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Abstract: This chapter utilizes the direct neural control (DNC) based on back 
propagation neural networks (BPN) with specialized learning architecture applied to the 
speed control of DC servo motor. The proposed neural controller can be treated as a speed 
regulator to keep the motor in constant speed, and be applied to DC servo motor speed 
control. The proposed neural control applied to position control for hydraulic servo 
system is also studied for some modern robotic applications.  
A tangent hyperbolic function is used as the activation function, and the back 
propagation error is approximated by a linear combination of error and error!s 
differential. The simulation and experiment results reveal that the proposed neural 
controller is available to DC servo control system and hydraulic servo system with high 
convergent speed, and enhances the adaptability of the control system.  
Keywords: Neural networks, DC servo motor, Speed regulator, Speed control, Hydraulic 
servo System 

 
1. Introduction 
 

The neural controls have been put into use in various fields owing to their 
capability of on line learning and adaptability. In recent years, many learning strategies for 
neural control have been proposed and applied to some specified nonlinear control systems 
to overcome the unknown model and parameters variation problems. In this chapter, a 
direct neural controller with specialized learning architecture is introduced and applied to 
the DC servo and hydraulic servo control systems.  

The general learning architecture and the specialized learning architecture are 
proposed and studied in early development of neural control [1]. The general learning 
architecture shown in Fig. 1, uses neural network to learn the inverse dynamic of plant, and 
the well-trained network is applied to be a feed forward controller. In this case, the general 
procedure may not be efficient since the network may have to learn the responses of the 
plant over a larger operational range than is actually necessary. One possible solution to this 
problem is to combine the general method with the specialized procedure, so that an 
indirect control strategy for general learning was proposed, which is shown in Fig. 2. For a 
general learning architecture with some specialized procedures, the off line learning of the 
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inverse dynamic of plant still have to learn the responses of the plant over a larger 
operational range.  

The specialized learning architecture shown in Fig. 3, trains the neural controller to 
operate properly in regions of specialization only. Training involves using the desired 
response as input to the network. The network is trained to find the plant input, which 
drives the system output to the desired command. This is accomplished by using the error 
between the desired and actual responses of the plant to adjust the weights of the network 
with a steepest descent procedure. The weights are adjusted to decrease the errors during 
iterations. This procedure requires knowledge of the Jacobian of the plant.  

There are two strategies to facilitate the specialized learning, one is direct control 
shown in Fig. 4 and the other is indirect control shown in Fig. 5 [2]. In the former, the plant 
can be viewed as an additional but no modifiable layer of the neural network, and the dash 
line of Fig. 4 means the weights update need the knowledge of plant. The latter, which has 
been used in many applications [3-5], is a two-step process including identification of 
dynamics of plant and control. 

In the indirect control strategy, a sub-network (called "emulator") is required to be 
trained before the control phase, and the quality of the trained emulator is crucial to the 
controlling performance. It is therefore very important that the dana sets for training the 
emulator must cover a sufficiently large range of input and output data pairs, but if some of 
these values are outside the input range that was used during the emulator´s training, the 
back propagation trough the emulator fails, causing poor or even unstable control 
performance. 

 

 
Fig. 1. The general learning architecture 

 

 
Fig. 2. The indirect control for general learning architecture 
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Fig. 3. The specialized learning architecture 

 

 
Fig. 4. The direct control for specialized learning architecture 

 

 
Fig. 5. The indirect control for specialized learning architecture 

 
The direct control strategy can avoid this problem if a priori qualitative knowledge or 
Jacobian (the partial differential of plant output to input) of the plant is available. But it is 
usually difficult to approximate the Jacobian of an unknown plant. This chapter utilizes the 
direct neural control (DNC) based on back propagation neural networks (BPN) with 
specialized learning architecture applied to the speed controls of DC servo motor. The 
approximation methods of Jacobian are introduced for direct neural control scheme. The 
direct control strategies with the approximation methods have been successfully applied to 
DC servo and hydraulic servo control systems. The proposed neural controller also can be 
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treated as a speed regulator to keep the motor in constant speed. The corresponding 
performances are investigated and discussed. 

 
2. The direct neural controller 
 

2.1 The structure of direct neural control 

A direct neural controller with three layers was shown in Fig. 6. A three layers neural 
network with one hidden layer is sufficient to compute arbitrary decision boundaries for the 
outputs [6]. Although a network with two hidden layers may give better approximation for 
some specific problems, but the networks with two hidden layers are more prone to fall into 
local minima [7], and more CPU time is needed. In the following section, a back propagation 
network (BPN) with single hidden layer is considered.  
Another consideration is the right number of units in a hidden layer. Lippmann [8] has 
provided comprehensive geometrical arguments and reasoning to justify why the maximum 
number of units in a single hidden layer should equal to M(N+1), where M is the number of 
output units and N is the number of input units. Zhang et al. [2] have tested different 
numbers units of the single hidden layer for a ship tracking control system. It was found 
that a network with three to five hidden units is often enough to give good results.  
The structure of direct neural control is shown in Fig. 7. The proposed neural network has 
three layers with two units in the input layer, one unit in the output layer and fine number 
of units in the hidden layer. The r = X , X and y = X denote as the command input, output of 
the reference model and the output of the plant respectively. The two inputs of the network 
are the error e and its differential é between X R and X P .  
The reference model can be designed according to a second order dynamic model; the 
damping ratio and natural frequency can bedetermined based on the specified performance 
index of control system. 
 

 
Fig. 6. A direct neural controller with three layers 
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Fig. 7. The structure of a direct neural control system 

 
2.2 The algorithms for direct neural controller 

The proposed neural network shown in Fig. 6 has three layers with two units in the input  
layer, one unit in the output layer and right number of units in the hidden layer. The X R , X 

and X P  denote the required command input, output of the reference model and the output of 
the controlled plant respectively. The two inputs of the network are the error and its 
differential between X R  and X P  . The reference model can be designed according to a second 
order transfer function; the damping ratio and natural frequency can be defined based on 
the specified performance index. The algorithms and weights update equations of the 
proposed direct neural controller are described by the following equations. The proposed 
direct neural controller has the hidden layer  (subscript "j"), output layer (subscript "k") and 
layer (subscript "i"). The input signal is multiplied by gains K1 , K2 at the input layer, in 
order to be normalized between +1 and -1. A tangent hyperbolic function is used as the 
activation function of the nodes in the hidden and output layers, the number of units in 

hidden layer equals to J , the number of units in input layer equals to I , and the number of 

units in output layer equals to K, the net input to node j in the hidden layer is: 
                                                                           

                                          (1) 

 
the output of node j is 
 

                                                                                                             (2) 

 
where ┚ > 0 , the net input to node k in the output layer is 
                                                                                     

                                                    (3)                             

 
the output of node k is 
 

                                                                                                                     (4) 
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The output O k   of node k in the output layer is treated as the control input u P  of the system for 
a single-input and single-output system. As expressed equations, W ji represent the 
connective weights between the input and hidden layers and W kj represent the connective 
weights between the hidden and output layers. ┠j  and ┠k  denote the bias of the hidden and 
output layers, respectively. 
For the Nth sampling time, the error function is defined as 
 

                                                                                                                                                                                                                                                      (5) 

   
where X N   and X PN denote the outputs of the reference model and the outputs of the controlled 
plant at the Nth sampling time, respectively. The weights matrix is then updated during the 
time interval from N to N+1. 
 

                                              (6) 

  
where ┟ is denoted as learning rate and ┙ is the momentum parameter. The gradient of En  

with respect to the weights Wkj is determined by 
 

                                         (7) 

 

and is defined as 
 

                   (8) 

 
where  is defined to be the Jacobian of plant. Assume the Jacobian of the plant 

can be evaluated. The  can besolved. 
Similarly, the gradient of En with respect to the weights, Wji  is determined by 
 

                                            (9) 
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                                  (10) 

 
The weight-change equations on the output layer and the hidden layer are, 
 

                   (11) 

 

                   (12) 

 
where   and  can be evaluated from Eqs.(24) and (21). The connective weights in the 
neural network are updated 
during the time interval from N to N+1 . 
 

                                                                                                                          (13) 

 

                                                                                                                            (14) 

 
A tangent hyperbolic function is used as the activation function, so that the neural network 
controller output Ok = up  evaluated from Eq. (4) is between A1 and +1, which is multiplied 
by the scaling factor Ko to be the input of plant. The weights and biases is initialized 
randomly in the interval between +0.5 and A0.5, and updated by Eqs. (13) and (14). 

 
2.3 The on line trained adaptive neural controller 

The Jacobian of plant needs to be available to Eq.(8) for back propagation algorithm. 

However, the exact  is difficult to determine because of the unknown plant 
dynamics. Two differential approximations are presented [1] by slightly changing each 
input to the plant at an operating point, and measuring the changes in the output. The 
jacobian is denoted by 
 

                                          (15) 

 
Alternatively, by comparing the changes of the differential related variables with values in 
the previous iteration, the differential can be approximated using the relationship 
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                                                    (16) 

 
It has been observed in earlier reported simulations [2] that the use of approximation (15) or 
(16) often causes ambiguity for network training when the controlled plant has large inertia 
or when disturbances are added. Ambiguity in training contrary to what would be expected 
from a clear understanding of the situation being investigated. A simple sign function 
proposed by Zhang et al. [2] is applied to approximate the Jacobian of plant, and called on-
line trained adaptive neural controller for industrial tracking control application. Therefore, 

the differential  is approximated by the ratio of the signs of the changes in X 

(N) P and u (N) P . The term   is replaced by its sign, so that Eq.8 takes the form 

 

                                   (17) 

 
The clear knowledge of how the control signal u (N) P influence the plant outputs X (N) P will 
provide the required sign information. Therefore X (N) u (N) P P ( ( <0 leads to 
 

                                                                                                                                                                                                                      (18) 

 

and                                            leads to 
 

                                                         (19) 

 
Using Eq.(17) with the given differential signs provide in Eq.(18) and (19), the neural 
controller will effectively output control signals with the correct direction according to the 
plant output error e(N) . 

 
2.4 The approximation of Jacobian 

An accurate tracking response needs to increase the speed of convergence. However, for a 
single-input and single-output control system, the sensitivity of E N  with respect to the 
network output O k can be approximated by a linear combination of the error and its 
differential according to the & adaptation law [8] shown as below 
 

                                                        (20) 
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where K 3  and K 4 are positive constants, so that Eq.8 takes the form 
 

                (21) 

 
Example 1. 
A direct neural controller applied to DC servo speed control system is shown in Fig. 8. 
Assume the voltage gain of servo amplifier is unity. The gain of speed sensor is 0.001V rpm , 
the first order dynamic model of DC servo motor is 
 

 
 

According to Eq. 23, the direct neural controller using & adaptation law with three layers 
and five hidden neurons shown in Fig. 9. is used to control and regulate the motor speed. 
 

                                                    (23) 

 
According to Fig. 8, the neural control system without reference model is a self-tuning type 
adaptive control, so that K 1= K 3  and K 2= K 4  conditions can be applied. The K 1 = 0.6 and K 2 = 

0.05 can be determined for input signals normalization. The learning rate ┟ = 0.1 , sampling 
time=0.0001s, K 1= K 3  = 0.6, K 2= K 4  = 0.05 and the step command of 1V(1000rpm) assigned for 
simulation phase, and the simulation results are shown in Fig. 10, Fig. 11, and Fig. 12. The 
simulation results show that the connective weights will be convergent. The time response 
for P u shows that the network will keep an appropriate output voltage signal to overcome 
the speed (motional) voltage, which is generated by the rotating armature. Similarly, the 
neural controller can provide output to overcome the torque load and friction. This is 
similar to a PI controller, but the neural controller can enhance the adaptability and improve 
performance of control system. 
 

 
Fig. 8. The speed control system with direct neural controller 
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Fig. 9. The direct neural controller 

 

 
Fig. 10. Speed response for DC servo motor 
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Fig. 11. The time response for control input 

 

 
Fig. 12. All connective weights are convergent before 0.4s 
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The on-line trained neural controller using sign function approximation of Jacobian is also 
applied to this speed control system. The simulation results shown in Fig. 13, Fig. 14, and 
Fig. 15, which reveal that the on-line trained method takes more time for convergence. 
 

 
Fig. 13. Speed response for DC servo motor 

 

 
Fig. 14. The time response for control input 
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Fig. 15. All connective weights are convergent before 0.6s 

 
The direct neural controllers using & adaptation law can provide better performance than 
using on-line trained method. The & adaptation law uses the error differential to increase 
the damping of the error convergent process, and improve the stability and convergent 
speed for weight update algorithm. 

 
3. THE direct neural control applied to speed regulation for DC servo motor 
 

The modern precise DC servo systems need to overcome the unknown nonlinear friction, 
parameters variations and torque load variations. It is reasonable to apply adaptive control 
to the DC servo system for speed control. But the conventional adaptive control techniques 
are usually based on the system model parameters. The unavailability of the accurate model 
parameters leads to a cumbersome design approach. The real-time implementation is 
difficult and sometimes not feasible because of using a large number of system parameters 
in these adaptive schemes. The proposed direct neural controllers can precisely regulate the 
speed for a DC servo motor, but don:t have to the knowledge of system model parameters. 
 

3.1 Description of the speed regulation system 

The application of the direct neural controller for DC servo motor speed regulation is shown 

in Fig. 14, where 'r is the speed command and ' is the actual output speed. The proposed 

neural network is treated as a speed regulator, which can keep the motor in constant speed 
against the disturbance. 
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Fig. 14. The block diagram of speed control system 

 
There are 5 hidden neurons in the proposed neural regulator. The proposed DNC is shown 
in Fig. 15 with a three layers neural network. 
 

 
Fig. 15. The structure of proposed neural controller 
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The difference between command speed 'r and the actual output speed ' is defined as error e. 
The error e and its differential e are normalized between A1 and +1 in the input neurons 
before feeding to the hidden layer. In this study, the back propagation error term is 
approximated by the linear combination of error and error:s differential. A tangent 
hyperbolic function is designed as the activation function of the nodes in the output and 
hidden layers. So that the net output in the output layer is bounded between A 1 and +1, 
and converted into a bipolar analogous voltage signal through a D/A converter, then 
amplified by a servo-amplifier for enough current to drive the DC motor. A step speed 
command is assigned to be the reference command input in order to simulate the step speed 
response of a DC servo motor. The proposed three layers neural network, including the 
hidden layer ( j ), output layer ( k ) and input layer ( i ) as illustrated in Fig. 15. The input 
signals e and its differential e are multiplied by the coefficients K 1  and K 2 , respectively, as the 
normalized signals O i to hidden neuron. A tangent hyperbolic function is used as the 
activation function of the nodes in the hidden and output layers. The algorithms for weight 
update are described in previous section. 

 
3.2 Dynamic Simulations 

The block diagram of the DC servo motor speed control system with the proposed neural 
regulator is shown in Fig. 14, which consists of a 15W DC servo motor, an tachometer with a 
unit of 1/150.8 V/rad/s, an 12 bits bipolar D/A converter with an output voltage range of 
A5V to +5V and a servo amplifier with voltage gain of 2.3. The parameters of DC servo 
motor are listed in Table 1. 

 

 
Table 1. The parameters of motor 

 
In the designed direct neural controller, the number of neurons is set to be 2, 5 and 1 for the 
input, hidden and output layers, respectively (see Fig.2). There is only one neuron in the 
output layer. The output signal of the direct neural controller will be between -1 and +1, 
which is converted into a bipolar analogous voltage signal by the D/A converter. The 
output of the D/A converter is between +5V and -5V corresponding to the output signal 
between +1 and -1 of the neural controller. It means the output of neural controller 
multiplied by a conversion gain of 5V. Then, the voltage signal is amplified by the servo 
amplifier to provide high current for driving the DC servo motor. The parameters K 1 and K 2 

Kmust be adjusted in order to normalize the input signals for the neural controller.  
In this simulation, the parameters K 3  and K 4  can be determined, and K 3  = K 1  and K 4  = K 2  are 
assigned. In this simulations, a step signal of 1V corresponding to 150.8 rad/s is denoted as 
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the speed command, the sampling time is set to be 0.0001s , the learning rate !"of the neural 
network is set to be 0.1 and the coefficient ┚=0.5 is assigned. Since the maximum error-
voltage signal is 1V, the parameters K 1  and K 2  are assigned to be 0.6 and 0.01, respectively, in 
order to obtain an appropriate normalized input signals to the neural network. The 
parameters K 3  = K 1  =0.6 and K 4  = K 2 =0.01 are assigned for better convergent speed of the 
neural network. And a conventional PI controller with well tuning parameters applied to 
this speed regulate system is also simulated. Assumes a disturbance torque load of 0.015 
Nm applies to this control system at t=0.5s. The simulation results are shown in Fig. 16 and 
Fig. 17 4, where Fig. 16 (a) represents the speed response of the DC motor with PI controller, 
Fig. 16 (b) represents the output signal of the PI controller; Fig. 17 (a) represents the speed 
response of the DC motor with neural controller. Fig. 17 (b) represents the output signal of 
the neural controller. It exhibits a steady state error in the speed response is eliminated by 
the proposed neural regulator, which keeps appropriate voltage output as the inputs near 0. 
Fig. 17 (c) shows the convergent time of the connective weights is smaller than 100ms, and 
the speed response of the DC motor is stable. Consequently, the proposed neural speed 
regulator enhances the adaptability in speed control system. In addition, an extra attention 
should be taken on the disturbing torque load. The conventional PI controller does not have 
fast performance of speed regulation as the proposed neural speed regulator. The output of 
PI controller will saturate, if its performances are increased to near the neural regulator. 
Fig.3 (b) shows the maximum output of PI controller is close to 3V. Fig.4 (b) shows the 
maximum output of neural regulator is only 2.41V, and the speed regulation performance of 
neural regulator is better than that of the PI controller. The simulation results exhibit the 
neural regulator is available for the high-precision speed control systems. If the speed 
command is increased and over 1.66V , the parameters K 1  and K 2  need to be adjusted, the 
parameters K 3  and K 4  also need to be adjusted to appropriate values. Basically increasing the 
values of K 2  and K 4  will increase the damping effect of control system. 
 

 
(a) Speed response 
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(b) Output of PI controller 
Fig. 16. Simulation results for speed regulation of DC servo motor with PI controller 

 

 
(a) Speed response 

 

 
(b) Output of neural regulator 
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