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1. Introduction     

Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on swarm intelligence. Swarm intelligence of PSO is produced by cooperation and 
competition between particles, which is used for guiding optimization search. PSO has been 
studied widely in many applications due to its good global searching ability. Currently PSO 
has been widely used in function optimization, neural network training, pattern 
classification, system control and other applications. The research on PSO in recent years 
indicates that PSO has fast convergence speed and good quality in solutions and fine 
robustness on optimization in multidimensional space functions or in dynamic objectives, 
which is suitable for project applications. In this chapter, we firstly introduce searching 
mechanism and algorithm processes of PSO. Then, some important problems are solved 
when PSO is used for job shop scheduling problems (JSSP), such as hybrid algorithms 
between particle swarm and other algorithms (HPSO), its deadlock issues, and the proof of 
PSO and HPSO convergence. This chapter can provide guides effectively for readers who 
apply particle swarm optimization algorithm. 

 
2. Particle Swarm Optimization Algorithm for JSSP 

Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. PSO algorithm constitutes the simple conduct rules for each particle, 
remembers the best position of the particles, and shares the information between particles. 
That is, PSO algorithm achieves the optimization through cooperation and competition 
between the individuals of population. Comparing with other evolutionary algorithms, PSO 
algorithm retains the global search strategy based on population, and belongs to the simple 
model of movement and velocity. PSO algorithm can dynamically adjust the current search 
with unique memory. Considering the currency and validity of the algorithm, PSO 
algorithm has been studied in many applications. 
Job shop scheduling problem (JSSP) is the simplification model of an actual problem, and 
among the most typical and hardest combinatorial optimization problems, which is a NP 
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complete problem. JSSP is often used to test the performance of the intelligent algorithms, 
which has important research and actual engineering meanings. 

 
2.1 Introduction of PSO 
PSO algorithm simulates the prey behavior of a bird flock. We can imagine a scene, a group 
of birds are random searching the food, and there is only a piece of food in this region. All 
the birds don’t know the place of food, but they know distance from the current location to 
the place of food. What is the optimal strategy of searching the food? The most simple and 
effective strategy is to search the areas where are close to the birds. 
PSO algorithm is motivated from the model, and is used to solve optimization problems. 
Each optimization is considered as a bird in the search space called a particle. Each particle 
has a fitness value that is decided by an optimization function, has a velocity to determine 
its flight direction and distance. PSO algorithm constructs an initial particle swarm (random 
solutions), then find the optimal solution through iterations. In each iteration, particles 
update their velocities and positions by tracking the two extreme values. An optimal 
solution is the individual extremum pBest that is found by the particle itself, and another 
optimal solution is the global individual extremum gBest that is found by the current 
population. 
In traditional PSO algorithm, the particle swarm searches results in space of m*n dimension, 
each particle position means a result of the problem. The particle continuously adjusts itself 
position X to search new results. Let Pid denote the optimal result that the particle obtains. 
Let Pgd denote the optimal position that the particle swarm passed, the best total result in the 
search domain. Let V denote the speed of the particle. 
 

Vid(t+1)=   Vid(t) + 1 rand() (Pid – Xid(t)) + 2 rand() (Pgd – Xid(t)) (1) 
 
Let Vid(t) denote the speed of d dimension of particle i in generation t, denote inertia 
weight, and ‘-’ denote distance. Let 1 and 2 denote parameter, which can adjust Pid and Pgd  

respectively. rand() is the random number generation function. Therefore, we can get the 
next particle position. 
 

Xid(t+1) = Xid(t) + Vid(t+1) (2) 
 
Considering the formula (1) and (2), we can find that the moving direction of particle is 
decided by three parts. That is, the initial speed Xid(t) of the particle, and the optimum 
distance Pid – Xid(t) that the particle passed, and the optimum distance Pgd – Xid(t) that the 
particle swarm passed. The relative importance of three parts is decided by weighting 
coefficient ，1，2。 
The traditional PSO algorithm is described as follows. 
STEP 1: Construct an initial particle swarm, that is randomly set the initial position X and 
the initial velocity V of each particle; 
STEP 2: Calculate fitness value of each particle; 
STEP 3: Compare each particle fitness value and its best position fitness value Pid, if better, 
update Pid; 

 

STEP 4: Compare each particle best position Pid and the best position of particle swarm Pgd, if 
better, update Pgd; 
STEP 5: adjust the velocity and position according the formula (1) and (2); 
STEP 6: If termination conditions are satisfied (good enough position or the maximum 
number of iterations), then end; otherwise, go to 2. 
PSO algorithm is a kind of evolutionary algorithm, which has several typical characteristics. 
First, the individual of population has been randomly initialized a random solution in the 
initialization process. Secondly, the better solutions of a new generation are obtained by 
searching the solution space. At last, a new generation of population is produced on the 
basis of the previous generation. 

 
2.2 Convergence of PSO 
The convergence of intelligence optimization algorithm is an important problem for the 
application of intelligent optimization algorithms. It is necessary that we discuss the 
convergence of PSO algorithm before solving a practical problem. 

 
2.2.1 Convergence of Traditional PSO 
It is a difficult problem to prove the convergence for an intelligent optimization algorithm. 
Two assumptions H1 and H2 proposed by Solis and Wet were introduced, which were used 
to prove the global convergence of the pure optimization algorithm with probability 1. 
General requirements of stochastic optimization algorithm convergence are described as 
follows. 
An optimization problem A, f  and stochastic optimization algorithm D are given. xk is the 
results of the k-th iterations, and results of the next iteration is xk+1 (xk+1 = D( xk,  )), where  
is the solution that has been searched by algorithm D. 
Condition H1: f( D( x,  ) )  f( x ), if   A, set f( D( xk,  ) )  f(  ), where A is the subset of 
the Rn, and A denotes the constraint space of the problem. 
Conditions H1 random algorithm can guarantee the correctness; their objective is to ensure 
optimization of the solution to the fitness value of f (x) non-incremental. 
A global convergence of the algorithm, which means sequence 0)}({ kkxf  can reach 
infimum inf( f( x ) : x  A) in the feasible solution A. Because it is possible that the feasible 
solution A of optimization problem exist discontinuity spaces or isolated spots, infimum 
and other fitness value is incontinuous. Considering this potential problem, search infimum 
is defined in Lebesgue measure space as shown in formula 3, where v[X] denotes Lebesgue 
measure in set X. 
  = inf( t : v[ x  A | f( x ) < t ] > 0 ) (3) 
 
Formula (3) implies that non-empty set of the search space is existent, where the fitness of 
its members infinitely are close to . The definition of v[X]and A guarantee that nonempty 
point does not exist in set A. So the algorithm can reach or be close to the infimum without 
searching all points of set A. 
Therefore, the optimal region can be defined as the following formula, where  > 0, M∞. 
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Where vk[B] is probability measure in set B, and B is the kth iteration set of algorithm D. 
Algorithm D satisfies condition H2. It means, it is impossible that algorithm D searches the 
points among set B, and let v[B] > 0. Because R，M  A, it is possible that the global 
optimum can be found. 
Theorem 1 (Global Convergence): Supposing that f is measurable and feasible solution 
space A is measurable subset of Rn, algorithm D satisfies condition H1 and H2. And 

algorithm D generates series 0}{ kkx . Then 
 

1][lim ,  Mkk
RxP   

 
P[ xk  R，M ] is probability measure in R，M, and R，M is the kth iteration set of algorithm D. 
Considering theorem 1, the global convergence of stochastic algorithms must satisfy the 
conditions H1 and H2. Because each iteration of PSO algorithm has kept the best position, 
conditions H1 must be satisfied. However, utilizing Markov chain theory and mathematical 
theory of real variable, Dr. Van den Bergh has proved that PSO algorithm does not satisfy 
conditions H2. 

 
2.2.2 Convergence of Improved PSO 
Because the traditional PSO algorithm does not guarantee global convergence, the position 
and velocity update equations are improved for solving JSSP. Considering the formula (1) 
and (2), although vk and xk is multidimensional variable, each dimension is independent. 
Therefore the convergence analysis can be simplified to the one-dimensional. In order to 
expand the solution space of PSO algorithm, we adopt the velocity update equation and 
position update equation of particle i as follows: 
 

vi(t+1) = (Pi - xi(t)) + (Pg - xi(t)) (4) 
xi(t+1) = xi(t)+ vi(t+1) (5) 

 
In formula (4) and (5), , (,  [0，1]) are random numbers. The part (Pi - xi(t)) 
represents that the best private distance experience of the particle i in group t is inhabited by 
probability ; And the part (Pg - xi(t)) represents that the best group distance experience of 
all the particles in group t is inhabited by probability . 
 It can be obtained from formula (4) and (5) that the bigger the value of  is the larger impact 
of Pi is, and the greater possibility of particle’s moving to the local optimum will become; 

 

Similarly, the bigger the value of  is the larger impact of Pg is and the greater possibility of 
particle’s moving to the global optimum will become. 
The particle i will stop moving when x i (t) = Pi = Pg. Namely xi(t+1) = xi(t). In order to 
expand the solution space of PSO algorithm, we save Pg as historical global best position 
and regenerate position xi(t+1) of particle i randomly in the solution space, which will make 
the particle i continue to search.   
Through the operation, equation (5) can be deformed as follows: 
 

                    xi( t + 1 ) = ( 1 – c ) xi( t ) + c1 pi + c2 pg (6) 
 
When pi, pg fixed, equation (6) is a simple linear difference equation, when xi(0) = xi 0, its 
solution is: 
 

              xi( t ) = k + ( xi 0 – k ) ( 1 – c ) t 
(7)           k =

c
pcpc gi 21 
，c = c1 + c2 

 
Considering the formula (7), the formula (6) has convergence if | 1 – c | < 1. That is, if t  
∞, then xi( t )

c
pcpc gi 21  . If | 1 – c | < 1, then 0 < c1 + c2 < 2. That is, if 0 < c1 + c2 < 2, the 

evolution equation of improved PSO algorithm is asymptotic convergence. The convergence 
region shown in Fig. 1. 
 

 
Fig. 1. Convergence region 
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See the formula (7), if | 1 – c | < 1, then 
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(8) 
xi( t + 1 ) = xi( t ) - ( c1 + c2 ) xi( t ) + c1 pi + c2 pg 

 
if t  ∞, 
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Considering theorem 1, if a random optimization algorithm satisfies condition H1 and H2, 
we can guarantee that the algorithm can converge to global optimal solution with 
probability 1. We will discuss the problem whether the improved PSO algorithm is able to 
satisfy condition H1 and H2. 
In the improved PSO algorithm, the solution sequence is{ pg，t }, where t denotes evolutional 
generation, and pg，t denotes the best position of particle swarm in generation t. The function 
D is redefined by the improved PSO algorithm. 
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It is easy to prove that the condition H1 is satisfied. 
In order to satisfy the conditions H2, the sample space of particle swarm A must contain A. 
Namely, 
 

,
1

,
a

i
tiMA


  (12) 

 
Where Mi，t is the support set of the sample space of particle i in generation t. Considering 
particle j, let Mi，t = A when xj( t ) = pi = pg. Let the other particle i: 
 

))1(())1(()1( 21,  txptxptxM igiiiti   (13) 
 
Because of 0  1  c1 and 0  2  c2, Mi，t is a super rectangle with vertices, where 1 = 2 = 0, 1 

= c1, and 2 = c2. Let v[ Mi，t ∩ A ] < v( A ), when max( c1 | pi - xi( t - 1 ) |，c2 | pg - xi( t – 1 ) | )  
< 0.5 × diam(A), where diam( A ) denotes the length of A. Considering condition H2, the 
length of Mi，t is near to 0 when t  ∞. Therefore, the measure v[ Mi，t ] of each Mi，t is 
decreasing with the growth of generation t. And the measure v[
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decreasing. Therefore there is N, let v[ 
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= A. In order to satisfy the conditions H2,we define A is the 

Borel subset(S = Mi，t), then v[ S ] > 0 and vt[ S ] = 1][
0
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a

i
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. Considering theorem 1, the 

improved algorithm can converge to a global optimal solution with probability 1. 
There is almost identical convergence between the improved PSO algorithm and the 
traditional PSO algorithm. That is, the parameter xi(t) can converge to the best location 
within the finite range. The traditional PSO algorithm does not guarantee global 
convergence, but the improved PSO algorithm can converge to a global optimal solution 
with probability 1 when generation t is near to ∞. 

 
2.3 Convergence of PSO 
Job shop scheduling problems (JSSP) is an important part of production scheduling of an 
enterprise, which is one kind of the most typical and hardest combinatorial optimization 
problems, an NP complete problem. The main task in scheduling, in terms of production 
targets and constraints, is to determine the precise process route, time, machine and 
operation for every process object. JSSP is often used to test the performance of the 
intelligent algorithms, which is significant for research and actual engineering. 
Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on continuous optimization problems. PSO algorithm is less studied to solve JSSP. 
The PSO algorithm design of solving JSSP is difficult, and the efficient PSO algorithm design 
of solving JSSP is more difficult.  
Leticia etc. construct the single machine scheduling algorithm based on random coding of 
JSSP, and the algorithm is a kind of retardation minimum time algorithm. The algorithm 
utilizes the dynamic mutation operators to ensure the diversity of particle populations. The 
algorithm has been tested respectively with 40 jobs and 50 jobs, and the algorithm achieves 
good results. Lina etc. construct PSO algorithm based on operation code to solve JSSP. They 
apply the crossover and mutation operation of GA in place of the update operations of 
velocity and position of PSO algorithm.  
In the hybrid particle swarm optimization, Jerald.J etc. apply GA, SA and PSO algorithm to 
solve scheduling problems of flexible manufacturing systems. The hybrid algorithm 
optimizes machine idle time and reduces the cost of production tardiness. Liu etc. combine 
PSO algorithm and VNS. The hybrid algorithm minimizes the makespan of the flexible JSSP. 
Xia etc. design the hybrid PSO algorithm based on SA local search algorithm. The hybrid 
algorithm can solve multi-objective flexible JSSP. In order to minimize the makespan, Sha 
etc. construct the hybrid algorithm based on Hash table to solve JSSP. In the hybrid 
algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct the feasible solution 
from the particle location of Hash table, and SWAP operation updates the particle velocity. 
The hybrid algorithm combines with TS algorithm based on block structure. 

 
2.3.1 JSSP Description 
Each instance of the problem J/ /Cmax is defined by a set of jobs, a set of machines and a set 
of operations. Each job consists of a sequence of operations, each of which has to be 
performed on a given machine for a given time. A schedule is an allocation of the operations 
to time intervals on the machines. The problem is to find the schedule that minimizes the 
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Considering theorem 1, if a random optimization algorithm satisfies condition H1 and H2, 
we can guarantee that the algorithm can converge to global optimal solution with 
probability 1. We will discuss the problem whether the improved PSO algorithm is able to 
satisfy condition H1 and H2. 
In the improved PSO algorithm, the solution sequence is{ pg，t }, where t denotes evolutional 
generation, and pg，t denotes the best position of particle swarm in generation t. The function 
D is redefined by the improved PSO algorithm. 
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It is easy to prove that the condition H1 is satisfied. 
In order to satisfy the conditions H2, the sample space of particle swarm A must contain A. 
Namely, 
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Where Mi，t is the support set of the sample space of particle i in generation t. Considering 
particle j, let Mi，t = A when xj( t ) = pi = pg. Let the other particle i: 
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Because of 0  1  c1 and 0  2  c2, Mi，t is a super rectangle with vertices, where 1 = 2 = 0, 1 

= c1, and 2 = c2. Let v[ Mi，t ∩ A ] < v( A ), when max( c1 | pi - xi( t - 1 ) |，c2 | pg - xi( t – 1 ) | )  
< 0.5 × diam(A), where diam( A ) denotes the length of A. Considering condition H2, the 
length of Mi，t is near to 0 when t  ∞. Therefore, the measure v[ Mi，t ] of each Mi，t is 
decreasing with the growth of generation t. And the measure v[
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improved algorithm can converge to a global optimal solution with probability 1. 
There is almost identical convergence between the improved PSO algorithm and the 
traditional PSO algorithm. That is, the parameter xi(t) can converge to the best location 
within the finite range. The traditional PSO algorithm does not guarantee global 
convergence, but the improved PSO algorithm can converge to a global optimal solution 
with probability 1 when generation t is near to ∞. 

 
2.3 Convergence of PSO 
Job shop scheduling problems (JSSP) is an important part of production scheduling of an 
enterprise, which is one kind of the most typical and hardest combinatorial optimization 
problems, an NP complete problem. The main task in scheduling, in terms of production 
targets and constraints, is to determine the precise process route, time, machine and 
operation for every process object. JSSP is often used to test the performance of the 
intelligent algorithms, which is significant for research and actual engineering. 
Particle swarm optimization (PSO) algorithm is a kind of random optimization algorithm 
based on continuous optimization problems. PSO algorithm is less studied to solve JSSP. 
The PSO algorithm design of solving JSSP is difficult, and the efficient PSO algorithm design 
of solving JSSP is more difficult.  
Leticia etc. construct the single machine scheduling algorithm based on random coding of 
JSSP, and the algorithm is a kind of retardation minimum time algorithm. The algorithm 
utilizes the dynamic mutation operators to ensure the diversity of particle populations. The 
algorithm has been tested respectively with 40 jobs and 50 jobs, and the algorithm achieves 
good results. Lina etc. construct PSO algorithm based on operation code to solve JSSP. They 
apply the crossover and mutation operation of GA in place of the update operations of 
velocity and position of PSO algorithm.  
In the hybrid particle swarm optimization, Jerald.J etc. apply GA, SA and PSO algorithm to 
solve scheduling problems of flexible manufacturing systems. The hybrid algorithm 
optimizes machine idle time and reduces the cost of production tardiness. Liu etc. combine 
PSO algorithm and VNS. The hybrid algorithm minimizes the makespan of the flexible JSSP. 
Xia etc. design the hybrid PSO algorithm based on SA local search algorithm. The hybrid 
algorithm can solve multi-objective flexible JSSP. In order to minimize the makespan, Sha 
etc. construct the hybrid algorithm based on Hash table to solve JSSP. In the hybrid 
algorithm, Giffler-Thompson (G&T) algorithm is adopted to construct the feasible solution 
from the particle location of Hash table, and SWAP operation updates the particle velocity. 
The hybrid algorithm combines with TS algorithm based on block structure. 

 
2.3.1 JSSP Description 
Each instance of the problem J/ /Cmax is defined by a set of jobs, a set of machines and a set 
of operations. Each job consists of a sequence of operations, each of which has to be 
performed on a given machine for a given time. A schedule is an allocation of the operations 
to time intervals on the machines. The problem is to find the schedule that minimizes the 
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makespan subject to the following constraints: (i) the precedence of operations given by 
each job are to be respected, (ii) each machine can perform at most one operation at a time 
and (iii) the operations cannot be interrupted. 
Let:  J = {1, … ,n} denote the set of jobs; M = {1, … ,m} denote the set of machines;  V = {0,1, … ,n +1} denote the set of operations, where 0 and n +1 represent the dummy 

start and finish operations, respectively; A be the set of pair of operations constrained by the precedence relations, as in (i);  Vk be the set of operations to be performed by the machine k;  Ek  Vk × Vk be the set of pair of operations to be performed on the machine k and which 
therefore have to be sequenced, as specified in (ii);  pv and tv denote the (fixed) processing time and the (variable) start time of the operation 
v, respectively. The processing time of the 0 and n +1 operations is equal to zero, i.e., 0p  
= 1np  = 0. 

Given the above assumptions, the problem can be stated as searching minimize 1nt   
subject to 
 

tj – ti ≥ pi,                 (i , j)∈A,                                                
tj – ti ≥ pi ∨ti – tj ≥ pj,             (i , j)∈ Ek, k∈M, 

ti ≥ 0,                     i∈V. 
(14) 

 
The first set of constraints represents the precedence relations among the operations of the 
same job, whereas the second set of constraints describes the sequencing of the operations 
on the same machine. These constraints impose that either tj – ti ≥ pi or ti – tj ≥ pj,. Any 
feasible solution of the problem (1) is called a schedule. 
In this framework, it is useful to represent the job shop scheduling problem in terms of a 
disjunctive graph G:=(V,A, E), where V is the set of nodes, A the set of ordinary arcs 
(conjunctive) and E the set of disjunctive arcs. The nodes of G correspond to operations, the 
directed arcs correspond to precedence relations, and the disjunctive arcs correspond to 
operations to be performed on the same machine. More precisely, k

m
k EE 1  , where Ek is 

the subset of disjunctive arcs is related to a machine k; each disjunctive arc of E can be 
considered as a pair of opposite directed arcs. The length of an arc (i,j)∈A is pi, the length of 
an disjunctive arc (i,j)∈E is either pi or pj depending on its orientation. The selection of a 
processing order on each machine involves the orientation of the disjunctive arcs, in order to 
produce an acyclic directed graph. A schedule on a disjunctive graph G consists in finding a 
set of orientations that minimizes the length of the longest path (critical path) in the resulting 
acyclic directed graph.  
According to the Adams et al. method, the graph G can be decomposed into one direct 
subgraph D=(V , A), by deleting disjunctive arcs, and in m cliques Gk=(Vk , Ek), obtained 
from G by deleting both the conjunctive arcs and the dummy nodes 0 and 1~ n . A selection 
Sk in Ek contains exactly one arc between each pair of opposite arcs in Ek . A selection is 
acyclic since it does not contain any directed cycle. Moreover, sequencing the operations on 

 

the machine k is equivalent to choosing an acyclic selection in Ek . A complete selection S is 
the union of selections Sk , one for each Ek , k∈M. S generates the directed graph DS =(V, 
A∪S);S is acyclic if the associated directed graph DS is acyclic. An acyclic complete selection 
S infers a schedule, i.e., a feasible solution of Problem. 
In order to solve the job shop scheduling problem the best acyclic complete selection S* that 
minimizes the value of the length of the longest critical path in the direct graph 
DS*=(V,A∪S*)must be determined.  
The neighbourhood of the current solution can be formed by the solutions generated by 
inverting the direction of a disjunctive arc in the critical path of DS . To this end, as stated by 
other authors, it is useful to decompose the critical path into a sequence of r blocks  
(B1,B2, . . . ,Br). Each block contains the operations processed on the same machine; for each 
pair of consecutive blocks Bj,Bj+1 with 1≤j≤r the last operation of Bj and the first of Bj+1 belong 
to the same job but are performed on different machines. 

 
2.3.2 PSO for Solving JSSP 
As for applying PSO to the job shop scheduling problem, the problem can be described as 
that n jobs are processed by m machines. A certain list such as Sm = (Oi), i＝1, …, n，
demonstrates the list of jobs processed on a machine, then the amount of possible lists is n!, 
list set S = { Sk | k = 1, 2, …, m} is used to express the process that n jobs done by m machines, 
the whole possibility of solutions is (n!)m. As job shop scheduling problem, when all the 
operations in the solution is configured, the best processed list that satisfies the efficiency 
index can be seeked. Therefore, for solving job shop scheduling problem by PSO, we only 
need to change m encoding of each particle to seek optimal solution. According to the above, 
definition of operating list in job shop problem is given here.  
Definition 1: exchanging operation. In the operation list, operation Oi on position i and 
operation Oj on position j change their positions each other. This behavior is called 
exchanging operation, the operator is denoted as . For the list S, the exchange of Oi and Oj  
is expressed as S(Oi,Oj), where, (Oi,Oj) denotes the operation exchange, which can be 
simply expressed as Oij. Then S’＝S(Oi,Oj)＝SOij, S’ denotes the list which has been 
disposed.  
Example 1: with regard to the job shop problem in which 6 jobs are processed on m 
machines, the list done on machine m is Sm＝(2 4 6 1 3 5 ), for the list Sm, if operation 2 and 
operation 6 exchanges, their position are respectively 1 and 3, the exchange process can be 
described as following formula.  
Here, S’m = Sm (O1,O3) =(2 4 6 1 3 5)  (2,6) =( 6 4 2 1 3 5). 
Definition 2: exchange list. The operation list composed of no less than one exchanges among 
operations is named as exchange list, which is denoted as CS, and CS = (O1i1j, O2k2l, …, Onpnq ). 
When the list only have one time exchange operate, CS = (O1i1j,), where the sequence O1i1j, 
O2k2l, …, Onpnq, denotes the sequence of exchanging operations in the list S. 
Exchange list acts on certain fraction of Sm, and it means that all the exchange operation in 
the list acts on Sm one by one, namely S’m = SmCS = Sm （O1i1j, O2k2l, …, Onpnq）=  
[[Sm  (O1i,O1j) ]  (O2k,O2l) ]… (Onp,Onq). 
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makespan subject to the following constraints: (i) the precedence of operations given by 
each job are to be respected, (ii) each machine can perform at most one operation at a time 
and (iii) the operations cannot be interrupted. 
Let:  J = {1, … ,n} denote the set of jobs; M = {1, … ,m} denote the set of machines;  V = {0,1, … ,n +1} denote the set of operations, where 0 and n +1 represent the dummy 

start and finish operations, respectively; A be the set of pair of operations constrained by the precedence relations, as in (i);  Vk be the set of operations to be performed by the machine k;  Ek  Vk × Vk be the set of pair of operations to be performed on the machine k and which 
therefore have to be sequenced, as specified in (ii);  pv and tv denote the (fixed) processing time and the (variable) start time of the operation 
v, respectively. The processing time of the 0 and n +1 operations is equal to zero, i.e., 0p  
= 1np  = 0. 

Given the above assumptions, the problem can be stated as searching minimize 1nt   
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tj – ti ≥ pi,                 (i , j)∈A,                                                
tj – ti ≥ pi ∨ti – tj ≥ pj,             (i , j)∈ Ek, k∈M, 
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(14) 

 
The first set of constraints represents the precedence relations among the operations of the 
same job, whereas the second set of constraints describes the sequencing of the operations 
on the same machine. These constraints impose that either tj – ti ≥ pi or ti – tj ≥ pj,. Any 
feasible solution of the problem (1) is called a schedule. 
In this framework, it is useful to represent the job shop scheduling problem in terms of a 
disjunctive graph G:=(V,A, E), where V is the set of nodes, A the set of ordinary arcs 
(conjunctive) and E the set of disjunctive arcs. The nodes of G correspond to operations, the 
directed arcs correspond to precedence relations, and the disjunctive arcs correspond to 
operations to be performed on the same machine. More precisely, k

m
k EE 1  , where Ek is 

the subset of disjunctive arcs is related to a machine k; each disjunctive arc of E can be 
considered as a pair of opposite directed arcs. The length of an arc (i,j)∈A is pi, the length of 
an disjunctive arc (i,j)∈E is either pi or pj depending on its orientation. The selection of a 
processing order on each machine involves the orientation of the disjunctive arcs, in order to 
produce an acyclic directed graph. A schedule on a disjunctive graph G consists in finding a 
set of orientations that minimizes the length of the longest path (critical path) in the resulting 
acyclic directed graph.  
According to the Adams et al. method, the graph G can be decomposed into one direct 
subgraph D=(V , A), by deleting disjunctive arcs, and in m cliques Gk=(Vk , Ek), obtained 
from G by deleting both the conjunctive arcs and the dummy nodes 0 and 1~ n . A selection 
Sk in Ek contains exactly one arc between each pair of opposite arcs in Ek . A selection is 
acyclic since it does not contain any directed cycle. Moreover, sequencing the operations on 

 

the machine k is equivalent to choosing an acyclic selection in Ek . A complete selection S is 
the union of selections Sk , one for each Ek , k∈M. S generates the directed graph DS =(V, 
A∪S);S is acyclic if the associated directed graph DS is acyclic. An acyclic complete selection 
S infers a schedule, i.e., a feasible solution of Problem. 
In order to solve the job shop scheduling problem the best acyclic complete selection S* that 
minimizes the value of the length of the longest critical path in the direct graph 
DS*=(V,A∪S*)must be determined.  
The neighbourhood of the current solution can be formed by the solutions generated by 
inverting the direction of a disjunctive arc in the critical path of DS . To this end, as stated by 
other authors, it is useful to decompose the critical path into a sequence of r blocks  
(B1,B2, . . . ,Br). Each block contains the operations processed on the same machine; for each 
pair of consecutive blocks Bj,Bj+1 with 1≤j≤r the last operation of Bj and the first of Bj+1 belong 
to the same job but are performed on different machines. 

 
2.3.2 PSO for Solving JSSP 
As for applying PSO to the job shop scheduling problem, the problem can be described as 
that n jobs are processed by m machines. A certain list such as Sm = (Oi), i＝1, …, n，
demonstrates the list of jobs processed on a machine, then the amount of possible lists is n!, 
list set S = { Sk | k = 1, 2, …, m} is used to express the process that n jobs done by m machines, 
the whole possibility of solutions is (n!)m. As job shop scheduling problem, when all the 
operations in the solution is configured, the best processed list that satisfies the efficiency 
index can be seeked. Therefore, for solving job shop scheduling problem by PSO, we only 
need to change m encoding of each particle to seek optimal solution. According to the above, 
definition of operating list in job shop problem is given here.  
Definition 1: exchanging operation. In the operation list, operation Oi on position i and 
operation Oj on position j change their positions each other. This behavior is called 
exchanging operation, the operator is denoted as . For the list S, the exchange of Oi and Oj  
is expressed as S(Oi,Oj), where, (Oi,Oj) denotes the operation exchange, which can be 
simply expressed as Oij. Then S’＝S(Oi,Oj)＝SOij, S’ denotes the list which has been 
disposed.  
Example 1: with regard to the job shop problem in which 6 jobs are processed on m 
machines, the list done on machine m is Sm＝(2 4 6 1 3 5 ), for the list Sm, if operation 2 and 
operation 6 exchanges, their position are respectively 1 and 3, the exchange process can be 
described as following formula.  
Here, S’m = Sm (O1,O3) =(2 4 6 1 3 5)  (2,6) =( 6 4 2 1 3 5). 
Definition 2: exchange list. The operation list composed of no less than one exchanges among 
operations is named as exchange list, which is denoted as CS, and CS = (O1i1j, O2k2l, …, Onpnq ). 
When the list only have one time exchange operate, CS = (O1i1j,), where the sequence O1i1j, 
O2k2l, …, Onpnq, denotes the sequence of exchanging operations in the list S. 
Exchange list acts on certain fraction of Sm, and it means that all the exchange operation in 
the list acts on Sm one by one, namely S’m = SmCS = Sm （O1i1j, O2k2l, …, Onpnq）=  
[[Sm  (O1i,O1j) ]  (O2k,O2l) ]… (Onp,Onq). 
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Definition 3: Equal set of exchange list. Different exchange list acts on the same solution, 
maybe the same solution is obtained. All the exchange lists which products the same 
solution is called the equal set.  
Definition 4: united operation of exchanged list. When more than two exchanging lists such 
as CS1，CS2，…, CSn, which act on one list according to the sequence is named as united 
operate, moreover, the operator is denoted as , the unit of exchange list is expressed as HS, 
HS= CS1CS2…CSn. Through the principle stated above, it can be described as 
 S’= S  HS= S （CS1CS2…CSn）, where S’ denotes the new operation list that S had 
been exchanged according to the exchange list.      
Through definition 3 and definition 4, a new solution S’ can be obtained after acting on 
solution S with CS1 and CS2.  Supposed that there is another exchange list that acts on the 
solution S, if a same solution S’ can be obtained, then the unite of CS1 and CS2 is equal to CS, 
which can be expressed as CS＝ CS1  CS2, CS and CS1  CS2 belong to the same equal set, 
generally speaking, CS is not sole. 
Definition 5: Basic exchange list. In the equal set {CSi} of exchanging list, exchange list BS 
with least exchange operators is called basic exchange list of this equal set. Supposed X and 
Y are operation list on machine m, constructing an exchange list BS which satisfies X = Y  
BS, if BS is of least exchange operation, then BS is a basic exchange list, which is denoted as 
BS = Y  X.  
According to the following method, a basic exchange list can be constructed, supposed that 
two solutions of problem FT06 are given, the lists on machine m are respectively X and Y.  
Eg:  X= ( 1 2 3 4 5 6 )，    Y= ( 2 6 3 1 5 4). 
It can be seen that，in the operation X, O1 =1. and in operation Y, O4= 1, let Y’s first operate 
exchanging O1i1 be Y  (O1,O4), then Y1 = Y (O1,O4), there exists Y1= ( 1 6 3 2 5 4); in X,  
O2 =2, and in Y1, O4= 2, let the second exchange operate O2k2l be Y1 (O2 ,O4), then  
Y2=Y1  (O2,O4), there exists Y2= ( 1 2 3 6 5 4). Similarly, the third exchange operate  
O3p3q is Y2 (O4 ,O6), there exists Y3 = Y2 (O4, O6)= X. Spontaneously,  
BS = (O1i1j, O2k2l, O3p3q ) is of the minimal exchange operations, which is named as a basic 
exchange list, namely, BS = Y  X. Here, BS = Y  X= (O1i1j, O2k2l, O3p3q )= 
((O1 ,O4)  (O2,O4)  (O4,O6)）. 
Aiming at PSO used to solve job shop problem, formula of basic PSO is not fit for this new 
type algorithm, so the formulas are recreated as follows: 
 

Vid = ( Xid  Pid)  ( Xid  Pgd) (15) 
X’id = Xid Vid (16) 

 
Where ,  are random number and (,  [0，1]). ( Xid Pid) expresses that all the 
exchange operations of basic exchange list (XidPid) are withheld by the probability . 
Similarly, ( Xid Pgd) expresses that all the exchange operations of basic exchange list  
( Xid Pgd) are withheld by the probability  . 
According to the formula (15) and (16), it can be seen that, the greater  is, the stronger Pid 

affects, the probability of moving towards to the local optimization is magnified. In the same 
way, the greater  is, the stronger Pgd effect, the probability of moving towards to the global 
optimization is magnified.      

 

Due to the regularity of object functions, the optimal solution must be in the active 
scheduling set, so PSO uses the solution produced with G&T as the initial solution. For the 
random and widespread searching ability, the exchanging list based PSO is used to search 
globally. In the process of running PSO algorithm, if any infeasible solution appears, it must 
be adjusted. When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then 
recreate this particle, so that PSO algorithm for job shop problem is constructed.  
The steps of solving JSSP by PSO are described as following: 
Step1: Use G&T algorithm to produce an initial solution, initialize Pid with the initial 
solution, initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step6; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list; 
c) Calculate validity Vid of particle according to formula (15); 
d) Calculate new position X’id (solution) according to formula (16);   

Step4: Adjust infeasible solution; 
Step5: Calculate fitness: 

a) If a better solution is got, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step6: Show the optimal solution obtained by this algorithm (Pgd). 
Adjustment of infeasible solution is described in hybrid PSO algorithm. 

 
2.4 Summary 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. The original intent was to graphically simulate the graceful but 
unpredictable choreography of bird flock. In the section, we introduce search mechanisms 
and processes of PSO, and analyze the convergence of PSO theoretically. A new PSO 
algorithm is proposed based on exchanged factors and exchanged lists, which is put the PSO 
idea into the discrete field of JSSP. 

 
3. Hybrid Particle Swarm optimization Algorithm for JSSP 

Recently, the theorem of No Free lunch (NFL) is proposed for evaluating optimization 
algorithms by professor Wolpert and Macready of Stanford University. It is shown that 
there isn’t a single solution that adapts to all problems effectively. Radcliffe and Surry have 
the same conclusion. 
For example, if GA algorithm is better than SA algorithm when solving the problem set A, 
then SA algorithm must be better than GA algorithm when solving the problem set B. 
Considering all the circumstances, two algorithms have the same performance. Therefore, 
there is no kind of intelligent optimization algorithm better than the other intelligent 
optimization algorithms. That is, every method has its corresponding application 
circumstances. 
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Definition 3: Equal set of exchange list. Different exchange list acts on the same solution, 
maybe the same solution is obtained. All the exchange lists which products the same 
solution is called the equal set.  
Definition 4: united operation of exchanged list. When more than two exchanging lists such 
as CS1，CS2，…, CSn, which act on one list according to the sequence is named as united 
operate, moreover, the operator is denoted as , the unit of exchange list is expressed as HS, 
HS= CS1CS2…CSn. Through the principle stated above, it can be described as 
 S’= S  HS= S （CS1CS2…CSn）, where S’ denotes the new operation list that S had 
been exchanged according to the exchange list.      
Through definition 3 and definition 4, a new solution S’ can be obtained after acting on 
solution S with CS1 and CS2.  Supposed that there is another exchange list that acts on the 
solution S, if a same solution S’ can be obtained, then the unite of CS1 and CS2 is equal to CS, 
which can be expressed as CS＝ CS1  CS2, CS and CS1  CS2 belong to the same equal set, 
generally speaking, CS is not sole. 
Definition 5: Basic exchange list. In the equal set {CSi} of exchanging list, exchange list BS 
with least exchange operators is called basic exchange list of this equal set. Supposed X and 
Y are operation list on machine m, constructing an exchange list BS which satisfies X = Y  
BS, if BS is of least exchange operation, then BS is a basic exchange list, which is denoted as 
BS = Y  X.  
According to the following method, a basic exchange list can be constructed, supposed that 
two solutions of problem FT06 are given, the lists on machine m are respectively X and Y.  
Eg:  X= ( 1 2 3 4 5 6 )，    Y= ( 2 6 3 1 5 4). 
It can be seen that，in the operation X, O1 =1. and in operation Y, O4= 1, let Y’s first operate 
exchanging O1i1 be Y  (O1,O4), then Y1 = Y (O1,O4), there exists Y1= ( 1 6 3 2 5 4); in X,  
O2 =2, and in Y1, O4= 2, let the second exchange operate O2k2l be Y1 (O2 ,O4), then  
Y2=Y1  (O2,O4), there exists Y2= ( 1 2 3 6 5 4). Similarly, the third exchange operate  
O3p3q is Y2 (O4 ,O6), there exists Y3 = Y2 (O4, O6)= X. Spontaneously,  
BS = (O1i1j, O2k2l, O3p3q ) is of the minimal exchange operations, which is named as a basic 
exchange list, namely, BS = Y  X. Here, BS = Y  X= (O1i1j, O2k2l, O3p3q )= 
((O1 ,O4)  (O2,O4)  (O4,O6)）. 
Aiming at PSO used to solve job shop problem, formula of basic PSO is not fit for this new 
type algorithm, so the formulas are recreated as follows: 
 

Vid = ( Xid  Pid)  ( Xid  Pgd) (15) 
X’id = Xid Vid (16) 

 
Where ,  are random number and (,  [0，1]). ( Xid Pid) expresses that all the 
exchange operations of basic exchange list (XidPid) are withheld by the probability . 
Similarly, ( Xid Pgd) expresses that all the exchange operations of basic exchange list  
( Xid Pgd) are withheld by the probability  . 
According to the formula (15) and (16), it can be seen that, the greater  is, the stronger Pid 

affects, the probability of moving towards to the local optimization is magnified. In the same 
way, the greater  is, the stronger Pgd effect, the probability of moving towards to the global 
optimization is magnified.      

 

Due to the regularity of object functions, the optimal solution must be in the active 
scheduling set, so PSO uses the solution produced with G&T as the initial solution. For the 
random and widespread searching ability, the exchanging list based PSO is used to search 
globally. In the process of running PSO algorithm, if any infeasible solution appears, it must 
be adjusted. When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then 
recreate this particle, so that PSO algorithm for job shop problem is constructed.  
The steps of solving JSSP by PSO are described as following: 
Step1: Use G&T algorithm to produce an initial solution, initialize Pid with the initial 
solution, initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step6; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list; 
c) Calculate validity Vid of particle according to formula (15); 
d) Calculate new position X’id (solution) according to formula (16);   

Step4: Adjust infeasible solution; 
Step5: Calculate fitness: 

a) If a better solution is got, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step6: Show the optimal solution obtained by this algorithm (Pgd). 
Adjustment of infeasible solution is described in hybrid PSO algorithm. 

 
2.4 Summary 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by 
Kennedy and Eberhart in 1995. The particle swarm concept was motivated by the simulation 
of social behaviors. The original intent was to graphically simulate the graceful but 
unpredictable choreography of bird flock. In the section, we introduce search mechanisms 
and processes of PSO, and analyze the convergence of PSO theoretically. A new PSO 
algorithm is proposed based on exchanged factors and exchanged lists, which is put the PSO 
idea into the discrete field of JSSP. 

 
3. Hybrid Particle Swarm optimization Algorithm for JSSP 

Recently, the theorem of No Free lunch (NFL) is proposed for evaluating optimization 
algorithms by professor Wolpert and Macready of Stanford University. It is shown that 
there isn’t a single solution that adapts to all problems effectively. Radcliffe and Surry have 
the same conclusion. 
For example, if GA algorithm is better than SA algorithm when solving the problem set A, 
then SA algorithm must be better than GA algorithm when solving the problem set B. 
Considering all the circumstances, two algorithms have the same performance. Therefore, 
there is no kind of intelligent optimization algorithm better than the other intelligent 
optimization algorithms. That is, every method has its corresponding application 
circumstances. 
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In theory and practice, adopting a single intelligent algorithm is not enough for solving 
JSSP. The hybrid algorithm is an effective method, which enlarges the application domain 
and improves their performance. A hybrid algorithm combines effectively some features of 
several algorithms, such as optimization mechanism, process, search behavior, operation, 
and so on. The hybrid algorithm will have better optimization efficiency. 

 
3.1 HSPSO 
If adopting a single algorithm to solve job shop problems, it is hard to improve the local 
optimization after some running time of the algorithm, it is necessary to find out a method 
to escape from this local optimization. Therefore, a hybrid PSO algorithm based on 
exchanging list is proposed. 
The design ideas of hybrid optimization algorithm HPSO are as follows: (1) Due to the 
regularity of object function, the optimal solution must be in the active scheduling set, so 
HPSO uses the solution produced with G&T as the initial solution. (2) For the randomly and 
widespread searching ability, the exchanging list based PSO is used to search globally. (3) In 
the process of running PSO algorithm, if an infeasible solution appears, it must be adjusted. 
(4) In order to avoid algorithm falling in a local optimization too early, TS exploiting 
strategy embedded critical operations based on exchanging neighbors is adopted to realize 
local parallel search, simultaneously improve the local search ability.  
When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then adopt G&T 
algorithm to regenerate the particle, so that hybrid PSO algorithm for solving JSSP is 
constructed. The arithmetic frame is shown as Fig. 2. 
 

 
Fig. 2. Frame of the hybrid PSO algorithm 
 
The steps of solving job shop problem by HPSO are described as following: 
Step1: Use G&T algorithm to produce initial solution, initialize Pid with an initial solution, 
initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step7; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely a new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list;  

 

c) Calculate validity Vid of particle according to formula (8); 
d) Calculate new position X’id (solution) according to formula (9);   

Step4: Adjust infeasible solutions; 
Step5: Select some solutions by the probability Pl to perform TS; 
Step6: Calculate fitness: 

a) If a better solution is gotten, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step7: Show the optimal solution obtained by this algorithm (Pgd). 

 
3.2 TS based on neighbor exchanging of critical operation 
Taboo search(TS) algorithm is one of the best algorithms for solving job shop scheduling 
problem. So far, its running speed is faster, and it may provide a better induct within the 
whole searching field compared with other algorithms. 
In order to obtain better searching results and higher efficiency, neighbors must be highly 
constrained and can be rapidly assessed. The possibility of moving to high quality solutions 
should be increased. 
The local searching function is TS algorithm. To improve the efficiency of the local 
searching, we modify the TS algorithm. Firstly, the algorithm reduces the maximum that 
doesn’t evolution. Secondly, a new exchanging strategy of neighbors is proposed based on 
critical operations so that TS algorithm can rapidly assess neighbors. We firstly indicate the 
neighbor exchanging based on the critical operation. 
The feasible solution of job shop scheduling is usually denoted by the gantt graph. The gantt 
graph of 6×6 problem is illustrated in Fig. 3. In the figure, x-axis denotes the process time, y-
axis denotes the machines, and every rectangular block marked (i, j) denotes the operation j 
of task i, and it is denoted as Oij. 
The optimized result of job shop scheduling problem is related to the length of the critical 
paths. The critical path is that the longest path without time intervals between operations in 
an available schedule. A solution always has many critical paths. For example, in Fig. 3, 
there are two critical paths. The first one is (4,1) (3,2) (5,1) (5,2) (4,2) (4,3) (5,3) (3,4) (3,5) (6,4) 
(5,5) (5,6) and another one is (4,1) (3,2) (5,1) (5,2) (4,2) (3,3) (3,4) (3,5) (6,4) (5,5) (5,6). 
Furthermore, operations of the critical path can be decomposed into blocks. A block is a set 
of consecutive operations in a critical path in one machine. For example, operation (5,2), 
(4,2) and  operation (4,3), (5,3), (3,4) in the first critical path forms the block respectively. 
Operation (5,2), (4,2), (3,3) and (3,4) in the second critical path forms the block respectively. 
For the two consecutive blocks, the last operation of the anterior block and the first 
operation of the latter block are always in the same task. For example the operation (3,3) and 
(3,4) of task 3 are in the same task. 
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In theory and practice, adopting a single intelligent algorithm is not enough for solving 
JSSP. The hybrid algorithm is an effective method, which enlarges the application domain 
and improves their performance. A hybrid algorithm combines effectively some features of 
several algorithms, such as optimization mechanism, process, search behavior, operation, 
and so on. The hybrid algorithm will have better optimization efficiency. 

 
3.1 HSPSO 
If adopting a single algorithm to solve job shop problems, it is hard to improve the local 
optimization after some running time of the algorithm, it is necessary to find out a method 
to escape from this local optimization. Therefore, a hybrid PSO algorithm based on 
exchanging list is proposed. 
The design ideas of hybrid optimization algorithm HPSO are as follows: (1) Due to the 
regularity of object function, the optimal solution must be in the active scheduling set, so 
HPSO uses the solution produced with G&T as the initial solution. (2) For the randomly and 
widespread searching ability, the exchanging list based PSO is used to search globally. (3) In 
the process of running PSO algorithm, if an infeasible solution appears, it must be adjusted. 
(4) In order to avoid algorithm falling in a local optimization too early, TS exploiting 
strategy embedded critical operations based on exchanging neighbors is adopted to realize 
local parallel search, simultaneously improve the local search ability.  
When there exists Pi(t) = Pid = Pgd  for the particle Pi(t) of generation t, then adopt G&T 
algorithm to regenerate the particle, so that hybrid PSO algorithm for solving JSSP is 
constructed. The arithmetic frame is shown as Fig. 2. 
 

 
Fig. 2. Frame of the hybrid PSO algorithm 
 
The steps of solving job shop problem by HPSO are described as following: 
Step1: Use G&T algorithm to produce initial solution, initialize Pid with an initial solution, 
initialize Pgd with the best Pid; 
Step2: If the end condition is satisfied, go to Step7; 
Step3: According to the position of Xid, calculate Xid ‘s next position X’id, namely a new 
solution; 

a) A = Xid Pid denotes that A acts on Xid to get Pid , where, A is a basic exchange list,; 
b) B= Xid  Pgd, where B is also a basic exchange list;  

 

c) Calculate validity Vid of particle according to formula (8); 
d) Calculate new position X’id (solution) according to formula (9);   

Step4: Adjust infeasible solutions; 
Step5: Select some solutions by the probability Pl to perform TS; 
Step6: Calculate fitness: 

a) If a better solution is gotten, then update Pid;   
b) If a better solution of the whole swarm is searched out, then update Pgd, 

simultaneously adopt G&T to recreate a new particle instead. Go Step2; 
Step7: Show the optimal solution obtained by this algorithm (Pgd). 

 
3.2 TS based on neighbor exchanging of critical operation 
Taboo search(TS) algorithm is one of the best algorithms for solving job shop scheduling 
problem. So far, its running speed is faster, and it may provide a better induct within the 
whole searching field compared with other algorithms. 
In order to obtain better searching results and higher efficiency, neighbors must be highly 
constrained and can be rapidly assessed. The possibility of moving to high quality solutions 
should be increased. 
The local searching function is TS algorithm. To improve the efficiency of the local 
searching, we modify the TS algorithm. Firstly, the algorithm reduces the maximum that 
doesn’t evolution. Secondly, a new exchanging strategy of neighbors is proposed based on 
critical operations so that TS algorithm can rapidly assess neighbors. We firstly indicate the 
neighbor exchanging based on the critical operation. 
The feasible solution of job shop scheduling is usually denoted by the gantt graph. The gantt 
graph of 6×6 problem is illustrated in Fig. 3. In the figure, x-axis denotes the process time, y-
axis denotes the machines, and every rectangular block marked (i, j) denotes the operation j 
of task i, and it is denoted as Oij. 
The optimized result of job shop scheduling problem is related to the length of the critical 
paths. The critical path is that the longest path without time intervals between operations in 
an available schedule. A solution always has many critical paths. For example, in Fig. 3, 
there are two critical paths. The first one is (4,1) (3,2) (5,1) (5,2) (4,2) (4,3) (5,3) (3,4) (3,5) (6,4) 
(5,5) (5,6) and another one is (4,1) (3,2) (5,1) (5,2) (4,2) (3,3) (3,4) (3,5) (6,4) (5,5) (5,6). 
Furthermore, operations of the critical path can be decomposed into blocks. A block is a set 
of consecutive operations in a critical path in one machine. For example, operation (5,2), 
(4,2) and  operation (4,3), (5,3), (3,4) in the first critical path forms the block respectively. 
Operation (5,2), (4,2), (3,3) and (3,4) in the second critical path forms the block respectively. 
For the two consecutive blocks, the last operation of the anterior block and the first 
operation of the latter block are always in the same task. For example the operation (3,3) and 
(3,4) of task 3 are in the same task. 
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Fig. 3. 6×6 problem solution Gantt figure 
 
Let Jp(v) represent the previous operation of operation v in the same job, and Mp(v) denote 
the previous operation of operation v processed in the same machine, St(v) and Et(v) denote 
the start time and the end time of the operation v respectively. 
Definition 6: Critical operation. In critical path, if operation satisfy the condition that St(v)= 
Et(Mp(v))=Et(Jp(v)), then v is called a critical operation. 
When critical path is not unique, not all the neighbor exchanges can shorten the critical path. 
For example, Fig. 3 describes a gantt graph which shows the 6×6 problem, the exchange of 
(4,2) and (3,3) is unable to shorten the critical path. Because St(3,4）= MAX( Et(5,3), Et(3,3) ), 
operation (3,4) is a critical operation, due to the dependency of critical operation (3,4) on 
operation (3,3), (5,3), although operation (3,3) is shortened, the neighbor exchange before the 
critical operation is unable to shorten the critical path.  
The method of choosing neighbors based on the critical operations is as follows: when the 
critical path is sole, exchangeable neighbors in the critical path is considered as a set for 
neighbor selection; when the critical path is not sole, the exchangeable neighbors between 
the last critical operation and the last operation is viewed as a set for neighbor selection; TS 
algorithm selects an exchangeable neighbor (usually the best neighbor) from the above 
neighbors set to commute. If the set described above is null, then stop the current search 
with TS. 
When TS algorithm search process runs for certain times, the quality of solution can not be 
improved, then TS algorithm stops. 
Because of adopting new exchanging strategy of neighbors based on critical operations, TS 
algorithm reduces invalid neighbor exchanges, enhances searching efficiency, increases the 
possibility of escaping from the local optimization, and expands the searching range. 
Simultaneity, when there is no exchangeable neighbor, it indicates that the cost of improving 
the solution is too large, or the current solution is already the optimal solution. Then the 
searching is terminated. 

 
3.3 HPSO Convergence 
Dr. Van den Bergh has proved that PSO algorithm diverges both in the local region and the 
global region with the criteria presented by Solis and Wets, under which stochastic search 
algorithms can be considered as a global search algorithms, or merely locally search 
algorithms. We analyze the convergence of PSO algorithm with an optimum keeping 

 

strategy and TS algorithm by Markov chain theory at a different aspect in this book, and 
HPSO algorithm based on PSO and TS algorithm is proved to be convergent. First of all, we 
give an introduction of Markov chain theory as follows. 
Definition 7 (Markov chain) A stochastic sequence {Xn,n樺T} and a discrete temporal series 
T={0,1,2,…} are given, all state values corresponding to each Xn constitute the set of discrete 
state S={s0,s1,s2,…}. The stochastic sequence {Xn,n樺T} is called Markov chain as soon as the 
conditional probability satisfies the formula (17) as for each integer n樺T and any 
s0,s1,s2,…,sn+1樺S. 
 

P{Xn+1=sn+1|X0=s0,X1=s1,…,Xn=sn}=P{Xn+1=sn+1|Xn=sn} (17) 
 
Definition 8 (Transit ionprobability matrix) The conditional probability pi,j=P{Xn+1=j|Xn=i} 
is called transition probability of Markov chain {Xn,n樺T}, where i,j∈S. The matrix 
{Pi,j:i,j=1,…,k} is called k×k transition probability matrix. 
Definition 9 (Finite homogeneous Markov chain) Markov chain is called finite 
homogeneous Markov chain if conditional probability pi,j(n) of Markov chain {Xn,n樺T} has 
nothing to do with n and its set of state S={s0,s1,s2,…sk} is finite, where i,j∈I. Then pi,j(n) is 
always regarded as pi,j. 
Lemma 1 Markov chain {Xn,n樺T} with transition probability matrix P is irreducible if and 
only if the conditional probability satisfies formula (11) for any si,sj樺S, where the set of state 
is S={s0,s1,s2,…sk}. 
 

P{Xm+n=sj| Xm=si }>0 (18) 
 
Lemma 2  Transition probability matrix P is irreducible if P can be turned into the form 





TR

C 0 by the same line and row transformation, where C is a strict positive irreducible 

stochastic matrix with dimension m, R,T≠0.Then the matrix. 
 

P∞= nlim Pn= 
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


0
0

R
C  (19) 

 

is a stable stochastic matrix, where R∞=
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i

i

k
RCT



 1

0
lim , P∞= 1’p∞, p∞= p0P∞ has nothing to do 

with the initial distribution, and pi∞>0(1≤i≤m), pi∞=0(m≤i≤k). 
In this book, we set the change of the group made up of social collaboration S, self adapting 
A and competition C three basic evolution operations, where social collaboration S means 
that the particle adjusts its movement by cooperating with the best position Pg of the group; 
the self adapting A indicates that the particle adjusts its movement at the next moment by 
cooperation between cognition part (Pi - xi(t)) and social collaboration part (Pg – xi(t)); All 
old particles xi(t) are totally replaced by new particles xi(t+1) with optimum keeping 
strategy to update their self best position and group position. Therefore, the course of 
transformation can be presented respectively by stochastic matrix PS, PA and PC, and the 
transition probability matrix of TS algorithm is presented by stochastic matrix PT. 
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Fig. 3. 6×6 problem solution Gantt figure 
 
Let Jp(v) represent the previous operation of operation v in the same job, and Mp(v) denote 
the previous operation of operation v processed in the same machine, St(v) and Et(v) denote 
the start time and the end time of the operation v respectively. 
Definition 6: Critical operation. In critical path, if operation satisfy the condition that St(v)= 
Et(Mp(v))=Et(Jp(v)), then v is called a critical operation. 
When critical path is not unique, not all the neighbor exchanges can shorten the critical path. 
For example, Fig. 3 describes a gantt graph which shows the 6×6 problem, the exchange of 
(4,2) and (3,3) is unable to shorten the critical path. Because St(3,4）= MAX( Et(5,3), Et(3,3) ), 
operation (3,4) is a critical operation, due to the dependency of critical operation (3,4) on 
operation (3,3), (5,3), although operation (3,3) is shortened, the neighbor exchange before the 
critical operation is unable to shorten the critical path.  
The method of choosing neighbors based on the critical operations is as follows: when the 
critical path is sole, exchangeable neighbors in the critical path is considered as a set for 
neighbor selection; when the critical path is not sole, the exchangeable neighbors between 
the last critical operation and the last operation is viewed as a set for neighbor selection; TS 
algorithm selects an exchangeable neighbor (usually the best neighbor) from the above 
neighbors set to commute. If the set described above is null, then stop the current search 
with TS. 
When TS algorithm search process runs for certain times, the quality of solution can not be 
improved, then TS algorithm stops. 
Because of adopting new exchanging strategy of neighbors based on critical operations, TS 
algorithm reduces invalid neighbor exchanges, enhances searching efficiency, increases the 
possibility of escaping from the local optimization, and expands the searching range. 
Simultaneity, when there is no exchangeable neighbor, it indicates that the cost of improving 
the solution is too large, or the current solution is already the optimal solution. Then the 
searching is terminated. 

 
3.3 HPSO Convergence 
Dr. Van den Bergh has proved that PSO algorithm diverges both in the local region and the 
global region with the criteria presented by Solis and Wets, under which stochastic search 
algorithms can be considered as a global search algorithms, or merely locally search 
algorithms. We analyze the convergence of PSO algorithm with an optimum keeping 

 

strategy and TS algorithm by Markov chain theory at a different aspect in this book, and 
HPSO algorithm based on PSO and TS algorithm is proved to be convergent. First of all, we 
give an introduction of Markov chain theory as follows. 
Definition 7 (Markov chain) A stochastic sequence {Xn,n樺T} and a discrete temporal series 
T={0,1,2,…} are given, all state values corresponding to each Xn constitute the set of discrete 
state S={s0,s1,s2,…}. The stochastic sequence {Xn,n樺T} is called Markov chain as soon as the 
conditional probability satisfies the formula (17) as for each integer n樺T and any 
s0,s1,s2,…,sn+1樺S. 
 

P{Xn+1=sn+1|X0=s0,X1=s1,…,Xn=sn}=P{Xn+1=sn+1|Xn=sn} (17) 
 
Definition 8 (Transit ionprobability matrix) The conditional probability pi,j=P{Xn+1=j|Xn=i} 
is called transition probability of Markov chain {Xn,n樺T}, where i,j∈S. The matrix 
{Pi,j:i,j=1,…,k} is called k×k transition probability matrix. 
Definition 9 (Finite homogeneous Markov chain) Markov chain is called finite 
homogeneous Markov chain if conditional probability pi,j(n) of Markov chain {Xn,n樺T} has 
nothing to do with n and its set of state S={s0,s1,s2,…sk} is finite, where i,j∈I. Then pi,j(n) is 
always regarded as pi,j. 
Lemma 1 Markov chain {Xn,n樺T} with transition probability matrix P is irreducible if and 
only if the conditional probability satisfies formula (11) for any si,sj樺S, where the set of state 
is S={s0,s1,s2,…sk}. 
 

P{Xm+n=sj| Xm=si }>0 (18) 
 
Lemma 2  Transition probability matrix P is irreducible if P can be turned into the form 


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with the initial distribution, and pi∞>0(1≤i≤m), pi∞=0(m≤i≤k). 
In this book, we set the change of the group made up of social collaboration S, self adapting 
A and competition C three basic evolution operations, where social collaboration S means 
that the particle adjusts its movement by cooperating with the best position Pg of the group; 
the self adapting A indicates that the particle adjusts its movement at the next moment by 
cooperation between cognition part (Pi - xi(t)) and social collaboration part (Pg – xi(t)); All 
old particles xi(t) are totally replaced by new particles xi(t+1) with optimum keeping 
strategy to update their self best position and group position. Therefore, the course of 
transformation can be presented respectively by stochastic matrix PS, PA and PC, and the 
transition probability matrix of TS algorithm is presented by stochastic matrix PT. 
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Theorem 3 The hybrid algorithm HPSO based on PSO and TS algorithm is finite 
homogeneous Markov chain. 
Proof: Since the probability of group in next state rests with the current state, which is 
independent of the past state, HPSO algorithm with the set of finite state S={s0,s1,s2,…,sk} is 
Markov chain. Suppose that PS, PA , PC  and PT  are independent of time intervals, then the 
searching course of HPSO can be noted by a transition probability matrix with one step 
P=PT[PC(PSPA)], which is independent of time intervals as well. Therefore, the whole search 
course of HPSO is finite homogeneous Markov chain. 
The design of the neighborhood is the key factor to impact on the quality and efficiency of 
algorithm as for the neighborhood search algorithm TS. Therefore, we first give two 
assumptions about the neighborhood structure as follows to ensure the convergence of TS 
algorithm. 
Assumption 1: The neighborhood structure is supposed to be symmetrical. That is, 
si,sj樺S,si樺N(sj) sj樺N(si),i,j=0,…,k; 
Assumption 2: On the point view of the graph theory, the graph GN  is supposed to be 
strongly connected. Namely, there must be a path from si to sj for any si,sj樺S, where 
i,j=0,…,k. 
Theorem 4 HPSO algorithm with the optimum keeping strategy is global asymptotic 
convergence when time is endless, namely the algorithm will converge to the optimal 
group. 
Proof: Compared with the standard PSO velocity update equation, the equation has 
abandoned the previous velocity ωvi(t) of particle i, which will make at least one particle of 
the particle swarm stop evolution of each generation due to its best history position. The 
optimal strategy algorithm is adopted in this hybrid algorithm. For convenience, the optimal 
individual reserved from each generation is saved in the left side of the population, but it 
does not participate in the evolutionary process. The state which contains the same optimal 
solution is arranged in order as same as which in the original state space, and the one which 
contains the different optimal solution is arranged in order according to the fitness value. 
Then new social collaboration transition probability matrix, self adapting transition 
probability matrix and competition transition probability matrix can be presented 
respectively as PS*=diag(PS,PS,…,PS) ,PA*=diag(PA,PA,…,PA) , and PC*=diag(PC,PC,…, PC). After 
the competition, we’ll compare the optimal solution of the current population with the 
optimal solution reserved from the former generation, such an operation is presented by 
U=(uij). Set Zt=max{f(popit+1) ,i=1,2,…,N} be the optimal fitness, then the transition probability 
from Popt=[Zt-1,pop1t,pop2t,…,popNt] to Popt+1=[Zt,pop1t+1,pop2t+1,…,popNt+1] is presented as 
follows: 
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Thus, there is unique element 1 in every line of the U, the others are 0. Meanwhile, U is 
lower triangular matrix considering that the individual or is replaced by better or remains 
unchanged. Therefore, U is noted as follows: 
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Where Uij is k×k matrix, and U11 is unit matrix. That is to say that the transition probability 
matrix with one step of PSO algorithm is lower triangular matrix. 
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Obviously, P* is an irreducible stochastic matrix. 
In theory, it has been proved that if the search space S of TS is limited, and neighborhood 
structure satisfies the above assumption 1 and assumption 2, TS algorithm will converge to 
optimal solutions inevitably. Then the transition probability matrix with one step of TS 
algorithm is irreducible stochastic matrix as well. Apparently, the transition probability 
matrix of HPSO algorithm P=PTP* is irreducible stochastic matrix. This shows that the 
probability of individual staying in the non-global optimal solution tends to 0, therefore 
HPSO algorithm with the optimum keeping strategy will converge to the optimal group 
when time is endless. Namely, tlimP(Zt樺Sopt)=1,where Sopt is the optimal solution set. 

 
3.4 Experiments and Analysis 
According to the above analysis, the global asymptotic convergence of HPSO algorithm can 
be guaranteed theoretically. However, the proof is based on perfect operation situations 
such as sufficiently large taboo list, infinite time and so on. Considering the reality of 
computer limitations and the limited time, we just take the convergence theory as the 
guidance in the specific computational experiments, some relaxations are made in 
accordance with the actual conditions on aspects of taboo length, search steps. Therefore, the 
solutions of some problems we obtained can just go nearly to rather than reach the optimal 
solution.    
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Theorem 3 The hybrid algorithm HPSO based on PSO and TS algorithm is finite 
homogeneous Markov chain. 
Proof: Since the probability of group in next state rests with the current state, which is 
independent of the past state, HPSO algorithm with the set of finite state S={s0,s1,s2,…,sk} is 
Markov chain. Suppose that PS, PA , PC  and PT  are independent of time intervals, then the 
searching course of HPSO can be noted by a transition probability matrix with one step 
P=PT[PC(PSPA)], which is independent of time intervals as well. Therefore, the whole search 
course of HPSO is finite homogeneous Markov chain. 
The design of the neighborhood is the key factor to impact on the quality and efficiency of 
algorithm as for the neighborhood search algorithm TS. Therefore, we first give two 
assumptions about the neighborhood structure as follows to ensure the convergence of TS 
algorithm. 
Assumption 1: The neighborhood structure is supposed to be symmetrical. That is, 
si,sj樺S,si樺N(sj) sj樺N(si),i,j=0,…,k; 
Assumption 2: On the point view of the graph theory, the graph GN  is supposed to be 
strongly connected. Namely, there must be a path from si to sj for any si,sj樺S, where 
i,j=0,…,k. 
Theorem 4 HPSO algorithm with the optimum keeping strategy is global asymptotic 
convergence when time is endless, namely the algorithm will converge to the optimal 
group. 
Proof: Compared with the standard PSO velocity update equation, the equation has 
abandoned the previous velocity ωvi(t) of particle i, which will make at least one particle of 
the particle swarm stop evolution of each generation due to its best history position. The 
optimal strategy algorithm is adopted in this hybrid algorithm. For convenience, the optimal 
individual reserved from each generation is saved in the left side of the population, but it 
does not participate in the evolutionary process. The state which contains the same optimal 
solution is arranged in order as same as which in the original state space, and the one which 
contains the different optimal solution is arranged in order according to the fitness value. 
Then new social collaboration transition probability matrix, self adapting transition 
probability matrix and competition transition probability matrix can be presented 
respectively as PS*=diag(PS,PS,…,PS) ,PA*=diag(PA,PA,…,PA) , and PC*=diag(PC,PC,…, PC). After 
the competition, we’ll compare the optimal solution of the current population with the 
optimal solution reserved from the former generation, such an operation is presented by 
U=(uij). Set Zt=max{f(popit+1) ,i=1,2,…,N} be the optimal fitness, then the transition probability 
from Popt=[Zt-1,pop1t,pop2t,…,popNt] to Popt+1=[Zt,pop1t+1,pop2t+1,…,popNt+1] is presented as 
follows: 
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Thus, there is unique element 1 in every line of the U, the others are 0. Meanwhile, U is 
lower triangular matrix considering that the individual or is replaced by better or remains 
unchanged. Therefore, U is noted as follows: 
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Where Uij is k×k matrix, and U11 is unit matrix. That is to say that the transition probability 
matrix with one step of PSO algorithm is lower triangular matrix. 
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Obviously, P* is an irreducible stochastic matrix. 
In theory, it has been proved that if the search space S of TS is limited, and neighborhood 
structure satisfies the above assumption 1 and assumption 2, TS algorithm will converge to 
optimal solutions inevitably. Then the transition probability matrix with one step of TS 
algorithm is irreducible stochastic matrix as well. Apparently, the transition probability 
matrix of HPSO algorithm P=PTP* is irreducible stochastic matrix. This shows that the 
probability of individual staying in the non-global optimal solution tends to 0, therefore 
HPSO algorithm with the optimum keeping strategy will converge to the optimal group 
when time is endless. Namely, tlimP(Zt樺Sopt)=1,where Sopt is the optimal solution set. 

 
3.4 Experiments and Analysis 
According to the above analysis, the global asymptotic convergence of HPSO algorithm can 
be guaranteed theoretically. However, the proof is based on perfect operation situations 
such as sufficiently large taboo list, infinite time and so on. Considering the reality of 
computer limitations and the limited time, we just take the convergence theory as the 
guidance in the specific computational experiments, some relaxations are made in 
accordance with the actual conditions on aspects of taboo length, search steps. Therefore, the 
solutions of some problems we obtained can just go nearly to rather than reach the optimal 
solution.    

www.intechopen.com



Thank You for previewing this eBook 
You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 
 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 
access up to 5 PDF/TXT eBooks per month each month) 
 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

