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1. Introduction 

This chapter presents in a national context energy balancing requirements due to the 

variability and the limited predictability of wind energy in the thermal energy system of the 

Netherlands. In addition options to reduce these requirements are discussed. To this end 7.8 

GW of wind power capacity in a system with 35 GW of total capacity is considered. The 

balancing requirements due to the cross-border flow of wind energy (export of domestic 

wind energy or import of foreign wind energy) however are not covered as these require an 

international context (ETSO, 2008). In addition the potential benefits of an intra-day market 

are not explored.  

This chapter is organized as follows. First, section 2 presents various scenarios for wind and 

other energy capacity in the Netherlands, and introduces the structure of the Dutch 

electricity market. Next, section 3 gives a short overview of studies which addressed 

balancing energy reduction options in the contexts of the electricity markets in Denmark, 

Germany and Spain. Section 4 continues with the modeling of wind variability and wind 

predictability and its relevance to wind energy integration. Sections 5 and 6 then present the 

balancing energy requirements due to wind variability and limited wind predictability. 

Subsequently, section 7 discusses options to reduce the extra balancing energy 

requirements, which options include short-term forecast updates, aggregation, pumped 

storage, compressed air energy storage, fast start-up units, inverse offshore pump 

accumulation system, and wind farm shut-down strategies. Finally, section 8 summarizes 

the results. 

2. Energy scenarios and market structure 

2.1 Synopsis 

In order to study balancing energy requirements in the future in the Netherlands, various 
energy scenarios were developed. These are presented in section 2.2, with attention for wind 
energy production capacity (paragraph 2.2.1), total electricity production capacity 
(paragraph 2.2.2), and flexibility of production (paragraph 2.2.3). The future structure of the 
Dutch electricity market is presented in section 2.3. The material in this section has been 
published in greater detail in de Boer et al., 2007; Gibescu et al., 2008b; and Gibescu et al., 
2009. 

Source: Wind Power, Book edited by: S. M. Muyeen,  
 ISBN 978-953-7619-81-7, pp. 558, June 2010, INTECH, Croatia, downloaded from SCIYO.COM
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2.2 Energy scenarios 
2.2.1 Wind energy capacity 

Offshore wind energy growth scenarios were developed that are consistent with the 

renewable policy goals in the Netherlands over the period up to the year 2020. Based on 

these rough estimates, on the onshore wind farm placement in the year 2006, and on the 

pending applications for environmental permits for offshore wind farms, the most likely 

locations and installed capacities were chosen for the years 2010, 2015 and 2020. In addition, 

three offshore wind energy scenarios were created: Low, Basic and Advanced. Only one 

scenario was created for onshore wind installed capacity. The scenarios are summarized in 

table 1. 
 

  Year  

 2010 2015 2020

Low Offshore   720 2010 3800

Basic Offshore 1180 3110 6030

Advanced Offshore 1520 4110 8000

Onshore 1750 1800 1800

Table 1. Scenarios for offshore and onshore wind capacity in MW in the Netherlands 

The aim of the Dutch government (from the 2004 policy) was to have 20% of demand served 

with help of renewable energy in the year 2020. The scenario Advanced will cover this 

completely with wind energy (given capacity factors of 25% and 37% respectively for 

onshore and offshore). Since this is an optimistic view of wind energy growth, the Basic 

scenario is employed in this study. 

The offshore locations of wind farms for the scenario Basic Offshore 2020 were derived from 

the requests for permits for wind farms in the North Sea as filed by early 2006. 

2.2.2 Total electricity capacity 

Scenarios for the total electricity capacity in the Netherlands were developed by considering 

the total production plant in the year 2005, and estimating the retirement and addition of 

plant by the years 2010-2015-2020. The resulting total capacity break-up for the year 2020 is 

shown in table 2. 

 
Production in the Netherlands for several scenarios

2005
Type of power production

KEMA 

database

basic 

scenario

gas 

scenario

coal 

scenario

high 

growth

scenario

low 

growth

scenario

MW MW MW MW MW MW

Gas motor 1.450 1.950 1.950 1.950 2.260 1.680

Gas turbine 890 1.200 1.200 1.200 1.390 1.040

STAG of Combi  11.690 17.470 18.920 15.570 19.950 15.310

Conventional: boiler + ST (gas) 2.100 360 360 360 360 360

Conventional: boiler + ST (coal) 4.180 5.630 4.180 7.530 6.510 4.850

Nuclear 450 450 450 450 450 450

Waste and biomass 390 520 520 520 610 450

Wind 390 7.800 7.800 7.800 10.400 4.800

Total production 21.540 35.380 35.380 35.380 41.930 28.940

2020

 

Table 2. Installed power in the Netherlands for several growth scenarios in 2020 
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As to the conventional production, on basis of the current practice, it is assumed that power 
plants can operate at 150% in respect to the original design. Their capacity is expected to 
decrease from 21 GW in the year 2005 to 9 GW in the year 2020. In addition, it is expected 
that most of the coal fired power plants and gas-fired combined cycle plants are still 
operating in the year 2020. 
As to new production capacity five scenarios - each covering the years 2010–2015–2020 - 
were set up: basic, gas, coal, high growth, and low growth. The following parameters were 
considered: economic growth (respectively 1, 2 and 3% per year), fuel mix (basic scenario 
with current gas-to-coal ratio 1.0:3.5, a gas-and-coal reign scenario), and intensity of wind 
energy (see section 2.2.1). 
In the basic scenario the control capabilities will be dominated the Combined Heat and 
Power (CHP) plants because the major growth of the capacity will most probably come from 
these plant. Power plants build after the year 2000 have better control capabilities: ~ 8% of 
nominal power per minute for gas, and ~3%/min for coal. The range of power change 
capability for CHP plants is 50% or more. 
In the other scenarios the control capabilities differ slightly. For the coal scenario the rate of 
power change capabilities will be somewhat lower and for the gas scenario it will slightly 
higher. 

2.2.3 Flexibility of production 

Flexibility of production is required in order to follow the expected wind power variations, 
and to compensate unexpected wind power variations. This warrants a certain margin and 
rate of change capability, primary for the Programme Responsible Parties (PRPs) and 
secondly for the Transmission System Operator (TSO). The flexibility of production is 
defined in terms of: rate of change of the total capacity, amount of regulating (i.e. spinning) 
power and reserve power, rate of change of the spinning reserve units, and start time of the 
remaining units that are not delivering power during the load following cycle. Most of these 
terms depend on the operating point in the load following cycle and on the types of power 
units operating in that operating point. 
A maximal ramping capability of 8%Pnom/min is expected for gas-fired units and 3% for 
coal-fired units. In the year 2020 the morning shoulder (i.e. the difference between off-peak 
and peak load) is expected to cover approximately 10 GW with a maximal required ramp 
rate of 60 MW/min. The gas fired power units are expected to carry this ramping load. This 
implies that a minimum of 10 GW of gas-fired units have to be spinning. If they have an 
average rate of change of 4%/min, then 400 MW/min can become available. This is enough 
to handle the expected variability due to load.  

2.3 Structure of the electricity market 

In the Netherlands wind power has been fully integrated in the day-ahead and imbalance 
market structures since the year 2001, and this situation is not expected to change in the 
future. Market participants known as Programme Responsible Parties (PRPs), governing a 
portfolio consisting of both renewable and conventional energy resources, submit to the 
Transmission System Operator (TSO) balanced schedules for energy delivered to and 
absorbed from the system during a 15-minute interval known as Programme Time Unit 
(PTU). This arrangement provides some insulation from the full exposure to imbalance 
charges for the wind producer, as conventional units in the PRP’s portfolio may act to 
correct energy programme deviations due to wind variability and limited predictability. 
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3. International experience 

3.1 Overview 

This section presents a short overview of studies on balancing energy reduction options in 

the contexts of the electricity markets in Denmark, Germany and Spain. Section 3.2 starts 

with a short survey of international experiences with instruments for balancing the 

variability and forecasting errors introduced by large-scale wind energy in a power system. 

The focus is on wind power forecast updates (paragraph 3.2.1), aggregation of wind power 

(paragraph 3.2.2), energy storage (paragraph 3.2.3), and wind farm control (paragraph 3.2.4). 

In addition, the design of balancing markets is addressed in subsection 3.3. 

3.2 Technology 
3.2.1 Wind power forecast updates 

The quality of wind power forecasts significantly improves as the forecast horizon decreases 

(Lange and Focken, 2005). The state-of-the-art indicates that the capacity normalized root 

mean square error (cRMSE) may reach a minimum value of 2...3% for a lead time of 2 hours 

before delivery (Krauss et al., 2006). For example in Germany this significant improvement 

in the accuracy of wind power forecasts consequently allowed for a better commitment and 

dispatch of the other generation units (Krauss et al., 2006). By doing so, the reserves held for 

wind power were decreased and the resulting surplus power could be offered by the 

conventional units in for example the intra-day market. Also a more efficient use was made 

of the available ramping capabilities of different units. 

3.2.2 Aggregation of wind power 

Aggregation of wind power over a larger geographical area, apart from smoothing out 

variability, improves the quality of the forecast because of the partly uncorrelated character 

of the forecast errors (Lange & Focken, 2005; von Bremen et al., 2006). As a result, both the 

reserves held and the reserves actually applied in a control area are decreased. Balancing 

wind power across control areas is even more efficient (Krauss et al., 2006). 

3.2.3 Energy storage 

Due to the relatively high investment costs of large-scale energy storage technologies, 

storage has to be multi-functional and market-driven, rather than employed only in order to 

reduce imbalances resulting from wind energy. 

In the Netherlands, several studies were devoted to cost-benefit analysis for large scale 

energy storage systems (Ummels et al., 2008; de Boer et al., 2007). In particular an energy 

storage system has been proposed that would provide the following functions (de Boer et al, 

2007): 

• Download capacity for wind power at night during high wind and light load periods; 

• Download capacity at night for base-load units that cannot be switched off, coupled 
with additional production capacity during peak load; 

• Extra production capacity during periods with cooling water discharge restrictions for 
conventional plants; and 

• Primary action. 
Section 7.4 describes the benefits of such a system when it is used to perform the first function. 
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3.2.4 Wind farm control 

Although in a technical sense clustering of wind farms into a virtual power plant may 
provide benefits for active power management and reactive power control, it is not 
economically attractive to operate such a plant for power balancing if the market design 
penalizes curtailment, as shown in Germany (Wolff et al., 2006). However, occasional use of 
wind farms to provide downward regulating power may be attractive during certain 
periods, e.g. when the surplus price is negative. 

3.3 Balancing market design 

As to the market design for balancing services, there are major differences between various 
countries (Verhaegen et al., 2006), where each market design has an unique impact on how 
balancing is actually provided. For example, there are differences in the institutional 
environment where the responsibility for taking care of imbalances arising from wind 
power either is assigned to a system operator (Germany, Spain, and Denmark for onshore 
wind power) or to a market party (the Netherlands, United Kingdom and Denmark for 
offshore wind power). Also, differences exist in the rules of use and provision of balancing 
services. In the following a number of developments are listed. 
In the past years progress has been made to increase the liquidity of intra-day markets. Gate 
closure times of about one hour ahead of delivery (such as in the Netherlands) are sufficient 
to increase the accuracy of wind energy predictions to an acceptable level. This is in addition 
to the single-buyer balancing market, which is operated by the Transmission System 
Operator (TSO).  
Power systems with dual imbalance pricing are problematic for wind energy due to the high 
penalties imposed, e.g. in the United Kingdom. To minimize imbalance costs, market parties 
should aggregate their production portfolios (Gibescu et al., 2008a). 
If market parties employ wind power forecasts without being made responsible for balancing, 
their aim would be to optimize financial gains rather than to minimize their imbalance. This is 
why in such cases aggregated wind power forecasts have to be managed by the TSO. 
There is a clear trend in Europe towards more cross-border balancing, which certainly 
promises advantages for wind power (Verhaegen et al., 2006). Balancing geographically 
larger control areas will provide benefits for wind power, not only because of overall 
decreased variability and increased predictability, but also because of larger market 
volumes and larger balancing resources. 
Finally it is noted that in all European countries the present organization of support schemes 
– which to date remains the major source of revenues for wind power producers – 
discourages the use of curtailment as a balancing instrument. Controlling the power output 
of wind farms must therefore be considered as an option from a power system operations 
perspective, since the opportunity loss by curtailment is significant. 

4. Wind modeling aspects of wind energy integration 

4.1 Outline 

This section presents the modeling of wind variability and wind predictability and its 
relevance to wind energy integration. First, section 4.2 critically reviews existing methods to 
generate wind power time series for integration studies. Next, the sections 4.3 and 4.4 
present a new method to create measured respectively forecasted wind speed time series. 
And finally in section 4.5 the method to create wind power time series is explained. The 
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methods described in the sections 4.3-4.5 were developed for this purpose by the authors 
(Brand, 2006; Gibescu et al., 2006; Gibescu et al., 2009). 

4.2 Existing methods 

A wind power integration study requires wind power time series originating from wind 
speed time series, where wind speed comprises measured and forecasted data. In addition 
the spatial correlation of wind speeds between sites must be taken into account because, as 
wind farms will be concentrated in areas with favorable wind conditions, their outputs will 
be strongly correlated. The resulting cross-correlations are essential when assessing the 
system-wide variability and predictability in large-scale wind production, and in turn affect 
the system requirements for reserve and regulation energy. 
Three different methods to generate wind time series can be identified, namely by using 
actually measured wind speed time series, by using synthesized wind time series data 
(Doherty & O'Malley, 2005), or by using a combination of measured and synthesized wind 
speed time series (Giebel, 2000; Holttinen, 2005; Norgard et al., 2004). Valued against the 
requirements for integration studies these methods fall short for the creation of both realistic 
measured and forecasted wind power time series. 
In order to correctly account for the spatial and temporal correlations of wind in an area, the 
method in section 4.3 derives the relevant statistical properties of the interpolated series 
from measured wind speeds. To this end assumptions are made only regarding the Markov 
property and the exponential decay of covariance with distance. In addition, this method 
uses 15-minute averaged wind speed in order to accurately model the balancing market in 
the Netherlands. 
Two methods to generate wind forecasts can be identified, namely by using real wind 
forecasts (Lange & Focken, 2005) or by using synthesized wind forecasts (Norgard et al., 
2004; Söder, 2004). 
In order to correctly account for the limitations in a forecasting method and for the degree of 

uncertainty, in section 4.4 real wind forecasts are used. Unlike the alternative, this approach 

does not require assumptions on the distribution, correlation and increase of wind speed 

forecasting errors. 

4.3 Measured wind speed 
4.3.1 Historical wind data 

Wind speed was modeled using historical wind data. To this end wind speed data sets were 
obtained from the Royal Dutch Meteorological Institute (KNMI). The data comprise 10-
minute wind speed averages with a resolution of 0.1 m/s for 16 locations in the Netherlands 
and its coastal waters (six onshore, four coastal and six offshore; see figure 1) measured 
between 31 May 2004 and 1 June 2005. In addition, 10-minute wind speed standard 
deviations are available for the onshore locations and are estimated for the offshore 
locations. (The standard deviations are used in the height transformation in section 4.3.2.) 
The chosen time series reflects the spatial distribution of present and future installed wind 
power in the Netherlands.  

4.3.2 Height transformation 

Sensor height where wind speed was measured may differ between locations. The standard 
method to transform to hub height is to employ the logarithmic vertical wind speed profile 
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Fig. 1. Onshore, coastal and offshore wind speed measurement sites in this study 

in combination with the surface roughness length (e.g. Walker & Jenkins, 1997). The local 

surface roughness length however is difficult to estimate. For this reason Brand, 2006, has 

eliminated this need. Instead, two location-dependent parameters are used: the friction 

velocity u* and the average Monin–Obukhov length Lesti. The friction velocity is estimated 

from the 10-minute wind speed standard deviation which for most locations is available. If 

not, for an offshore location the friction velocity is estimated from the vertical wind speed 

profile. The Monin-Obukhov length is estimated by the average value that follows from the 

positive average heat flux that has been found over the North Sea and over the Netherlands, 

implying that the average vertical wind speed profile is stable (Brand & Hegberg, 2004). 

Given the 10-minute average wind speed μ(zs) and standard deviation σ(zs) at sensor height 

zs, the estimates of the wind speed average and standard deviation at hub height zh are:  

 ( ) ( ) ( )
z z zsh hμ z μ z σ z ln 5u s u su,esti h z Ls esti

⎛ ⎞−⎛ ⎞⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (1) 

and  

 ( ) ( )σ z σ zu su,esti h
= , (2) 

where Lesti is the location-dependent average Monin-Obukhov length. 

If only μ(zs) is available, and provided that the location is offshore, the estimates of the wind 

speed average and standard deviation at hub height are 
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 ( ) ( )
z z zsh hμ z μ z 2.5u ln 5u su,esti *h z Ls esti

⎛ ⎞−⎛ ⎞⎜ ⎟= + +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (3) 

and  

 ( )σ z 2.5uu,esti *h
= ;  (4) 

where u* is determined from  

 ( )
z g zs sμ z 2.5u ln 5 0u s * 2 LAu esti*

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟− + =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
,  (5) 

and g = 9.81 m/s2 is the gravitational acceleration and A = 0.011 is Charnock’s  constant. 

4.3.3 Averaging-time transformation 

A transformation from 10 to 15-minute averages is required by the design of the Dutch 
balancing market and is accomplished as follows: If μk, μk+1, μk+2 etc are the consecutive 10-
minute wind speed averages, then mk mk+1 etc. are the consecutive 15-minute wind speed 
averages:  

2μ μ
3(k 1)/2 1 3(k 1)/2 2

m
k,esti 3

+
− + − +

=  and 
μ 2μ

3(k 1)/2 2 3(k 1)/2 3
m

k 1,esti 3

+
− + − +

=
+

. 

4.3.4 Interpolation 

4.3.4a Introduction 

This section describes how wind speed at given locations is sampled conditionally on the 
wind speed at measurement locations. To this end a multivariate Gaussian model is used, in 
combination with assumptions on the spatial and the temporal covariance structure. In 
addition, a variance-stabilizing transformation is used.  

4.3.4b Approach and assumptions 

Consider the natural logarithm W(x, t) of the wind speed at a location x and time t, where  
t = (d, k) is defined by the day of the year d and the time of day k. There are two reasons for 
taking the logarithm. First, there is a pronounced heteroscedasticity (i.e. increasing variance 
with the mean) in the wind speeds, which is stabilized by the log transformation (section 9.2 
in Brockwell and Davis, 1991). Second, upon taking logarithms the (multivariate) normal 
case is reached, which allows one to make extensive use of conditioning. 
Following Brockwell and Davis, 1991, a random vector X is considered which is distributed 
according to a multivariate normal distribution with mean vector μ and covariance matrix 
Σ. Supposing that X is partitioned into two sub-vectors, where one corresponds to the 
sampled data and the other to the observed data, and, correspondingly, the mean vector and 
covariance matrix, then the following may be written: 

 

(1)

(2)

X
X

X

⎛ ⎞
= ⎜ ⎟⎜ ⎟⎝ ⎠    and   

(1)

(2)

µ
µ

µ

⎛ ⎞⎜ ⎟= ⎜ ⎟⎝ ⎠
   with   11 12

21 22

Σ Σ⎛ ⎞
Σ = ⎜ ⎟

Σ Σ⎝ ⎠ .  (6) 
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If det(Σ22) > 0, then the conditional distribution of X(1) given X(2) is again multivariate 
normal, and the conditional mean and the conditional covariance matrix are: 

 ( ))2()2(1

2212

)1(

X µ−ΣΣ+µ
−

   and    21

1

221211 ΣΣΣ−Σ
−

.  (7) 

As to the log wind speeds W(x, t) at location x and time t = (d, k), the following model is 
proposed: 

 ( ) ( ) ( )tx,εkx,μtx,W += ,  (8) 

where μ is a deterministic function representing the daily wind pattern by location and ε is a 
zero-mean random process representing the variations around the mean. Note that it has 
been assumed that μ depends on time only through the time of day k. In other words, the 
model does not include seasonal effects. (This assumption was checked and found to be 
reasonable in an analysis aimed at finding any other trend or periodic component, in 
particular a seasonal,  in the 1-year data set.) 
Figure 2 shows the average daily wind pattern for the 16 measurement locations. Since the 
lower curves correspond to onshore and the higher curves to offshore sites, the figure 
suggests that a daily effect is modeled which varies smoothly with geographical location. 
An onshore site is found to have a typical pattern with a maximum around midday, 
whereas an offshore site has a much flatter daily pattern, with a higher overall average. A 
coastal site falls in between.  
The mean log wind speed μ(x, k) is estimated at all measurement locations by the daily 
averages shown in figure 2. Estimates for the locations of interest within the convex hull 
formed by the measurement sites were obtained by using linear spatial interpolation. On the 
other hand, for locations outside that hull, nearest neighbor interpolation was used. The 
results are shown as dotted lines in figure 2. 
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Fig. 2. Daily wind speed pattern for measured and interpolated sites  
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Fig. 3. Wind speed covariance versus site distance for 16 measurement sites 

As to the model for the random part ε(x, t), as explained above, a zero-mean, multivariate 
normal distribution is assumed for the log wind speeds minus the daily pattern. Figure 3 
shows the sample covariance between the log wind speeds at all pairs of (measurement) 
locations versus the distance between them. From the displayed decay and the assumption 
that covariance vanishes at very large distances, it is reasonable to propose an exponential 
decay with distance: 

 ( ) ⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛ ⎟⎠⎞⎜⎝⎛ −−=
j

x
i

xǃexp
0
ǂt,

j
xε,t,

i
xεCov   (9) 

where .  denotes the Euclidean distance. To be able to sample wind speed time series, 

temporal dependence must be taken into account. Similar to equation (9), the following 

covariance is proposed:  

 ( ) ⎟⎠⎞⎜⎝⎛⎟⎠⎞⎜⎝⎛ ⎟⎠⎞⎜⎝⎛ −−=−
j

x
i

xǃexp
1
ǂ1t,

j
xε,t,

i
xεCov   (10) 

The parameters ǂ0, ǂ1 and ǃ are jointly estimated by a least squares fit. The fit for ǂ0 and ǃ is 
shown in figure 3, where ǂ= 0.32 and 1/ǃ= 392.36 km. The latter term is known as the 
characteristic distance. By transforming the parameters of this decay fit from logarithmic to 
pure wind speeds, and by inspecting the correlation coefficients (i.e. covariance normalized 
by the product of the two standard deviations) between location pairs, a value of 610 km is 
obtained for the characteristic distance. This value is in line with the 723 km reported in 
Chapter 6 of Giebel, 2000, which is based on measurements from 60 locations spread 
throughout the European Union, and the 500 km reported in Landberg et al., 1997, and 
Holttinen, 2005, using Danish only and Scandinavian data, respectively. This suggests that 
these values are generic.  
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A final assumption is the Markov property for the sampled time series: it is assumed that 
conditionally on W(x,t-1), W(x,t) does not depend on W(x,t-2), W(x,t-3), etc. Consequently, it 
is not needed to specify the covariance between W(xi,t) and W(xj,s) when  s-t > 1. 
It should be noted that since the equations 9 and 10 do not depend on time, any daily or 
seasonal changes in the covariance structure are ignored. Such effects have been tried to 
identify, but it was found that they were not very large, and not particularly systematic; 
hence, they would not have a substantial effect on the time series that the method ultimately 
generates.  

4.3.4c Interpolation scheme  

The interpolation scheme is as follows. At each stage, a collection of normal random 
variables is conditionally sampled on some other normal random variables. The mean and 
the covariance structure of all random variables is fully described, and therefore the general 
theory from equations 6 can be used, where subset (1) denotes the unobserved wind speeds 
at time t, and subset (2) denotes both observed wind speeds at times t and t-1, and 
unobserved, but already interpolated values at time t-1.  
Once the log wind speeds for the locations of interest are sampled, these are exponentiated 
to obtain the wind speeds. Of course, the time series produced in this way will reflect the 
assumptions that were made, but this does not mean that they will look like samples from 
the multivariate log-normal distribution. The method provides nothing more than linear 
interpolations of the measured time series, and so their Weibull character will be preserved 
to a great extent. 
The effectiveness of the method is evaluated by using cross-validation: leaving one 
measurement location out of the data set and using the remaining n-1 locations to "re-create" 
it. First, it is verified that the method preserves the marginal Weibull parameters. As an 
illustration, figure 4 shows the histogram of the original data for the coastal location 
IJmuiden together with a Weibull fit of the original and the interpolated data. As expected, 
some smoothing has occurred in the interpolated data due to the weighted averaging, but 
not much. Second, it is verified whether or not the method reproduces the (auto-)covariance 
structure of the original data. Figure 5 shows the lag-one auto-correlations for the original 
and cross-validated data, with the straight line indicating a perfect match. Even though 
some over- and underestimation of the auto-covariances can be observed from figure 5, 
there does not seem to be any structural bias.  
 

0 2 4 6 8 10 12 14 16 18
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Wind Speed (m/s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

 

 
Histogram measured data

Weibull fit measured data

Weibull fit interpolated data 

 

Fig. 4. Wind speed histogram and fit to Weibull distribution at the location IJmuiden 
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Fig. 5. Lag-one auto-covariance, original versus interpolated wind speeds 

As to limitations of this method, it should be kept in mind that the interpolation weights are 
determined by the assumption of the exponential decay of the covariance with distance. As 
a consequence, if this decay does not hold, the covariance structure of the generated series 
will not be correct. In addition, the estimated time series are only as good as the input data 
allows. For instance, under more complex terrain, measured data at closer distances would 
be required to correctly track local changes in wind behavior.  

4.4 Forecasted wind speed 

The 15-minute average wind speed forecast time series are generated for locations where 
measurements are available. These forecasts originate from the wind power forecasting 
method AVDE (Brand and Kok, 2003); a physical forecasting method with an output 
statistics module. In an operational sense, AVDE is a post-processor to the high-resolution 
atmospheric model HiRLAM or any weather prediction model that delivers the required 
input data (two horizontal wind speed components, temperature and pressure in two 
vertical levels on a horizontal grid covering the sites to be considered) in the required 
format (GRIB). If wind speed and/or wind power realizations are available, the output 
statistics module of the AVDE can be used in order to compensate for systematic errors in 
the forecasts. The forecasts are meant to guide wind producers in a day-ahead market, and 
are completed at 12:00 the previous day, thus carrying an increasing delay of 12 to 36 hours. 
By employing a method similar to the one used for the spatial interpolation of wind speed 
measurements, appropriately correlated forecast error time series are generated for the wind 
farm locations. Since the variability of wind forecast errors over successive time intervals is 
not analyzed, it is assumed that, conditional on the forecast errors at the observed locations, 
the forecast errors at the computed locations at time t are independent of the errors 
experienced at time t-1.  
Figure 6 presents the geographical locations of the seven wind speed forecast sites together 
with the projected offshore wind farm locations for the year 2020 and the current density of 
onshore wind energy capacity by province in the Netherlands. 
Similar to the wind speeds, the forecast errors are modeled as the sum between a 
deterministic term, derived from the average daily pattern (figure 7), and a random term, 
which obeys a covariance matrix derived from the exponential fit presented in figure 8. Note  
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Fig. 6. Wind speed forecast sites (labeled), onshore (shaded grey) and offshore (black stars) 
wind farm sites for the Basic 2020 scenario 
 

 

Fig. 7. Daily wind speed forecast error pattern for measured and interpolated sites 
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that the logarithmic transformation was not necessary here because the variance of the 
forecasting error does not significantly increase with its mean. In order to correctly take into 
account the changes in the covariance structure due to the look-ahead time, 24 × 4 = 96 
separate exponential decay curves were fitted as shown in figure 8. 
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Fig. 8. Wind speed forecast error covariance versus distance for various forecast horizons 

4.5 Wind power 
4.5.1 Multi-turbine power curve 

For each location wind power has been created using regionally averaged power curves, 
which depend on the area covered with wind turbines and the standard deviation of the 
wind speed distribution at the location. As the name suggests, regional averaging provides 
the average power of a set of wind turbines placed in an area where the wind climate is 
known, assuming the turbines do not affect each other. The multi-turbine curve is created by 
applying a Gaussian filter to a single-turbine power curve, and is not to be confused with a 
wind farm power curve, which brings the wind shadow of turbines into account.  
Although inspired by and having the same effect as the Gaussian filter in the multi-turbine 
approach of Norgard and Holttinen, 2004, the standard deviation in the new filter correctly 
originates from the local wind climate alone. Unlike the Norgard–Holttinen method, the 
filter does not require estimating the turbulence intensity, which incidentally is a measure of 
variation in a 10-minute period in a given location rather than a measure of variation in the 
same 10-minute period at different locations. Nor does the method apply a moving block 
average to the wind speed time series with the time slot arbitrarily based on the local 
average wind speed.  
Figure 9 shows an example of a multi-turbine power curve as constructed for an offshore 
wind farm of installed power 405 MW at a location where the standard deviation of the 
wind speed is 4.6 m/s. The width σF of the Gaussian filter is given by an estimate for the 
standard deviation that describes the regional variation of wind speeds at different locations 
in the same wind climate (appendix A in Gibescu et al., 2009)  
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d1 aveσ σ 1 expF 2 D
decay

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟= − −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
,  (12) 

where σ is the standard deviation of the wind speed distribution, dave is the average distance 
between the locations and Ddecay is the characteristic distance of the decay of correlation (as 
estimated in section 3). If the individual locations are not known, as is the case in this study, 
an estimate for dave is (appendix B in Gibescu et al., 2009):  

 
2 A 2

d 1ave 3 π M

⎛ ⎞
= +⎜ ⎟⎝ ⎠ ,  (13) 

where A is the area of the region and M is the number of locations in that area. In this study, 
the area relates to a province for the onshore wind power and to an individual wind farm 
for the offshore wind power. The area of an individual farm is approximated by the area of a 
rectangle whose sides depend on the number of turbines, the rotor diameter and the spacing 
between turbines.  
 

0 5 10 15 20 25 30
0   

0.5

1.0

Wind Speed (m/s)

W
in

d
 P

o
w

e
r 

(p
.u

.)

Single Turbine

Offshore Park

 

Fig. 9. Example of an aggregated power curve 

The method to determine the regional variation of wind speeds at different locations in the 
same wind climate was verified by using the measured data introduced in section 4.3. The 
method to determine the multi-turbine power curve for a given area is still in need of 
verification data.  

4.5.2 Aggregation levels 

Aggregating the power of the individual wind farms at the system level gives a good initial 
estimate for the degree of variability and predictability that come with large-scale wind 
energy. It however ignores the real situation where wind power is integrated by several sub-
levels, as owned and operated by the individual market parties. To that effect, seven PRPs 
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are defined, each owning a unique combination of installed power and geographical spread 
of onshore and offshore wind farms, as described in table 3. For reasons of confidentiality, 
these parties have fictitious names; however, the installed power are consistent with the 
current and planned developments in the Netherlands.  
 

PRP Offshore (MW) Onshore (MW) Total (MW)

Anton          881          840      1721 

Berta        1792          593      2385 

Cesar          800              0        800 

Dora        2520          140      2660 

Emil            40              0          40 

Friedrich              0            92          92 

Gustav              0          135        135 

System        6033        1800      7833 

Table 3. Programme Responsible Parties (PRP) in the Basic 2020 scenario 

5. Impact of extra variability due to wind 

In this section the balancing energy requirements due to wind variability are presented for 
the scenario with 7.8 GW of installed wind power in the Netherlands in the year 2020. 
Given the locations and installed power for future wind farms, the estimation method of the 

sections 4.3 and 4.4 is used in combination with the aggregated power curve of section 4.5 to 

compute the average wind power generated per 15-minute time interval for the duration of 

a year. By differentiating the wind power time series an estimate is obtained of the 

variability of aggregated power across 15-minute time intervals and above. This quantity 

and its sign are of interest because simultaneous load and wind variations are to be balanced 

by the remaining conventional generation units via the up- or down-ramping of their 

outputs.  

Table 4 presents the 99.7% confidence intervals and the extreme values (smallest and 
largest) of the 15-minute, 30-minute, 1-hour and 6-hour variations at the system level. The 
sorted positive and negative variations in wind power over various time ranges are shown 
in figure 10. Based on the 99.7% confidence interval, the system-wide variations across 15-
minute intervals are in the range of ±14% of the installed power for this scenario. 
Table 5 shows the statistics of the 15-minute variations for each of the seven PRPs 
individually. These variations are in the range of ±12–26% of the power installed by the PRP, 
depending on the geographical spread of its locations. The collective requirement for 
balancing 15-minute variations becomes approximately ±16% of the system’s installed 
capacity, which is 2% more than the requirement at the system level.  
 

Time range Minimum (MW) Maximum (MW) 99.7%Conf.Int. (MW) 

15 min         −2411           2883    −1090.8 to 1054.2 

30 min         −2411           2883    −1252.9 to 1309.6 

1 hour         −3133           3634    −1968.0 to 1846.0 

6 hour         −7211           6790    −5157.8 to 5105.4 

Table 4. Statistics of wind variability in the Basic 2020 scenario 
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Fig. 10. Variations in 7830 MW aggregated wind power 

 

PRP Minimum (MW) Maximum (MW) 99.7%Conf.Int. (MW) 

Anton            -367             481          -201 to 197 

Berta            -755             825          -323 to 327 

Cesar            -482             448          -191 to 188 

Dora          -1264           1420          -461 to 484 

Emil              -36               38              -9 to 9 

Friedrich              -48               42            -22 to 24 

Gustav              -74               78            -26 to 27 

Total PRPs          -3026           3332        -1233 to 1256 

System          -2411           2883        -1091 to 1054 

Table 5. Statistics of 15-minute variability at the PRP level 

6. Impact of limited wind predictability 

In this section balancing energy requirements due to the limited predictability of wind are 

presented for the scenario with 7.8 GW of installed wind power in the Netherlands in the 

year 2020. 

To this end a statistical analysis is performed of the forecasting error as aggregated over the 

wind production of the Netherlands. The time series of forecasted 15-minute average wind 

power include different day-ahead forecasts issued at 24, 18, 12 and 6 hours before delivery. 

System reserve is allocated among online generators to account for equipment outages and 

uncertainties in load and wind forecast errors. Obviously the higher the forecast uncertainty, 

the larger the amount of reserve needed to achieve the same reliability level. Figure 11 

shows the normalized histogram for the system-aggregated forecast error, together with the 

fit to a double-exponential probability density function, which was found to be a more 

accurate analytical representation of the data than the normal distribution.  

Table 6 shows the predictability at the system level in terms of the 99.7% confidence interval 

plus the average, standard deviation, minimum and maximum of the imbalance. (Imbalance 
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