                    4
                                                            2
         1
                          4
                                                            2
 4
         1
                          6
                                  1
                                                    6
 4
         2
                          6
                                  1
                                                    2
                                                            0
```

Q.49 What output will be generated by the given code segment if:

Line 1 is replaced by auto int a = 1; Line 2 is replaced by register int a -

Line 2 is replaced by **register int a = 2;**

99

Common Data for Questions 50 and 51:

Consider the following relations A, B and C:

11

\mathbf{A}				
Id	Name	Age		
12	Arun	60		
15	Shreya	24		

Rohit

B			
Id	Name	Age	
15	Shreya	24	
25	Hari	40	
98	Rohit	20	
99	Rohit	11	

C				
Id	Phone	Area		
10	2200	02		
99	2100	01		
		<u> </u>		

Q.50 How many tuples does the result of the following relational algebra expression contain? Assume that the schema of $A \cup B$ is the same as that of A.

$$(A \cup B) \bowtie_{A.Id > 40 \lor C.Id < 15} C$$

- (A) 7
- (B) 4
- (C) 5
- (D) 9
- Q.51 How many tuples does the result of the following SQL query contain?

SELECT A.Id

FROM A

WHERE A.Age > ALL (SELECT B.Age (D), The state of the state of

FROM B

- (A) 4

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

For the grammar below, a partial LL(1) parsing table is also presented along with the grammar. Entries that need to be filled are indicated as **E1**, **E2**, and **E3**. ε is the empty string, \$ indicates end of input, and, | separates alternate right hand sides of productions.

$$S \rightarrow a A b B | b A a B | \epsilon$$

 $A \rightarrow S$
 $B \rightarrow S$

	a	b	\$
S	E 1	E2	$S \rightarrow \epsilon$
A	$A \rightarrow S$	$A \rightarrow S$	error
В	$B \rightarrow S$	$B \rightarrow S$	E3

Q.52 The FIRST and FOLLOW sets for the non-terminals A and B are

(A)
$$FIRST(A) = \{a, b, \epsilon\} = FIRST(B)$$

 $FOLLOW(A) = \{a, b\}$
 $FOLLOW(B) = \{a, b, \$\}$

(B)
$$FIRST(A) = \{a, b, \$\}$$

 $FIRST(B) = \{a, b, \epsilon\}$
 $FOLLOW(A) = \{a, b\}$
 $FOLLOW(B) = \{\$\}$

(C)
$$FIRST(A) = \{a, b, \epsilon\} = FIRST(B)$$

 $FOLLOW(A) = \{a, b\}$
 $FOLLOW(B) = \emptyset$

Q.53 The appropriate entries for E1, E2, and E3 are

(A) E1: S
$$\rightarrow$$
 aAbB, A \rightarrow S
E2: S \rightarrow bAaB, B \rightarrow S
E3: B \rightarrow S

(B) E1: S
$$\rightarrow$$
 aAbB, S \rightarrow ϵ
E2: S \rightarrow bAaB, S \rightarrow ϵ
E3: S \rightarrow ϵ

(C) E1: S
$$\rightarrow$$
 aAbB, S \rightarrow ϵ
E2: S \rightarrow bAaB, S \rightarrow ϵ
E3: B \rightarrow S

(D) E1:
$$A \rightarrow S$$
, $S \rightarrow \varepsilon$
E2: $B \rightarrow S$, $S \rightarrow \varepsilon$
E3: $B \rightarrow S$

Statement for Linked Answer Questions 54 and 55:

A computer has a 256 KByte, 4-way set associative, write back data cache with block size of 32 Bytes. The processor sends 32 bit addresses to the cache controller. Each cache tag directory entry contains, in addition to address tag, 2 valid bits, 1 modified bit and 1 replacement bit.

Q.54 The number of bits in the tag field of an address is

- (A) 11
- (B) 14
- (C) 16
- (D) 27

Q.55 The size of the cache tag directory is

- (A) 160 Kbits
- (B) 136 Kbits
- (C) 40 Kbits
- (D) 32 Kbits

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

- HTML (Free /Available to everyone)
- PDF / TXT (Available to V.I.P. members. Free Standard members can access up to 5 PDF/TXT eBooks per month each month)
- > Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

