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1. Introduction    

Interest in carbon nanotubes has grown rapidly since their discovery (Iijima, 1991). A single-
walled carbon nanotube can be considered as a single layer graphite sheet rolled into 
cylinder. Three examples of single-walled carbon nanotubes, armchair, zigzag and chiral, 
are shown in Figure 1 (Qian et al., 2002). A multi-walled carbon nanotube is similar to a 
single-walled carbon nanotube, but with many layers of graphite sheets in the cylinder 
structure.   
Recent studies have indicated that carbon nanotubes exhibit superior mechanical and 
electronic properties over any known materials, and hold substantial promise for new 
super-strong composite materials, among others. For instance, carbon nanotubes have an 
exceptionally high elastic modulus (Treacy et al., 1996), and sustain large elastic strain and 
failure strain (Yakobson et al., 1996; Wong et al., 1997). Apart from an extensive experimental 
study to characterize the mechanical behavior of carbon nanotubes, theoretical or 
computational modeling of carbon nanotubes has received considerable attention. The 
current computational modeling approaches include both atomistic modeling and 
continuum modeling. 
 

 

Fig. 1. Examples of carbon nanotubes, (a) armchair, (b) zigzag and (c) chiral ((Qian et al., 
2002)) 

Among the researches of continuum modeling of carbon nanotubes, numerous studies 

concentrated on the static mechanical behavior, such as buckling, of carbon nanotubes by 

using the elastic models of beam and cylindrical shell (Qian et al., 2002). Several research 
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teams implemented the elastic models of beam to study the dynamic problems, such as 

vibration and wave propagation (Poncharal et al., 1999; Popov et al., 2000; Yoon et al., 2002, 

2003a,b), of carbon nanotubes. Some other teams used the elastic models of cylindrical shell 

to study the vibration and wave dispersion relations of carbon nanotubes (Wang et al., 

2005a; Dong & Wang, 2006; Natsuki et al. 2005, 2006). Furthermore, Chakraborty (2007) 

modeled a multi-walled carbon nanotube as an assemblage of cylindrical shell elements 

connected throughout their lengths by distributed springs to investigate the elastic waves of 

very high frequency in carbon nanotubes, and to give the dispersion relation between the 

group velocity and the wave number. Their studies showed that both elastic models of beam 

and cylindrical shell are valid to describe the vibration or wave propagation of carbon 

nanotubes in a relatively low frequency range. 

In recent years, the need to describe the microstructure-dominated behavior of a mechanical 
component in an averaged sense, without modeling detailed microstructures and 
deformation processes at the micro-scale, has stimulated numerous studies on enriched 
continuum models. In these models, the nonstandard deformation and force quantities 
account for the influences of the microstructures on mechanical behaviors. The description 
of the deformation behavior of solids is not limited to relations between elastic stresses and 
strains. The consideration of microstructure, which is usually neglected in the classical 
theory of elasticity, results in the constitutive law related to the strain gradient (Mindlin, 
1964). This constitutive law, different from the generalized Hook’s law, enables one to 
predict many new phenomena, such as the dispersive waves in non-local elastic continuum, 
owing to the microstructures in a solid. As a consequence, the wave propagation and 
dispersion in granular media have also drawn considerable attention (Manolis, 2000; Chang 
& Gao, 1995). For instance, the wave propagation in a rod exhibiting non-local elasticity has 
become an interesting topic (Nowinski, 1984; Mühlhaus & Oka, 1996; Askes et al, 2002). 
Several researchers (Sudak, 2003; Zhang et al., 2004, 2005; Wang, 2005b; Wang et al., 2006a; 
Xie et al. 2006) established the non-local elastic models with the second order gradient of 
stress taken into account so as to describe the vibration and wave propagation of both 
single- and multi-walled carbon nanotubes in a higher frequency range. The molecular 
dynamics simulations showed those models worked much better than the elastic models in 
a relatively high frequency range. However, the molecular dynamics simulations also 
showed that the micro-structures of a carbon nanotube might have a so significant influence 
on the waves of very high frequency such that non-elastic models could not predict the 
wave dispersion well (Wang & Hu, 2005; Wang et al. 2006b).  
The primary objective of this work is to study the phase velocity and group velocity of the 
flexural and longitudinal wave propagations in carbon nanotubes so as to examine the effect 
of micro-structures of a carbon nanotube on the wave dispersion. This work deals with the 
dispersion relations of both longitudinal and flexural waves in single-walled and multi-
walled carbon nanotubes via the non-local elastic models of both Timoshenko beams and 
cylindrical shells. The study focuses on the comparison between the non-local elastic models 
and the elastic models in predicting the dispersion relation. For this purpose, Section 2 
presents the molecular dynamics modeling of carbon nanotubes. Section 3 presents the 
dispersion relation of longitudinal waves in a single-walled carbon nanotube from a non-
local elastic model of cylindrical shell, which includes the second order gradient of strain in 
order to characterize the micro-structures of the carbon nanotube. Section 4 gives the 
dispersion relation of flexural waves in a single-walled carbon nanotube by using a non-
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local elastic model of Timoshenko beam. Section 5 turns to the dispersion relation of flexural 
waves in a multi-walled carbon nanotube from a non-local elastic model of multi-
Timoshenko beams, which also takes the second order gradient of strain into account.  
Similarly, Section 6 gives the dispersion relation of longitudinal waves in a multi-walled 
carbon nanotube on the basis of a non-local elastic model of multi-cylindrical shells. Finally, 
the chapter ends with some concluding remarks made in Section 7. 

2. Molecular dynamics model for carbon nanotubes 

This section presents the molecular dynamics models for wave propagation in a carbon 
nanotube, respectively, for a wide range of wave numbers.  Molecular dynamics simulation 
consists of the numerical solution of the classical equations of motion, which for a simple 
atomic system may be written 

 
∂= = − ∂r F

r

$$
i i i

i

V
m . (1) 

For this purpose the force iF  acting on the atoms are derived from a potential energy, ( )ijV r  

where ijr  is the distance from atom i to atom j. 
In the molecular dynamics models of this chapter, the interatomic interactions are described 
by the Tersoff-Brenner potential (Brenner, 1990), which has been proved applicable to the 
description of mechanical properties of carbon nanotubes. The structure of the Tersoff-
Brenner potential is as follows 
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( )R ijV r  and ( )A ijV r  are the repulsive and attractive terms given by 

 0( ) ( ) exp[ 2 ( )]
1

ij

R ij ij ij ij ij

ij

D
V r f r S r r

S
β≡ − −− , (3a) 

 0( ) ( ) exp[ 2/ ( )]
1

ij ij

A ij ij ij ij ij

ij

S D
V r f r S r r

S
β≡ − −− . (3b) 

Here 1.29, 6.325eVij ijS D= = , 1
015nm , 0.1315nmij rβ −= = , ijf , ijD , ijS , ijβ  are scalars, ( )ij ijf r  is 
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following 

 

1

1

1 2

2 1

2

1, ,

( )1
( ) 1 cos , ,

2

0, ,

ij

ij

ij ij ij

ij

r r

r r
f r r r r

r r

r r

<⎧⎪ π −⎡ ⎤⎛ ⎞⎪≡ + ≤ ≤⎢ ⎥⎨ ⎜ ⎟−⎢ ⎥⎝ ⎠⎪ ⎣ ⎦⎪ >⎩
 (3c) 

where 1 21.7A, 2.0Ar r= =c c
. In Equation (2), ijB  reads 
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where
ijkθ  is the angle between bonds i-j and i-k, δ = 0.80469, 0a = 0.011304, 0 19=c  and 

0 2.5=d . In addition, the C-C bond length in the model is 0.142nm. 

The Verlet algorithm in the velocity form (Leach, 1996) with time step 1 fs is used to 

simulate the atoms of carbon nanotubes. 
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where, R represents the position, V is the velocity, a denotes the acceleration of atoms, tδ  is 

the time step.  

3. Flexural wave in a single-walled carbon nanotube 

3.1 Non-local elastic Timoshenko beam model 

This section starts with the dynamic equation of a non-local elastic Timoshenko beam of 

infinite length and uniform cross section placed along direction x  in the frame of 

coordinates ( , , )x y z , with ( , )w x t  being the displacement of section x  of the beam in 

direction y  at the moment t . 
In order to describe the effect of microstructure of carbon nanotubes on their mechanical 

properties, it is assumed that the beam of concern is made of the non-local elastic material, 

where the stress state at a given reference point depends not only on the strain of this point, 

but also on the higher-order gradient of strain so as to take the influence of microstructure 

into account. The simplest constitutive law to characterize the non-local elastic material in 

the one-dimensional case reads 

 
2

2

2
( )x

x xE r
x

εσ ε ∂= + ∂ , (5) 

where E  represents Young’s modulus, and xε  the axial strain. As studied in Askes et al. 

(2002), r  is a material parameter to reflect the influence of the microstructure on the stress 

in the non-local elastic material and yields 
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d
r = , (6) 
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where d, referred to as the inter-particle distance, is the axial distance between two rings of 
particles in the material. For the armchair single-walled carbon nanotube, d is just the axial 
distance between two rings of carbon atoms. 
To establish the dynamic equation of the beam, it is necessary to determine the bending 

moment M , which reads 

 dx
A

M y Aσ= ∫ , (7) 

where A represents the cross section area of the beam, xσ  the axial stress, y the distance 

from the centerline of the cross section. It is well known from the theory of beams that the 

axial strain yields 

 x

yε ρ= ′ , (8) 

where ρ′  is the radius of curvature of beam. Let ϕ  denote the slope of the deflection curve 

when the shearing force is neglected and s denote the coordinate along the deflection curve 
of the beam, then the assumption upon the small deflection of beam gives 

 
1 x

x s x

ϕ ϕ
ρ

∂ ∂ ∂= ≈′ ∂ ∂ ∂ . (9) 

Substituting Equations (8) and (9) into Equations (5) and (7) gives the following relation 

between bending moment M and the curvature and its second derivative when the shearing 

force is neglected 

 
3

2

3
( )M EI r

x x

ϕ ϕ∂ ∂= +∂ ∂ , (10) 

where 2dI y A= ∫  represents the moment of inertia for the cross section.  

To determine the shear force on the beam, let γ  be the angle of shear at the neutral axial in 

the same cross section. Then, it is easy to see the total slope 

 
w

x
ϕ γ∂ = −∂ . (11) 

For the torsional problem of one dimension, the constitutive law of the non-local elastic 
material reads 

 2

2
( )G r

x

γτ γ ∂= ∂
2

+ , (12) 

where τ  is the shear stress and G is the shear modulus. Then, the shear force Q on the cross 

section becomes 
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2
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where β is the form factor of shear depending on the shape of the cross section, and β =0.5 
holds for the circular tube of the thin wall (Timoshenko & Gere, 1972). 
Now, it is straightforward to write out the dynamic equation for the beam element of length 
dx subject to bending M and shear force Q as following 

 

2

2

2

2

d d 0,

d d d 0.

w Q
A x x

t x

M
I x Q x x

t x

ρ
ϕρ

⎧ ∂ ∂+ =⎪⎪ ∂ ∂⎨ ∂ ∂⎪ + − =⎪ ∂ ∂⎩
 (14) 

Substituting Equations (10) and (13) into Equation (14) yields the following coupled 
dynamic equation for the deflection and the slop of non-local elastic Timoshenko beam 
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⎧ ∂ ∂ ∂ ∂ ∂+ − + − =⎪⎪ ∂ ∂ ∂ ∂ ∂⎨ ∂ ∂ ∂ ∂ ∂ ∂⎪ + − + − − + =⎪ ∂ ∂ ∂ ∂ ∂ ∂⎩
 (15) 

3.2 Flexural wave dispersion in different beam models 
To study the flexural wave propagation in an infinitely long beam, let the dynamic 
deflection and slope be given by 

 i ( )ˆ( , ) e k x ctw x t w −= #
,  i ( )ˆ( , ) e k x ctx tϕ ϕ −= #

, (16) 

where i 1≡ − , ŵ  represents the amplitude of deflection of the beam, and ϕ̂  the amplitude 

of the slope of the beam due to bending deformation alone. In addition, c  is the phase 

velocity of wave, and k#  is the wave number related to the wave length λ  via 2πkλ =# . 

Substituting Equation (16) into Equation (15) yields 
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2 2 2 2 4 2 3
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# # # # # #

# # # # #  (17) 

From the fact that there exists at least one non-zero solution ˆ ˆ( , )w ϕ  of Equation (17), one 

arrives at 

 
2

2 4 2 2 2 2 2 2 2 2[ (1 ) ](1 ) (1 ) 0
I E

k c A I k r k c EIk r k
G G
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Solving Equation (18) for the phase velocity c gives two branches of wave dispersion relation 
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1 1 1 1

1
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2
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c

a
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where 2 2
1 /a Ik Gρ β= # , 2 2 2

1 [ (1 / ) ]( 1)b A I E G k r kρ ρ β= + + −# #  and 2 2 2 2
1 (1 )c EIk r k= −# # . Here, the 

lower branch represents the dispersion relation of the flexural wave, and the upper branch 
determines the dispersion relation of the transverse shearing out of interest. 
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If 0r = , Equation (15) leads to 

 
2 4 4 2 4

2 4 2 2 4

( , ) ( , ) ( , ) ( , )
(1 ) 0

w x t w x t E w x t I w x t
A EI I

t x G x t G t

ρρ ρ β β
∂ ∂ ∂ ∂+ − + + =∂ ∂ ∂ ∂ ∂ . (20) 

This is the dynamic equation of a traditional Timoshenko beam (Timoshenko & Gere, 1972). 
In this case, the relation of wave dispersion takes the form of Equation (19), but with 

2 2
1 /a Ik Gρ β= # , 2

1 [ (1 / ) ]b A I E G kρ ρ β= − + + #  and 2
1c EIk= # . 

If neither the rotary inertial nor the shear deformation is taken into account, Equation (15) 
leads to the dynamic equation of a non-local elastic Euler beam as following 

 
2 4 6

2

2 4 6

( , ) ( , ) ( , )
[ ] 0

w x t w x t w x t
A EI r

t x x
ρ ∂ ∂ ∂+ + =∂ ∂ ∂ . (21) 

The condition of non-zero solution ŵ  of Equation (21) gives the dispersion relation 

 2 2(1 )
EI

c k r k
Aρ= − # . (22) 

In this case, 0r =  results in the dispersion relation in the traditional Euler beam 

 
EI

c k
Aρ= . (23) 

When 2 21/k r<# , there implies a cut off frequency in Equations (19) and (22). 

3.3 Flexural wave propagation in a single-walled carbon nanotube 

To predict the flexural wave dispersion from the theoretical results in Section 3.2, it is 
necessary to know Young’s modulus E and the shear modulus G , or Poisson’s ratio υ . The 

previous studies based on the Tersoff-Brenner potential gave a great variety of Young’s 
moduli of single-walled carbon nanotubes from the simulated tests of axial tension and 
compression. When the thickness of wall was chosen as 0.34nm, for example, 1.07TPa was 
reported by Yakobson et al (1996), 0.8TPa by Cornwell and Wille (1997), and 0.44-0.50TPa by 
Halicioglu (1998). Meanwhile, the Young’s modulus determined by Zhang et al. (2002) on 
the basis of the nano-scale continuum mechanics was only 0.475 TPa when the first set of 
parameters in the Tersoff-Brenner potential (Brenner, 1990) was used. Hence, it becomes 
necessary to compute Young’s modules and Poisson’s ratio again from the above molecular 
dynamics model for the single-walled carbon nanotubes under the static loading. 
For the same thickness of wall, the Young’s modulus that we computed by using the first set 
of parameters in the Tersoff-Brenner potential (Brenner, 1990) was 0.46TPa for the armchair 
(5,5) carbon nanotube and 0.47TPa for the armchair (10,10) carbon nanotube from the 
molecular dynamics simulation for the text of axial tension. Furthermore, the simulated test 

of pure bending that we did gave the product of effective Young’s modulus 0.39E = TPa  

and Poisson’s ratio 0.22υ =  for the armchair (5,5) carbon nanotube, 0.45E = TPa  and 

0.20υ =  for the armchair (10,10) carbon nanotube. Young’s moduli and Poisson’s ratios 

obtained from the simulated test of pure bending for those two carbon nanotubes were 
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Fig. 2. Time histories of the deflection of different sections of the armchair (5,5) carbon 
nanotube, where subscripts i and j in tij represent the number of wave peak and the number 

of section, respectively. (a) The sinusoidal wave of period 400fsT =  input at Section 0. (b) 

The deflection of Section 1, 2.46nm ahead of Section 0. (c) The deflection of Section 2, 4.92nm 
ahead of Section 0. (Wang & Hu, 2005) 

used. In addition, Equation (6) gives 0.0355r = nm  when the axial distance between two 

rings of atoms reads 0.123d = nm . For the single-walled carbon nanotubes, the wall 

thickness is 0.34h = nm  and the mass density of the carbon nanotubes is 2237ρ = 3kg/m . 

It is quite straightforward to determine the phase velocity and the wave number from the 

flexural vibration, simulated by using molecular dynamics, of two arbitrary sections of a 

carbon nanotube. As an example, the end atoms denoted by Section 0 at 0 0=x  of the 

armchair (5,5) carbon nanotube was assumed to be subject to the harmonic deflection of 

period 400fsT =  as shown in Figure 2(a). The corresponding angular frequency is 
132π 1.57 10 rad/sω = ≈ ×T . The harmonic deflection was achieved by shifting the edge 

atoms of one end of the nanotube while the other end was kept free. Figures 2(b) and 2(c) 

show the flexural vibrations of Section 1 at 1 2.46nm=x and Section 2 at 2 4.92nm=x , 

respectively, of the carbon nanotube simulated by using molecular dynamics. If the transient 

deflection of the first two periods is neglected, the propagation duration Δt  of the wave 

from Section 1 to Section 2 can be estimated as below 

 32 31 42 41 2 1( ) ( ) ( )

2
n nt t t t t t

t
n

− + − + + −Δ ≈ −
A

. (24) 

There follow the phase velocity and wave number 

 2 1−= Δ
x x

c
t

,   
2π T

k
c

ω ω
λ λ= = =# . (25) 

Figure 3 illustrate the dispersion relations between the phase velocity c  and the wave 

number of flexural wave in the armchair (5,5) and (10,10) carbon nanotubes, respectively. 

Here, the symbol E represents the traditional Euler beam, T the traditional Timoshenko 

beam, NE the non-local elastic Euler beam, NT the non-local elastic Timoshenko beam, and 

MD the molecular dynamics simulation, respectively. In Figures 3, when the wave number 
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(a) an armchair (5,5) carbon nanotube 
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(b) an armchair (10,10) carbon nanotube 

Fig. 3. Dispersion relation of longitudinal wave in single-walled carbon nanotubes. (Wang & 
Hu, 2005) 

k#  is smaller than 9 11 10 −× m , or the wave length is -96.28 10 mλ > × , the phase velocities 

given by the four beam models are close to each other, and they all could predict the result 
of the molecular dynamics well. The phase velocity given by the traditional Euler beam, 
however, is proportional to the wave number, and greatly deviated from the result of 

molecular dynamics when the wave number became larger than 9 11 10 −× m . Almost not 

better than the traditional Euler beam, the result of the non-local elastic Euler beam greatly 
deviate from the result of molecular dynamics too when the wave number became large. 
Nevertheless, the results of both traditional Timoshenko beam and non-local elastic 
Timoshenko beam remain in a reasonable coincidence with the results of molecular 

dynamics in the middle range of wave number or wave length. When the wave number k#  is 

larger than 9 16 10 m−×  (or the wave length is -91.047 10 mλ < × ) for the armchair (5,5) carbon 

nanotube and 9 13 10 m−×  (or the wave length is -92.094 10 mλ < × ) for the armchair (10,10) 

carbon nanotube, the phase velocity given by the molecular dynamics begin to decrease, 
which the traditional Timoshenko beam failed to predict. However, the non-local elastic 
Timoshenko beam is able to predict the decrease of phase velocity when the wave number is 
so large (or the wave length was so short) that the microstructure of carbon nanotube 
significantly block the propagation of flexural waves. 

3.4 Group velocity of flexural wave in a single-walled carbon nanotube 

The concept of group velocity may be useful in understanding the dynamics of carbon 

nanotubes since it is related to the energy transportation. 

From Equation (19), with ckω = # considered, the angular frequency ω  gives two branches of 

the wave dispersion relation (Wang et al. 2008) 

 
2

1 1 1 1

1

4

2

b b a c

a
ω − ± −= , (26) 

where 2
1 /a I Gρ β= , 2 2 2

1 [ (1 / ) ](1 )b A I E G k r kρ ρ β= − − + −# #  and 4 2 2 2
1 (1 )c EIk r k= −# # . The group 

velocity reads 
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 3 2 2 2 2 5 2 21d
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EIk r k EIr k r k

k
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Figure 4 shows the dispersion relations between the group velocity and the wave number of 

flexural waves in an armchair (5,5) single-walled carbon nanotube and in an armchair 

(10,10) single-walled carbon nanotube. Here the results were not compared with molecular 

dynamics results, the Young’s modulus used the common value.  The product of Young’s 

modulus and the wall thickness is 346.8Pa mEh = ⋅  and Poisson’s ratio is 0.20υ = . There 

follows /(2(1 ))G E υ= + . In addition, the material parameter 0.0355nmr = . The product of 

the mass density and the wall thickness yields 3760.5kg/m nmhρ ≈ ⋅ . For the (5,5) single-

walled carbon nanotube, the product of the mass density and the section area yields 
151.625 10 kg /mAρ −= × , the product of the mass density and the moment of inertia for the 

cross section yields 353.736 10 kg mIρ −= × ⋅ , and there follows 26 41.704 10 Pa mEI −= × ⋅ . For 

the (10,10) single-walled carbon nanotube, the product of the mass density and the section 

area yields 153.25 10 kg /mAρ −= × , the product of the mass density and the moment of 

inertia for the cross section yields 342.541 10 kg mIρ −= × ⋅ , and there follows 
25 41.159 10 Pa mEI −= × ⋅ . For both lower and upper branches of the dispersion relation, the 

results of the elastic Timoshenko beam remarkably deviate from those of the non-local 

elastic Timoshenko beam with an increase in the wave number. Figure 4(a) and (b) show 

again the intrinsic limit of the wave number 10 -12 10 mk< ×# , instead of 
10 -112 / 2.82 10 mk d< ≈ ×# . This fact explains the difficulty that the cut-off flexural wave 

predicted by the non-local elastic cylindrical shell is 10 -112 / 2.82 10 mk d< ≈ ×# , but the direct 

molecular dynamics simulation only gives the dispersion relation up to the wave number 
10 -12 10 mk≈ ×#  (Wang & Hu, 2005). 

4. Longitudinal wave in a single-walled carbon nanotube 

4.1 Wave dispersion predicted by a non-local elastic shell model 

This section studies the dispersion of longitudinal waves from a thoughtful model, namely, 

the model of a cylindrical shell made of non-local elastic material. For such a thin cylindrical 

shell, the bending moments can be naturally neglected for simplicity in theory. Figure 5(a) 

shows a shell strip cut from the cylindrical shell, where a set of coordinates ( , , )x rθ #  is 

defined, and Figure 5(b) gives the forces on the shell strip of unit length when the bending 

moments are negligible (Graff 1975). The dynamic equations of the cylindrical shell in the 

longitudinal, tangential, and radial directions ( , , )x rθ #  read 
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Fig. 4. Dispersion relations between the group velocity and the wave number of flexural 
waves in single-walled carbon nanotubes (Wang et al. 2008a) 
 

(a) 
 

(b) 

Fig. 5. The model of a cylindrical shell made of non-local elastic material  
(a) A strip from the cylindrical shell,  
(b) A small shell element and the internal forces (Wang et al. 2006b) 
 

 θρ θ
∂ ∂ ∂− − =∂ ∂ ∂

2

2

1
0x xu N N

h
t x R

, (30a) 

 θ θρ θ
∂ ∂ ∂− − =∂ ∂ ∂

2

2

1
0xv N N

h
t R x

, (30b) 

 θρ ∂ + =∂
2

2
0

w N
h

t R
, (30c) 

where h  presents the thickness of the shell, R  the radius of the shell, ρ  the mass density, 

( , , )u v w  the displacement components ( , , )x rθ # . , , ,x x xN N N Nθ θ θ , the components of the 

internal force in the shell, can be determined by integrating the corresponding stress 

components , , ,x x xθ θ θσ σ τ τ  across the shell thickness as following 
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/2

/2
, , , ( , , , )d

h

x x x x x x
h

N N N N zθ θ θ θ θ θσ σ τ τ−= ∫ , (31) 

where z  is measured outward from the mid surface of the shell. 
The constitutive law of the two-dimensional non-local elastic continuum for the cylindrical 
shell under the load of axial symmetry as follows, 

 
2 2 2

2 2 2

2 2 2
( ) 2 ( ) 2x x

x x x x x xr r r
x x x

θθ
ε ε εσ λ ε ε με λ μ∂ ∂ ∂= + + + + +∂ ∂ ∂ , (32a) 

 
2 2 2

2 2 2

2 2 2
( ) 2 ( ) 2x

x x x xr r r
x x x

θ θθ θ θ
ε ε εσ λ ε ε με λ μ∂ ∂ ∂= + + + + +∂ ∂ ∂ , (32b) 

 
2

2

2
2 2 x

x x xr
x

θθ θ
ετ με μ ∂= + ∂ . (32c) 

Let θγ ε= 2 x  and γ  be the shear strain of the element with xx θθ γγγ == . Substituting 

μ υ= + =/(2 2 )E G  and λ υ υ= − 2/(1 )E  into Equation (32) yields 

 θθ
ε εσ ε υ ευ

∂ ∂= + + +− ∂ ∂
2 2

2 2

2 2 2
[ ( )]

1
x

x x x x

E
r r

x x
, (33a) 

 θθ θ
ε εσ ε υ ευ

∂ ∂= + + +− ∂ ∂
2 2

2 2

2 2 2
[ ( )]

1
x

x x x

E
r r

x x
, (33b) 

 θ θ
γτ τ γ ∂= = + ∂

2
2

2
( )x x xG r

x
, (33c) 

where = = / 12xr r d  characterizes the influence of microstructures on the constitutive law 

of the non-local elastic materials, and d , referred to as the inter-particle distance (Askes et 

al, 2002), is the axial distance between rings of carbon atoms when a single walled carbon 

nanotube is modeled as a non-local elastic cylindrical shell.  
Under the assumption that only the membrane stresses play a role in the thin cylindrical 
shells, the stress components θ θ θσ σ τ τ, , ,x x x  are constants throughout the shell thickness 

such that Equation (31) yields 

 θθ
ε εε υ ευ

∂ ∂= + + +− ∂ ∂
2 2

2 2

2 2 2
[ ( )]

1
x

x x

Eh
N r r

x x
, (34a) 

 θθ θ
ε εε υ ευ

∂ ∂= + + +− ∂ ∂
2 2

2 2

2 2 2
[ ( )]

1
x

x

Eh
N r r

x x
, (34b) 

 θ θ
γ γγ γυ
∂ ∂= = + = +∂ + ∂

2 2
2

2 2
( ) ( )

2(1 )
x x

Eh
N N Gh r r

r x
. (34c) 

The geometric relation under the condition θ∂ ∂ = 0  leads to x u xε = ∂ ∂ , w Rθε = ,  

v xγ = ∂ ∂ . Substituting Equation (34) into Equation (30) gives a set of dynamic equations of 

the non-local elastic cylindrical shell 
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w w u u
w r r
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. (35c) 

Obviously, Equation (35b) is not coupled with Equations (35a) and (35c) such that the 
torsional wave in the cylindrical shell is independent of the longitudinal and radial waves. 
Now consider the motions governed by the coupled dynamic equations in u  and w . Let 

 i ( )ˆe k x ctu u −= #
, i ( )ˆ e k x ctw w −= #

 (36) 

where i 1≡ − , û  is the amplitude of longitudinal vibration, ŵ  the amplitude of radial 

vibration. c and k#  are the same as previous definition. Substituting Equation (36) into 

Equations (35a) and (35c) yields 

 

2 2
2 2 4 2 3

2

2 2
2 3 2 2

2 2
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ˆ

0
ˆ1

i( ) (1 )

p

p
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k r k k r k
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# # # # #

## # #
. (37) 

where 2((1 ) )υ ρ≡ −pc E , which is usually referred to as ‘thin-plate’ velocity. The existence 

of non-zero solution Tˆ ˆ[ ]u w of Equation (37) requires 

 
4 2

4 2 2 2 2 2 2 2

2 2 2 2

(1 )1
(1 )(1 ) (1 ) 0

p

p

c
c c r k c r k

R k R k

υ−− + − + − =# #
# # . (38) 

Solving Equation (38) for the dimensionless phase velocity / pc c  gives the two branches of 

the wave dispersion relation as following 

 

2
2

2 2 2 2 2 2
2 2

1 1 1
(1 ) (1 ) 4

(1 )
2p

c R k R k R k r k
c

υ−+ + −
= −

∓# # # # . (39) 

Equation (39) shows again the intrinsic limit  2 21 0r k− >#  or 12 /k d<#  for the maximal wave 

number owing to the microstructure. That is, the longitudinal wave is not able to propagate 

in the non-local elastic cylindrical shell if the wave length is so short that / 3 1.814d dλ<π ≈  

holds. If 0r =  in Equation (39), one arrives at  

 

2
2

2 2 2 2 2 2

1 1 1
(1 ) (1 ) 4

2p

c R k R k R k
c

υ−+ + −
=

∓# # #
. (40) 
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This is just the wave dispersion relation of the traditional elastic cylindrical shell. 

4.2 Wave propagation simulated by molecular dynamics 

This section presents the longitudinal wave dispersion from the theoretical results in Section 

4.1 compared with the molecular dynamics results for the longitudinal wave propagation in 

an armchair (5,5) carbon nanotube and an armchair (10,10) carbon nanotube, respectively, 

for a wide range of wave numbers.  

In the molecular dynamics models, the interatomic interactions are also described by the 
Tersoff-Brenner potential (Brenner, 1990). It is quite straightforward to determine the phase 
velocity and the wave number from the longitudinal vibration, simulated by using the 
molecular dynamics model, of two arbitrary sections of the carbon nanotube.  The Young’s 
moduls was 0.46TPa for the armchair (5,5) carbon nanotube and 0.47TPa for the armchair 
(10,10) carbon nanotube from the molecular dynamics simulation for the text of axial 

tension. Furthermore, Poisson’s ratio 0.22υ =  for the armchair (5,5) and 0.20υ =  for the 

armchair (10,10) carbon nanotube. 
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(a) an armchair (5,5) carbon nanotube 

0 10 20 30
0

5

10

15

20

25

P
h
a

s
e

 v
e
lo

c
it
y
 (

1
0

3
 m

/s
)

Wave number (10
9
 1/m)

 CR   NR

 CS   NS

 MD

 
(b) an armchair (10,10) carbon nanotube. 

Fig. 6. The wave dispersion relations between phase velocity versus wave number given by 
the models of elastic cylindrical shell and non-local elastic cylindrical shell in comparison 
with molecular dynamics simulations. (Wang et al. 2006b) 
 

Figure 6 shows the dispersion relation between the phase velocity c  and the wave number 

k# , and the dispersion relation between the angular frequency ω  and the wave number k#  

given by the models of both elastic cylindrical shell and non-local elastic cylindrical shell in 

comparison with the numerical simulations of molecular dynamics for the two carbon 

nanotubes. In Figure 6, the symbol NS represents the model of non-local elastic cylindrical 

shell as in Equation (40), the symbol CS the model of elastic cylindrical shell as in Equation 

(41), the symbol CR the rod model of Love theory, the symbol NR the non-local elastic rod 

model with lateral inertial taken into consideration (Wang, 2005), and MD the molecular 

dynamics simulation. Obviously, only the results from the model of non-local elastic 

cylindrical shell coincide well with the two branches of dispersion relations given by 

molecular dynamics simulations. 
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4.3 Group velocity of longitudinal wave in a single-walled carbon nanotube 

From Equation (39), with ckω = #  considered, the two branches of the wave dispersion 

relation as following 
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2 2
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Then, the group velocity reads 
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 (42) 

Figure 7 shows the dispersion relation between the group velocity and the wave number of 

longitudinal waves in an armchair (5,5) single-walled carbon nanotube and in an armchair 

(10,10) single-walled carbon nanotube. Now, the product of Young’s modulus E  and the 

wall thickness h  is = ⋅346.8Pa mEh , and Poisson’s ratio is υ = 0.20  for the (5,5) single-

walled carbon nanotube and the (10,10) single-walled carbon nanotube. In addition, one has 

= 0.0355nmr  when the axial distance between two neighboring rings of atoms is 

0.123nmd = . The product of mass density ρ and the wall thickness h yields 760.5hρ ≈  
3kg/m nm⋅ . The radii of the (5, 5) and (10, 10) single-walled carbon nanotubes are 0.34nm 

and 0.68nm, respectively. There is a slight difference between the theory of non-local 

elasticity and the classical theory of elasticity for the lower branches. The group velocity 

decreases rapidly with an increase in the wave number. When the wave number approaches 

to = ×# 9 -15 10 mk  or so, the group velocity goes to zero for the (5,5) single-walled carbon 

nanotube. Similarly, the group velocity approaches to zero for the (10, 10) single-walled 

carbon nanotube when the wave number goes to = ×# 9 -13 10 mk  or so. This may explain the 

difficulty that the direct molecular dynamics simulation can only offer the dispersion 

relation between the phase velocity and the wave number up to ≈ ×# 9 -15 10 mk for the (5,5) 

single-walled carbon nanotube and up to ≈ ×# 9 -13 10 mk for the (10,10) single-walled carbon 

nanotube. For the upper branches of the dispersion relation, the difference can hardly be 

identified when the wave number is lower. However, the results of the elastic cylindrical 

shell remarkably deviate from those of the non-local elastic cylindrical shells with an 

increase in the wave number. Figure 7 (a) and (b) show the intrinsic limit < ×# 10 -12 10 mk , 

instead of 10 -112 / 2.82 10 mk d< ≈ ×#  for the maximal wave number owing to the micro-

structures. This can explain the contradiction that the cut-off longitudinal wave predicted by 
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the non-local elastic cylindrical shell is < ≈ ×# 10 -112 / 2.82 10 mk d , but the molecular 

dynamics simulation offers the dispersion relation up to the wave number ≈ ×# 10 -12 10 mk  

only (Wang et al. 2006b). 
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(a) an armchair (5,5) carbon nanotube 

5.00E+009 1.00E+010 1.50E+010 2.00E+010
0

5000

10000

15000

20000

25000

Upper branches

G
ro

u
p
 v

e
lo

c
it
y
 (

m
/s

)

Wave Number (1/m)

 Nonlocal

 Classical

Lower branches

 
(b) an armchair (10,10) carbon nanotube 

Fig. 7. Dispersion relations between the group velocity and the wave number of longitudinal 
waves in armchair single-walled carbon nanotubes (Wang et al. 2008a) 

5. Flexural waves in a multi-walled carbon nanotube 

5.1 Multi Timoshenko beam model 

Here, a nonlocal multiple-elastic Timoshenko beam model with second order strain gradient 
taken into consideration is developed, in which each of the nested, originally concentric 
nanotubes of a multi-walled carbon nanotube is described as an individual elastic beam, and 
the deflections of all nested tubes are coupled through the van der Waals interaction 
between any two tubes. Since all nested tubes of a multi-walled carbon nanotube are 
originally concentric and the van der Waals interaction is determined by the interlayer 
spacing, the net van der Waals interaction pressure remains zero for each of the tubes 
provided they deform coaxially. Thus, for small-deflection linear vibration the interaction 
pressure at any point between any two adjacent tubes linearly depends on the difference of 
their deflections at that point. Here, we assume that all nested individual tubes of the multi-
walled carbon nanotube vibrate in the same plane. Thus, coplanar transverse vibration of N 
nested tubes of an N wall is described by N coupled equations. The dynamics equations of 
the j th layer for N-walled carbon nanotube,   

 
2 3 2 4

2 2

2 3 2 4
1 1

n n
k k k k k

k k k kj kj j
j j

w w w
A A G r r w C C w

t x x x x

ϕ ϕρ β
= =

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂+ + − + = −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦ ∑ ∑  (43a) 

 
2 2 3 2 4

2 2

2 2 3 2 4
( ) ( ) 0k k k k k k

k k k k

w w
I A G r EI r

t x x x x x

ϕ ϕ ϕ ϕρ β ϕ⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂+ − + − − + =⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦   (43b) 

where E , G  ,υ , r, ρ , h represents the same meaning as previous sections. Ak represents the 

cross section area of the beam, 2
k kI y dA= ∫  represents the moment of inertia for the cross 

section， kw  being the displacement of section, kϕ  denote the slope of the deflection curve 

when the shearing force is neglected. 
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For small-deflection linear vibration, the van der Waals pressure at any point between two 
tubes should be a linear function of the jump in deflection at that point.  

 
1 1 1

( )
n n n

k kj k j k kj kj j
k j j

p C w w w C C w
= = =

= − = −∑ ∑ ∑  (44) 

where N is the total number of layers of the multi-walled carbon nanotube. kjC  is the van 

der Waals interaction coefficients for interaction pressure per unit axial length can be 
estimated based on an effective interaction width (Ru, 2000) 

 2kj k kjC R c=  (45) 

The van der Waals interaction coefficients can be obtained through the Lennard-Jones pair 
potential (Jones, 1924; Girifalco & Lad, 1956) 

 12 6( ) 4 [( / ) ( / ) ]V r r rε σ σ= −# # . (46) 

where 32.968 10 eV, 3.407Aε σ−= × = c
, where r#  is the distance between two interacting 

atoms. 
Note that the attractive van der Waals force that is obtained from the Lennard-Jones pair 
potential is negative, the repulsive van der Waals force is positive, and the downward 
pressure is assumed to be positive.  

Here, van der Waals interaction coefficients jkc obtained through the Lennard-Jones pair 

potential by He et al. (2005) are used. 

 
12 6

13 7

4 4

1001 1120
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where  
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and  

 
2

4

( )

k j

kj

k j

R R
K

R R
= + . (49) 

5.2 Dispersion of flexural wave in multi-walled carbon nanotubes 

To study the flexural wave propagation, let us consider the deflection and the slope given by 

 i ( ) i ( )ˆ ˆ, , ( 1 )k x ct k x ct
k k k kw w e e k nϕ ϕ− −= = =# # A  (50) 

where i 1≡ − , ˆ
kw  represent the amplitudes of deflections of the k th tube, and ϕ̂k  the 

amplitudes of the slopes of the j th tube due to bending deformation alone. In addition, c and 

k#  are the same as previous definition. Substituting Equation (50) into Equation (43) yields 
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