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Chapter 1. ECE 454/ECE 554 Supplemental Reading for
Chapter 1

1.1. Introduction to Digital Signal Processing*

Not only do we have analog signals --- signals that are real- or complex-valued functions of a
continuous variable such as time or space --- we can define digital ones as well. Digital signals
are sequences, functions defined only for the integers. We thus use the notation s(n) to denote a
discrete-time one-dimensional signal such as a digital music recording and s(m, n) for a discrete-
"time" two-dimensional signal like a photo taken with a digital camera. Sequences are
fundamentally different than continuous-time signals. For example, continuity has no meaning for
sequences.

Despite such fundamental differences, the theory underlying digital signal processing mirrors that
for analog signals: Fourier transforms, linear filtering, and linear systems parallel what previous
chapters described. These similarities make it easy to understand the definitions and why we need
them, but the similarities should not be construed as "analog wannabes." We will discover that
digital signal processing is not an approximation to analog processing. We must explicitly worry
about the fidelity of converting analog signals into digital ones. The music stored on CDs, the
speech sent over digital cellular telephones, and the video carried by digital television all evidence
that analog signals can be accurately converted to digital ones and back again.

The key reason why digital signal processing systems have a technological advantage today is the
computer: computations, like the Fourier transform, can be performed quickly enough to be
calculated as the signal is produced, [1] and programmability means that the signal processing
system can be easily changed. This flexibility has obvious appeal, and has been widely accepted in
the marketplace. Programmability means that we can perform signal processing operations
impossible with analog systems (circuits). We will also discover that digital systems enjoy an
algorithmic advantage that contributes to rapid processing speeds: Computations can be
restructured in non-obvious ways to speed the processing. This flexibility comes at a price, a
consequence of how computers work. How do computers perform signal processing?

1.2. Introduction to Fundamentals of Signal Processing*



What is Digital Signal Processing?
To understand what is Digital Signal Processing (DSP) let’s examine what does each of its words
mean. “Signal” is any physical quantity that carries information. “Processing” is a series of steps
or operations to achieve a particular end. It is easy to see that Signal Processing is used
everywhere to extract information from signals or to convert information-carrying signals from
one form to another. For example, our brain and ears take input speech signals, and then process
and convert them into meaningful words. Finally, the word “Digital” in Digital Signal Processing
means that the process is done by computers, microprocessors, or logic circuits.

The field DSP has expanded significantly over that last few decades as a result of rapid
developments in computer technology and integrated-circuit fabrication. Consequently, DSP has
played an increasingly important role in a wide range of disciplines in science and technology.
Research and development in DSP are driving advancements in many high-tech areas including
telecommunications, multimedia, medical and scientific imaging, and human-computer
interaction.

To illustrate the digital revolution and the impact of DSP, consider the development of digital
cameras. Traditional film cameras mainly rely on physical properties of the optical lens, where
higher quality requires bigger and larger system, to obtain good images. When digital cameras
were first introduced, their quality were inferior compared to film cameras. But as
microprocessors become more powerful, more sophisticated DSP algorithms have been developed
for digital cameras to correct optical defects and improve the final image quality. Thanks to these
developments, the quality of consumer-grade digital cameras has now surpassed the equivalence
in film cameras. As further developments for digital cameras attached to cell phones
(cameraphones), where due to small size requirements of the lenses, these cameras rely on DSP
power to provide good images. Essentially, digital camera technology uses computational power
to overcome physical limitations. We can find the similar trend happens in many other
applications of DSP such as digital communications, digital imaging, digital television, and so on.

In summary, DSP has foundations on Mathematics, Physics, and Computer Science, and can
provide the key enabling technology in numerous applications.

Overview of Key Concepts in Digital Signal Processing
The two main characters in DSP are signals and systems. A signal is defined as any physical
quantity that varies with one or more independent variables such as time (one-dimensional
signal), or space (2-D or 3-D signal). Signals exist in several types. In the real-world, most of
signals are continuous-time or analog signals that have values continuously at every value of
time. To be processed by a computer, a continuous-time signal has to be first sampled in time into
a discrete-time signal so that its values at a discrete set of time instants can be stored in computer
memory locations. Furthermore, in order to be processed by logic circuits, these signal values



have to be quantized in to a set of discrete values, and the final result is called a digital signal.
When the quantization effect is ignored, the terms discrete-time signal and digital signal can be
used interchangeability.

In signal processing, a system is defined as a process whose input and output are signals. An
important class of systems is the class of linear time-invariant (or shift-invariant) systems.
These systems have a remarkable property is that each of them can be completely characterized by
an impulse response function (sometimes is also called as point spread function), and the
system is defined by a convolution (also referred to as a filtering) operation. Thus, a linear time-
invariant system is equivalent to a (linear) filter. Linear time-invariant systems are classified into
two types, those that have finite-duration impulse response (FIR) and those that have an
infinite-duration impulse response (IIR).

A signal can be viewed as a vector in a vector space. Thus, linear algebra provides a powerful
framework to study signals and linear systems. In particular, given a vector space, each signal can
be represented (or expanded) as a linear combination of elementary signals. The most important
signal expansions are provided by the Fourier transforms. The Fourier transforms, as with
general transforms, are often used effectively to transform a problem from one domain to another
domain where it is much easier to solve or analyze. The two domains of a Fourier transform have
physical meaning and are called the time domain and the frequency domain.

Sampling, or the conversion of continuous-domain real-life signals to discrete numbers that
can be processed by computers, is the essential bridge between the analog and the digital worlds.
It is important to understand the connections between signals and systems in the real world and
inside a computer. These connections are convenient to analyze in the frequency domain.
Moreover, many signals and systems are specified by their frequency characteristics.

Because any linear time-invariant system can be characterized as a filter, the design of such
systems boils down to the design the associated filters. Typically, in the filter design process, we
determine the coefficients of an FIR or IIR filter that closely approximates the desired frequency
response specifications. Together with Fourier transforms, the z-transform provides an effective
tool to analyze and design digital filters.

In many applications, signals are conveniently described via statistical models as random
signals. It is remarkable that optimum linear filters (in the sense of minimum mean-square
error), so called Wiener filters, can be determined using only second-order statistics
(autocorrelation and crosscorrelation functions) of a stationary process. When these statistics
cannot be specified beforehand or change over time, we can employ adaptive filters, where the
filter coefficients are adapted to the signal statistics. The most popular algorithm to adaptively
adjust the filter coefficients is the least-mean square (LMS) algorithm.

1.3. m09 - An Overview of Discrete-Time Signals*



1.3. m09 - An Overview of Discrete-Time Signals*

[Discrete-Time Signals]Discrete-Time Signals
Although the discrete-time signal x(n) could be any ordered sequence of numbers, they are usually
samples of a continuous-time signal. In this case, the real or imaginary valued mathematical
function x(n) of the integer n is not used as an analogy of a physical signal, but as some
representation of it (such as samples). In some cases, the term digital signal is used
interchangeably with discrete-time signal, or the label digital signal may be use if the function is
not real valued but takes values consistent with some hardware system.

Indeed, our very use of the term ``discrete-time" indicates the probable origin of the signals when,
in fact, the independent variable could be length or any other variable or simply an ordering index.
The term ``digital" indicates the signal is probably going to be created, processed, or stored using
digital hardware. As in the continuous-time case, the Fourier transform will again be our primary
tool.

Notation has been an important element in mathematics. In some cases, discrete-time signals are
best denoted as a sequence of values, in other cases, a vector is created with elements which are
the sequence values. In still other cases, a polynomial is formed with the sequence values as
coefficients for a complex variable. The vector formulation allows the use of linear algebra and
the polynomial formulation allows the use of complex variable theory.
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