
5

Supervisory Control of Industrial Processes

Alexander A. Ambartsumyan
Institute of Control Sciences RAS,

Russia

1. Introduction

Modern production is complex, integrated and is constantly being adapted to the market
requirements by means of the reconfiguration of equipment structure and process alteration.
The development of such production is performed based on evolutionary strategy by
successively engaging (eliminating) stand-alone technological systems.
Evolutionary developed technical systems and facilities presently make up a considerable
share of technical systems. It is typical both for high-tech industries, namely: aviation, space
exploration, military equipment, machine-building (Sujeet, 2005), and for applications based
on large-scale interconnected production complexes (e.g. oil- and gas-producing industry,
oil and gas transportation, city economy engineering etc) (Gilard, 1999; Van Brussel et al.,
1999; Jo, 1999; Ambartsumyan, Prangishvili, Poletykin, 2003; Ambartsumyan, Kazansky,
2008; Ambartsumyan, Potehin, 2003; Ambartsumyan, Branishtov, 2006).
Evolutionary developed technical systems and facilities are featured by complex control
system availability. The latter integrates into a single whole different, as to the purposes,
automatic control loops (automatic control and regulation of physical process parameters,
automatic shielding and blocking, logical configuration control) as well as the functions of
supervisory control mainly aimed at coordination of different processes in a technical system.
Supervisory control (SC) is intrinsically logical and is to provide the required operational
sequence and exclude mutual blocking and deadlocks for stand-alone components
(operating according to their internal rules time scale). SC is discrete and asynchronous by
its nature and most commonly reveals itself as the change of event flow as required by
certain application (technical system functionality).
 It is important to consider two "event" aspects: first, everything happens as the result of a
certain event; second, the change of states is regulated by events – there is no physical time
though the system is dynamic.
Though control systems are widely spread in the technical systems of such kind
(Sujeet, 2005; Gilard, 1999; Van Brussel et al., 1999; Jo, 1999; Ambartsumyan, Prangishvili,
Poletykin, 2003; Ambartsumyan, Kazansky, 2008; Ambartsumyan, Potehin, 2003;
Ambartsumyan, Branishtov, 2006), presently there is no appropriate theoretical base to solve
such supervisory control tasks as local control loops coordination, configuration of material
flows structure and interaction with operations staff.
Most spread concept of practical engineering of such systems is based on the model of

interacting ″black boxes″: a ″black box–control object″ and symmetrically connected with it

as to inputs and outputs a ″black box–control system (device)″. (Fig. 1).
Source: Process Management, Book edited by: Mária Pomffyová,

 ISBN 978-953-307-085-8, pp. 338, April 2010, INTECH, Croatia, downloaded from SCIYO.COM

www.intechopen.com

 Process Management

68

Fig. 1. The scheme of transfer from the object data base and control requirements to the
mathematical description of the control

The first ″black box–control object″ is formed as a data base on the control object and
technique at the stage of the object examination and includes the requirements of this object
appropriate behaviour. The task of the required control search is tackled by the defining of a

″black box–control system″ able to monitor the behaviour – the event flow and, with the
control purpose taken into account, to affect the object inputs in such a way that an
appropriate behaviour of the object is achieved.

The question is how to search for a ″black box–control system″ with information on the first
black box available. Common engineering practice shows that information on control object
behaviour is only used indirectly.

What is the problem? We may speak about precise correspondence between a ″black box–

control object″ and a ″black box–control system″ only as far as inputs and outputs are
concerned, while behaviour is an approximate result of the designer’s informal, speculative
experiment with the initial data and limitations – the information the designer acquires
considering the process physics peculiarities and the object structure properties. At that,

there is not any confidence that a ″black box–control system″ can limit the behaviour of a

″black box–control object″ and provide its meeting the requirements since they, as a rule, are
specified as models of another (not "event") nature and the extent they are taken into
account depends on the designer’s skills. The above leads to serious problems: designer’s
uncertainty in the fact that the designed system complies with the control tasks set; the
necessity to make laborious verification of such compliance by computer simulation and the
refinement of the designed system at facilities.
For the last 10–15, a sophisticated interaction among computer-driven actuating devices
necessitates, when engineering, to analyze the design solutions safety and correctness, to
validate technical systems implementation techniques, to take other approaches actually
based on testing. It is a common knowledge that such approaches only can reveal a part of
errors but cannot guarantee the system as a whole is error-free.
Different engineering approach than that based on two black boxes concept is declared in
the theory of discrete event dynamic systems and supervisory control paradigm. The
abbreviation is often simplified to DES. The distinctive features of supervisory control
theory (all basic concepts and notions of this paper are borrowed from (Cassandras,
Lafortune, 2008)) are as follows:

• The controlled object is represented in DES model by three components: generator G of
L(G) language – proper control object, specification language К – limitations and G
functionality required, supervisor S – control component in DES;

• Setting and solving the task of formal synthesis of S on L(G) and K.
The above, in its turn, creates a theoretical basis for machine control engineering
fundamentally different from the deciphering of "black boxes" approximately fitting each

www.intechopen.com

Supervisory Control of Industrial Processes

69

other. What does it give as compared with the classic procedure of discrete process control
system synthesis according to two-black-boxes model?
First, the description of the object as L(G)-language generator G, limited by nothing, is more
simple than the object description with all the admissible behaviour limitations taken into
account. This work is performed as a separate stage – primary object examination and
constructing a model "as it is".
Second, to form the required functionality (К specifications) basing on a generator G model
already available is also easier than to consider all limitations and requirements in yet non-
existing control system.
Third, control task is solved formally: a supervisor (provided the initial data is correct) is
synthesized and does not require verification while the object and its behaviour are
specified by object and know-how specialist and he is responsible for the data correctness,
its verification and validation.
The present paper formulates the purpose of DES theory development, with the structural
properties of technical systems taken into account, thus creating effective methods to
synthesize a supervisor as an instrument to solve the task of consistency and co-ordination
control of stand-alone components in a technical system.
 Here below is given a brief survey of basic concepts and major noted results, as to DES and
supervisory control, followed by the description of the present paper tasks and the results
obtained.

2. Basic concepts and definitions

DES behaviour is considered generally as behaviour of a certain generator (source) of strings

(sequences) of the events from a finite set of events E. The event e E∈ is an abstraction for a

multitude of facts associated with DES "life". Events are instantaneous, occur spontaneously
in unpredictable moments, therefore the only thing that can be observed is their sequences
that are represented by strings. Event examples are: the facts of change in position and state
of separate object components; commands to which the object reacts by the change of its
state (position); characteristics of normal and abnormal states etc.
The main operation of strings forming is concatenation (we would like to remind that
concatenation is the appending of separate events or entire strings of events on the right to

the string, including ┝ – a space character). For the string, an integral function ()s nµ = is

defined, where n is the number of characters in string s. If n = 0, s = ┝. A set of all string of
any finite length is designated by E* (it is endless but countable). Let a string s consist of

three parts: r, u, t ∈ E* connected by concatenation in such a way that s = rut, where r – a

prefix, t – a suffix, and u – a substring of string s. Any subset of strings L⊆E* is called a
language over E. If L includes ┝ and, jointly with any string s, contains all its prefixes, L is a
prefix–closed language. As usual, conventional language operations are defined, namely:
concatenation, prefix-closure and Kleene-closure.
In many constructions of DES theory, a couple of very important operations over languages

are used: a projection P and a back projection P-1. Let E1, E2⊂E be such that E1∪E2 = E

(possibly E1∩E2 ≠ Ø). Projection Pi of any string from Е* on Ei is defined in three steps:

 1. Pi(┝) = ┝; 2. Pi(e) = ┝ if e ∉ Ei, otherwise Pi(e) = e; 3. Pi(se) = Pi(s) Pi(e) for s ∈ E* and e ∈ E.

Conceptually, a projection of strings from larger alphabet E on smaller one Ei deletes from

the string all characters from E \ Ei (all characters outside Ei). Inverse function Pi-1(s) = {t ∈

www.intechopen.com

 Process Management

70

E*: Pi(t) = s}. Pi-1(s) correlates every string s ∈ Ei with some subset of strings E* the projects of

which on Ei equal s. Both operations are in natural manner extended to the languages L ⊆ E*

and Li ⊆ Ei*. Pi(L)={t ∈ Li: (∃s ∈ L) [Pi(s) = t]}; Pi−1(Li) := {s ∈ E*: (∃t ∈ Li) [Pi(s) = t]}.

In projection operation definition, instead of set indexes, for the sets, the events of which are

excluded from the result of this operation, we shall use the designation of the set itself:

iEP or 1

iEP− .

Languages are a good instrument to observe DES behaviour but in order to perform

analytical study and to set the task of providing the required dynamics (off-line behaviour),

it is necessary to present a countable string set as a mathematical operator. There are many

ways to present languages in the form of mathematical operators that generate or recognise

the language. In DES theory, for these purposes, as a rule, finite state machines are used. A

finite state machine is defined as 0(, , , , ,)mG Q E Q qδ= Γ , where Q – a set of states; E – a set of

events; ├ – a transition function Q E Q× → ; : 2EQΓ → – a function of admissible events in

each state; Qm – a set of marked states; q0 – an initial state. We would like to note that in this

definition the function of outputs is missing. For every state qi the function of transitions is

specified for the events admissible in this state (e.g. for iq Q∈ and ie∈Γ the function

(,) :i jq e qδ =). This definition can be naturally extended also for the following event strings:

(,) :i iq qδ ε = , (,) : ((,),)i iq se q s eδ δ δ= for s ∈ E* and e ∈ E. Let’s denote by (,)!iq sδ the fact that

the function (,)iq sδ is defined.

The function : 2EQΓ → is excessive in a model definition but it simplifies many

examination schemes and algorithms development when analysing the languages presented

by finite state machines, e.g. consistency definition. mQ Q⊂ is a subset of marked states –

the states corresponding to a certain functionality of G, with one of them necessarily being

initiated in a specific variant of G use.

The language generated by G machine is designated as 0() : { : (,)!}L G s E q sδ∗= ∈ . This is a set

of all strings from E* admissible in the initial state q0. It is evident that ()L G E∗⊆ . If the

machine is completely defined, L(G) = E*. It G is represented by a weighed graph of

transitions, L(G) is presented as a set of strings of the events weighing the edges of all the

paths originated from the initial state q0.
When a sophisticated DES is defined via components, two more operations on machines are

often applied: Cartesian product and parallel composition. Product definition

G1×G2 = (Q1×Q2, E1∩ E2, ├1,2, Γ1×2, Qm1×Qm2, (q0 := q01, 02))

is conventional but there is one nuance: a function of transitions is defined on common

events for every pair of states. Isolated pairs and those unattainable from the initial state are

discarded together with their associated transitions. From the definition it follows that the

language L(G1×G2) of the Cartesian product of two machines is equal to L(G1) ∩ L(G2) – the

intersection of these machines languages.

Parallel composition (or just composition, let it be designated as ⊕) is defined on the union

of events of both machines G1⊕G2 = (Q1×Q2, E1∪ E2, ├1,2, Γ1⊕2, Qm1⊕Qm2, (q01,q02)). At this, it

is possible that E1∩ E2 ≠ Ø, then on common events, transition synchronization takes place

in both components. If the event is individual, transition takes place in one component

(provided for this pair this event belongs to the value area of the corresponding function Г).

www.intechopen.com

Supervisory Control of Industrial Processes

71

Formally:

├((q1, q2), e) = {(├1(q1, e), ├2(q2, e)) if e ∈ Г1(q1) ∩ Г2(q2) │ (├1(q1, e), q2) if e ∈ Г1(q1) \ E2 │ (q1, ├2

(q2, e)) if e ∈ Г2(q2) \ E1 │ and indeterminate in other cases}.

It is obvious that both operations are associative and, provided parentheses are places

accordingly, may be easily generalized for n machines: a product –

G = 11
...

n

i nG G G= × ×× ; a composition – G =
1

...
n i i nG G G= ⊕ ⊕⊕ .

The initial stage of object study (modelling) is dedicated to prognostication of possible
physical behaviour of the entire object or its subsystems, i.e. consideration of possible
actions and possible variants of behaviour in the absence of any control and restrictive
actions. At this stage, DES is represented by machine G as a language L(G) generator. Thus,
G generates event sequences of any kind reflecting control-free DES behaviour. In order to
specify and provide control in DES, a set of events E is subdivided into two disjoint subsets:
Ec – a subset of controllable events corresponding to the commands and Euc – a subset of
uncontrollable events for which the moments they occur are unpredictable.
The present-day view on DES was first worded in (Ramadge, Wonham, 1987) though then
the term "discrete event systems" was not used but a new technique of discrete process
modelling and control was stated. The term "discrete event systems (DES)" appears already
in (Ramadge, Wonham, 1989), where DES is represented by generator G of different
sequences of events from E. G is limited by nothing and therefore the sequences reflect the

behaviour *()L G E⊆ unbounded by control. Any DES has some functionality to implement

which are required not all possible sequences but only those providing this functionality
and meeting the limitations specified. In order only to provide the required event sequences,
G is term "supplemented" by supervisor S, built-in a "feedback" manner (Fig. 2).

G S

eu1, eu-1,…,euk

en, en-1,…,e1

Fig. 2. The scheme of object – supervisor interaction

The scheme in Fig. 2 is no different from the conventional structure "control object – control
system" but the behaviour is absolutely different. First, a generator event sequence covers all
events in the system; second, a supervisor sequence includes only controlled events and
third, controlled event ek is incorporated into G output sequence conditioned to its presence
also in S sequence. This allowed to define S transparently enough as a function of strings

from the set ()L G : : () 2ES L G → .

Supervisor S is equipped with a mechanism of G sequences blocking provided they do not
meet limitations. For this purposes, S structure comprises one more component allowing for
G "free" behavior restriction – a specification K. For the real object, a certain functionality
(depending on G destination) must consider a multitude of all types of requirements and
limitations R = {ri | i=1,..,n}. As a rule, R is formed reasoning from physical, process and

www.intechopen.com

 Process Management

72

design limitations imposed on joint behaviour of separate G components. The allowance for

all restrictions R gives rise to K ⊆ L(G) – a language of specifications – a subset of sequences
dictated by G functionality. Actual control scheme stated in (Van Brussel et al., 1987) is
presented in Fig. 3. It took the name of "Supervisory control theory" or RW approach
(named after its authors J. Ramadge J. and W. Wonham W).

Fig. 3. Interrelationship of supervisory control components in DES

The functioning of G in the presence of S is denoted by S/G and a corresponding language –
L(S/G). The scheme symbolically shows that specification K is involved in S forming and in
providing blocking. Supervisor is designed, with K taken into account, in such a way that, in
accordance with L(G) observation results, S blocking mechanism provide the language
L(S/G) = K at DES output. We would like briefly to dwell upon the way L(S/G) generation is
realized. G is supposed to have its own controller that generates control events while a
supervisor blocks the events the occurrence of which runs counter to the specification
(Fig.4).

actuators

Process

controller

supervizor

∩

∩

TCO

Ec

S/Ec

E’c

E’’c

E=Ec�Euc

E=Ec�Euc

E=Ec�EucEc

Fig. 4. Control scheme proposed in the paper (Ramadge, Wonham 1987)

Supervisor S monitors G output events and permits all Euc events, while as to Ec events, it is
"entitled" to permit or not permit them (to block by imposing limits on transition function

(,) :i с jq e qδ =). For every string s ∈ L(G) generated by G under S control, a supervisor only

permits a set {S(s) ∩ Γ(├(q0, s))} – a set of events admissible in G current state ├(q0, s) and not
conflicting with K. Hereinafter, ├(q0, s) will mean a state G transfers to from q0 as affected by
s. In other words, G cannot realize the event from its current active event subset Γ(├(q0, s))
unless this event is contained also in S(s). However, making allowance for the fact that E is
subdivided into controllable and uncontrollable subsets and the appearance of the latter is

limited by nothing, supervisor S is called admissible if for all s ∈ L(G), always Euc ∩ Γ(├(x0,

s)) ⊆ S(s), i.e. S is specified in such a way that in all states it is impossible to block an

www.intechopen.com

Supervisory Control of Industrial Processes

73

uncontrollable event and vice versa: S blocks the events not meeting limitations (irrelevant
to K). Further on, only admissible supervisors will be considered.
For the modelling of DES with passive actuators in paper (Chalmers, Golaszewski,
Ramadge, 1987) it is suggested that the model should be expanded with forced controllable
events and a new control scheme (Fig. 5), with controllable events generated by supervisor,
is developed. For such model, the terms of controllability for specification language are also
defined.

actuators

supervizor

∩

TCO

E’c

E’’c

E=Ec Euc
Ec

E=Ec Euc

Fig. 5. Control scheme for DES with forced controllable events

For both models were developed the methods of supervisor synthesis as a finite state
machine (FSM) with output converters regulating blocking (or generation) of Ec events.
However, for the methods proposed the number of supervisor S states is less or equal to the
product of the number of states for G and K (Cassandras, Lafortune, 2008).
DES dynamics is interpreted in the sense that the system (a pair of G and S), once set to the
initial state, operates off-line, reacting to internal and external events, and provides a
resulting flow relevant to G structure and S control.
Since 1987, there have been a lot of publications on DES subject-matter. At three last world
IFAC Congresses, three sections on DES theory were working; IFAC Committee on DES
theory was established; symposiums on this subject-matter are held. The paper scope
limitation does not allow to survey the results on DES theory so we shall confine ourselves
to listing the basic research trends. They are as follows:

• Study of DES as a dynamic system with a certain range of states and a structure of event
transitions; the study of properties of the languages generating DES from the position of
general control theory and the definition, in terms of language properties, of
controllability, observability, attainability, safety (avoiding blocking situation) and
some others;

• Study of different models of G and K specification (finite state machines, Petry nets etc)
and the development of synthesis (engineering) methods for supervisor S on G and K;

• Assessment of supervisor complexity at synthesis with FSM models of G and K
involved;

• Study of different modular presentations of supervisor S in the form of parallel
generators of sub-languages with their subsequent combining via product operation
(conjunctive scheme), via parallel composition operation (disjunctive scheme) and others;

• Development of programming methods for logical controllers in industrial systems
with supervisor control theory applied;

• Creation of program verification methods for industrial systems with DES, as
simulation instrument, applied;

• Development of the methods of industrial system state diagnostics using DES as a
modelling instrument.

www.intechopen.com

 Process Management

74

A detailed survey of the results obtained on DES can be found in (Cassandras, Lafortune,
2008); herein the major results on controllability from (Ramadge, Wonham, 1987; Ramadge,
Wonham, 1989) are set forth:

• Is formulated the condition of controllability for the language: ()K L G⊆ is controllable

if ()ucKE L G K∩ ⊆

• It is proved that if K is controllable, there exists a non-blocked S such that L(S/G) = K

• Are developed the methods to design supervisor S as a function of strings (Ramadge,
Wonham, 1987; Cassandras, Lafortune, 2008).

However, the direct practical application of the proposed models and methods is confined
to lab examples of dynamic DES engineering and supervisor synthesis. Such constraint is
explained by high dimensionality of the object states set. To analyze for controllability, a
complete DES specification of generator G is required. Even in the simple example given
here below (a machine with four mechanisms) the number of states equals 4356. (The
number can be considerably reduced with DES structural features taken into account).
Main direction of works focused on overcoming supervisor synthesis complexity is based on
different kind of modularity. Methods of modular supervisor synthesis for G, as a single
entity, are elaborated. At this, different control schemes are explored (disjunctive,
conjunctive, hierarchical, generalized). Pioneer work (Ramadge, Wonham, 1989) that
initiated the development of modularity, as applied to DES theory, was evolved and
generalized in (Yoo, Lafortune, 2002). Later, different authors (De Queiroz, Cury, 2000;
Gaudin, Marchand, 2003) developed the methods of modular supervisor synthesis on
modular description G=<G1, G2, …, Gn> and modular specification K=<K1, K2, …, Kn> of
modular S. However, the complexity of such synthesis and weak correspondence of the
initial specification structure to the resulting supervisor make the methods proposed
scantily attractive for practical implementation. Besides, controllability properties are
verified on language models K and L(G) defined for the object (Plant) as a whole, which
makes it difficult to apply these results to real industrial facilities.
The present paper sets the task to develop a prototype of structured dynamic DES by
structuring the object components according to their functionality. To operate the model, the
paper proposes the methods that will allow to raise the dimension of supervisor control
tasks and form a theoretical basis for a new supervisor control engineering technique.
Structured are all three DES components but mainly object model and specification.

3. Structured Discrete Event Systems (SDES)

3.1 Base concept – the structuring of events and specifications

The author considers it promising to develop a supervisory control theory in the direction of
structuring the events according to their role in production operations and in the required
object behaviour specification. This research is based on two specific machinery features
from DES-modelling point of view. The first feature relates to the fact that for discrete
machinery a set of events is usually subdivided into three sets. These are sets of controllable
and uncontrollable events Ec and Euc (typical for DES theory) and Ew is a set of expected
events. The events from Ew simulate states (positions) of actuator(s) or object components.
Supervisor cannot block Ew events as those controllable from Ec and thus Ew events are
traditionally referred to uncontrollable events as per Wonham's classification (Ramadge and
Wonham, 1987). However, Ew events are expected to occur as a response to Ec events – a

www.intechopen.com

Supervisory Control of Industrial Processes

75

confirmation of the fact that the commands sent to actuators were executed. So, the
foregoing gives the ground to mark out Ew events as a separate set. The second specific

feature is as follows: the behaviour of every actuator Gi is simulated by the language L(Gi) of

words over { }i i i
w cE E E= ∪ and the specification of desired behaviour is formulated as a

language K over events Ed = Ec∪Euc, a totality of commands and conditions of their use.
Making the allowance for these specifics, makes it possible to get numerous advantages both
in defining DES and formulating controllability conditions and supervisor synthesis.

3.2 SDES definition

Definition 1: If the structure of DES is defined by: a collection of components

G=<G1,G2,…,Gn>; sets of Ei events, each being structured on { }i i i
w cE E E= ∪ , and a set Euc of

general uncontrolled events; the behaviour of each DES component being defined by FSM

0, , , , ,i i i i i i
i mG Q E Q qδ= Γ and ()iL G language, then the DES with the above structure is

called well structured.

A set of common events for G=<G1,G2,…,Gn> is defined through the union of subsets

{ }w c ucE E E E= ∪ ∪ , where Ew and Ec each are the unions of appropriate component subsets.
Note 1: Sets Ew and Ec for various mechanisms do not intersect, since various mechanisms
have their own actuators and their states are individual.

Note 2: Components of Gi define the behaviour of G that is not limited (controllable) by

anything, e.g. from the successive operation of <G1,G2,…,Gn> in any order up to their
independent work in parallel.
According to the theory of supervisory control, a parallel composition of all object
components is implemented, and, as the result, a model of uncontrollable object behaviour
is created (Ramadge & Wonham, 1987). The narrowing of free behaviour is carried out with
the constraints of purposeful joint behaviour considered. This, in essence, is the procedure
of adapting the initial unlimited behaviour i.e specifying the behaviour as required by
application. We would like to remind that the implementation of all restrictions generates a

language ()K L G⊆ called a language of specifications. Establishing the restrictions is a

creative process that requires an experimental approach to achieve a reliable result. Such
experiment is quite difficult to carry out as the number of states is increasing in the course of
composing. There is a collision.
On the one hand, a system analyst needs to get a general picture of all the transitions to
analyze their admissibility.
On the other hand, it is unreal to do it for complete composition, since the number of states

in it is too high (for practical applications this number is about n·103). Sequent revealing of

restrictions in the process of pair-wise composing, gives a ground to doubt of such

restrictions completeness or, on the contrary, of their extreme strictness. At the same time,

there is no possibility to consider the joint action of components with those absent in the

composition.

At the same time, it is known from the practice of discrete process engineering that the
efficient behaviour of discrete systems is achieved by solving two control tasks, namely:
operation control and control of operation sequence. Operation control is provided by the
execution of a certain command and monitoring the corresponding object response.
Commands and their reactions once defined, are iterated in various places of the sequence
of operations. In process modelling, it is important to set up the sequence of commands and

www.intechopen.com

 Process Management

76

to evaluate the completeness and correctness of conditions. With the above in view, herein is

proposed to create a specification of a well-structured DES with the events Ed = {Ec∪Euc}, i.e.
combination of commands and conditions for their execution in sequence.

Definition 2: The language K⊆Ed* defined by FSM 0(, , , , ,)h h h
d h mQ E Q qδΗ = Γ as a set of

strings defining the required specifications, is called a directive specification language (a

process specification tapes language).
It is assumed that FSM H has no deadlocks (Fig. 6) and livelocks (liveloops, within which H
fails to go out of a certain state subset and does not reach Qm and then q0), i.e. H is non-
blocking.

It is worthy to be noted that if a graph is strongly connected and 0 mq Q∉ , then 0q

transitions only as shown in Fig. 6 are possible.

qo

deadlock

livelock

Qm –
marked

out states

Fig. 6. Types of fragments in the machine Н

The fact of non-blocking is easily verified. Contrary to the general DES theory (Cassandras,
Lafortune, 2008), where deadlocks and livelocks result from the excessive general
description via the product and composition, in SDES, there should be no hurry in cutting
down "bad" states and transitions but, vice versa, it is necessary to check if any transition is
missed to avoid deadlock or livelock situations.
Let’s define a supervisor for G and K. It is conceptually evident, that supervisor is an
operator that defins, for every string s, which of possible events, admissible for G, are
suitable as the next event not conflicting with K. At this, supervisor remains admissible in
terms of (Van Brussel et al., 1998) since it in no way limits Euc occurrence and affects only Ec.

Definition 3. Supervisor S is a converter of strings admissible for the system
1 2, ,..., nG G G G= initial state to the events () { { }}uc cS s E eε= ∪ ∪ such that: first, these are

any of uncontrollable events ucE (i.e. S is admissible for G); second, these are controllable

events ce admissible for the current G state; third, these events do not cause blocking of S

and 1 2, ,..., nG G G G= composition.
Let’s denote, as agreed, by L(S/G) the language generating G under S control. It is evident

that L(S/G) ⊆ L(G). Let’s also give a definition of L(S/G) language generating S/G, that is
consistent to the conventional definition of language generating G under S control.

Definition 4. The language L(G/S) generating 1 2, ,..., nG G G G= under S control contains

the following strings:

1. ┝ ∈ L(S/G);

2. , ((/) ()) : () (/)s e s L S G e S s se L G se L S G∀ ∈ ∧ ∈ ∈ ⇔ ∈

In other words, any string se belongs to L(S/G) provided it also belongs to L(G) being at the

same time the extension of string s which also enters L(S/G) by event e such that ()e S s∈ .

Possibly, s ε= .

www.intechopen.com

Supervisory Control of Industrial Processes

77

Definition 5. A well-structured DES, for which the uncontrollable part is set up by

definition 1, the desired behaviour is set by specification language K ⊆ Ed* (K ≠ Ø), and

which is supplied with a supervisor S such that K is fulfilled, is called a structured dynamic

discrete event system (SDES).

K fulfilment means that ((/))
dEP L S G K= , i.e. that K will be equivalent to the projection on

Ed of L(S/G) language that is generated by S/G.

3.3 Technical object modelling by structured DES

The events associated with real industrial objects, as a rule, are easily divided into groups

(types) as proposed herein. Such event grouping is typical for process systems of many

industrial spheres. Here below is the example which refers to the field of mechanical metal-

working. We consider this example most interesting since it is close to illustrative examples

frequently used in publications on DES (Ramadge, Wonham, 1987; Ramadge, Wonham,

1989; Chalmers, Golaszewski, Ramadge, 1987; Ambartsumyan, 2009).

The structuring of technical object (the first phase of study) includes as follows:

• enumerating actuators;

• defining for each of them the set of events necessary and sufficient for the outer
supervisor to identify actuators behaviour;

• defining the classification of marked out events;

• defining the components and object behaviour in the compact-form languages, e.g.
finite machine models.

In Fig. 7 a kinematical scheme of a small milling machine is presented. The machine consists

of 4 mechanisms: "workpiece clutch" - G1, "turntable" – G2, "spindle" – G3 and "cutter" – G4

Clutch is open

Clutch is closed

Open clutch

Close clutch

Detail is on the table

Detail is ready to be send Rotate on 1/4

Table is fixed

Table is rotating

Table has closed full circle

To the left

To the right
Working (smooth)

Parked (--+)

Ready to work (-+-)

End of the operation (+--)

Turn on cutter

Cutter is working

Fig. 7. Kinematical model of the machine

Let’s enumerate the events and their semantics in the liveloop (behaviour) of each

mechanism.

www.intechopen.com

 Process Management

78

"Workpiece clutch" mechanism: e1-1 – to clamp, e1-2 – clutch closed, e1-3 – to unclamp, e1-4 –
clutch closed, e1-5 – clutch is moving.
"Turntable" mechanism: e2-1 – to lock the table, e2-2 – table locked, e2-3 – to unlock the table,
e2-4 – table unlocked, e2-5 – locker is moving, e2-6 – to make a ¼ turn, e2-7 – table is moving,
e2-8 – table is turned, e2-9 – to switch off turning gear, e2-10 – table stopped.
"Spindle" mechanism: e3-1 – to move spindle fast to the left, e3-2 – feed zone, e3-3 – working

position, e3-4 – to move spindle to the left, e3-5 – working zone, e3-6 – operation finished, e3-7 –

to move spindle to the right, e3-8 – to move spindle fast to the right, e3-9 – parked.

"Cutter" mechanism: e4-1 – to turn on cutter, e4-2 – cutter working, e4-3 – to turn off cutter, e4-4 –

cutter stopped, e4-6 – cutter unstable spinning.

Mechanisms behaviour, as agreed here above, will be considered as sequences (strings) of

possible events. These sequences will be defined as finite state machines (Fig. 8–11).

Hereinafter they are called component finite machines (CFM). It is easily seen that CFM

transition graphs and graph edges weighed by events, specify operation of each mechanism

quite transparently.

e1-1

1

e1-4

2

e1-1

3

e1-5

e1-5

4

e1-2
e1-2

5

e1-3

e1-3

6

e1-5

e1-5

e1-4

Clutch is

opened

clamp

moving

clutched

unclamp

moving

Fig. 8. G1 CFM – a model of "Workpiece clutch" mechanism

e2-1
1

Start(Stopped and fixed)

Locker moving fixed
e2-10

Ready to

turn

turning

2

e2-1

3

e2-5

e2-5 4

e2-2

e2-2

5

e2-3

6

e2-5

e2-5

7

e2-4
8

e2-6

e2-6
9

e2-7

e2-7

e2-3

e2-4

Locker

moving

unfix

turn

10

e2-8

Rotated

on 1/4

e2-8

11

e2-9

e2-9

e2-10
Stop turnable

mechanism

Fig. 9. G2 CFM – a model of "Turntable" mechanism

www.intechopen.com

Supervisory Control of Industrial Processes

79

e3-1
1

Start

(Parked)

e3-9

2

e3-1

e3-5

3

e3-2

e3-2

4

e3-3

e3-3

5

e3-4

67

e3-6

e3-6

8

e3-7

e3-4

e3-7

9

e3-5

e3-5

e3-3

10

e3-8

e3-8

11

e3-2

e3-2

e3-9

e3-5

<<
Feed

zone

<

Working

zone
End

Back >

Back >>

Fig. 10. G3 CFM – a model of "Spindle" mechanism

e4-1

1

e4-4

2

e4-1

3

e4-6

e4-6

4

e4-2
e4-2

5

e4-3

e4-3

6

e4-6

e4-6

e4-4

Fig. 11. G4 CFM – a model of "Cutter" mechanism

It is easy to make natural event grouping in all the CFM, namely:

G1 – 1
1 1 1 3{ , }cE e e− −= , 1

1 2 1 4 1 5{ , , }wE e e e− − −= ; G2 – 2
2 1 2 3 2 6 2 9{ , , , }cE e e e e− − − −= ,

2
2 2 2 4 2 5 2 7 2 8 2 10{ , , , , }wE e e e e e e− − − − − −= ; G3 – 3

3 1 3 4 3 7 3 8{ , , , }cE e e e e− − − −= ,
3

3 2 3 3 3 5 3 6 3 9{ , , , , }wE e e e e e− − − − −= ; G4 – 4
4 1 4-3{ , }cE e e−= , 4

4 2 4 4 4 6{ , , }wE e e e− − −= and to see the events

1 2 3 4 ex-s{ , , , , , }uc ex ex ex ex ex wE e e e e e e− − − − −= common for all components (respectively: a

workpiece is on the table; a workpiece is removed from the table; processing is over, clutch

of s type , clutch of w type).

Note 3. Sets wE and cE for different mechanisms do not intersect.
It is evident, since different mechanisms have their own drivers and their positions for each
mechanism are individual.
The next stage of a technical system SDES-modelling is the defining of the system behaviour
specification based on the requirements to the system functionality and limitations. It is

www.intechopen.com

 Process Management

80

done by forming the behaviour of G as an uncontrollable system, as a whole, followed by
putting in limitations, thus "narrowing" G behaviour up to that required.
The traditional approach being applied, uncontrollable G behaviour is defined by
component machines combination. Let’s use two mechanisms of the above milling machine
(Turntable and workpiece Clutch) to illustrate this.

clutch

t

a

b

l

e

21 3 4 5 6

2

3

4

5

6

7

8

9

10

11

clutch

t

a

b

l

e

21 3 4 5 6

2

3

4

5

6

7

8

9

10

11

clutch

t

a

b

l

e

2

6

7

8

9

10

11

1

2

3

4

5

3 4 5 6

Fig. 12. CFM composition for G1 and G2: а) complete; b) with allowance for limitations r1
and r2; c) with allowance for limitations r1, r2, r3

Pursuant to SC theory, we should make a composition of all machines to achieve
"uncontrollable" G behaviour. DES, modelling "uncontrollable" behaviour of the first two

mechanisms, is represented by G1 ⊕ G2 composition, with relevant transition graph structure

illustrated in Fig. 12-а. Here a structure of initial components transitions is shown: across - G1

structure, down - G2 structure, and relevant pairs are represented by nodes at arrows
intersection. Edges weighing corresponds to weighing of transitions in the initial components.

Machine ⊗1 2G represents unlimited by anything, parallel operation of mechanisms G1 and

G2 originating L(⊗1 2G) language.
In our example, the following restrictions as to joint behaviour of the mechanisms take

place: r1: "turning of G2 "Turntable" mechanism is possible if a workpiece is clutched"; r2: "if
in the course of the table turning a workpiece unclasping begins , "Turntable" will only
terminate turning".
The implementation of these technological restrictions are formally realized by banning the
following state compositions: 1, 2, 3 of G1 CFM and 2-9 of G2 CFM. With these limitations
applied, all pairs of states under verticals 1, 2, 3 and a number of pairs under verticals 5, 6
are excluded (Fig. 12-b). The same refers to their incident transitions. As the result, we get
the machine K1 as shown in Fig. 12-b. More detailed analysis of admissible transitions
results in the necessity of one more limitation: r3 – "at table turning, а workpiece unclasping
is inadmissible", which makes specification more strict (K2) as shown in Fig. 12-c.

www.intechopen.com

Supervisory Control of Industrial Processes

81

Thus, we have DES of ⊗1 2G and it’s necessary to provide its operation within the

framework of language K. In what way is it possible to regulate a path choice in ⊗1 2G

graph? In our example, for ⊗1 2G 1 2
1 1 1-3 2 1 2-3 2 6 2 9{ ,e , ,e , , }cE e e e e⊗
− − − −= ,

1 2
1 2 1-4 1 5 2 2 2-4 2 5 2 7 2 8 2 10{ ,e , , ,e , , , }wE e e e e e e e⊗
− − − − − − −= .

Graph transition trajectory can be regulated by a function of transitions 1 2G ⊗ by blocking or

accepting the events from Ec set with the help of supervisor S (outer to G) which

dynamically interacts with G in a feedback manner. The way it can be realized is illustrated

by our example. In state, 1,4q in cycles 1, 2 and 3 of the table operation, a supervisor each

time enables e2-1 and disables e1-4, and, after the table returns to its initial position for the 4-th

time, it is e1-4 that is admitted and e2-1 that is banned.
So, CFM sequential merging and the detection of limitations for CFM joint operation are

quite a complicated procedure even in our case. We have already noted that the detection of

limitations in the course of pairwise component combination, gives the ground to doubt

about the completeness of such limitations or vice versa in their excessive strictness. Besides,

there is no possibility to predict the consequences of joint operation with the components

still absent in the composition. For example, should we start CFM merging with "Spindle"

and "Turntable" mechanisms, it will in no way possible to make allowance for the fact that

between their "activities" a locker actuation will take place.

At the same time, for technical objects, their required behaviour is always defined by their

functionality that is specified, for example, by text description. The required machine

behaviour is presented by informal specification in table 1.

1) on arrival, the piece is locked by clutch;
2) after clenching, the spindle moves from
park position to work position (to the left);
3) the cutter is switched on;
4) smooth feed to the left utmost position
(operation is over);
5) the spindle moves to the right back to
work position;

6) positioner makes a ¼ table rotation;
7) after the table is fixed, the next operation
is carried;
8) after the table makes a turnover, the
spindle is parked, the clutch is unclamped,
the signal of the piece readiness is sent;
9) prior to parking, to switch off the cutter
and wait for a stop.

Table 1. Text description of initial specification

At SDES-modelling, at this stage, a specification of joint behaviour in K language is applied.

A specification, compliant with the text specification, is presented by machine

0(, , , , ,)h h h
d h mH Q E Q qδ= Γ shown in Fig. 13.

Since the verbal behaviour description, as a rule, is inaccurate, the resulting specifications

may vary. The example of another interpretation of verbal description is presented in Fig.

14. The specification is described in conformity with verbal description. Basing on the

information from table 1, it is possible to assume that at the beginning of operation, the table

is fixed, since otherwise is not specified and thus, the operation relevant to the transition

graph node 3 is omitted. However, should the order of operations as shown in Fig. 14 be

accepted, already the processing of the second workpiece will start with the table unfixed

since in the beginning of the large loop locker is not considered. The necessary operation is

missing.

www.intechopen.com

 Process Management

82

2 11

eex-1

eex-1

4

Piece is

put on

table

e1-1

5
e3-1

Work state 6
e4-1

Feed
7

e3-4
Turn on

cutter

8
e3-7

Smoothly

to back

9

e4-3

Stop table

10

14

eex-4
Work is

finished

eex-3
11

e2-3
12 e2-6

e2-1

15
e3-8

16
e1-3eex-2

3

e2-1

Lock

table

13

e2-9

Lock

piece

Work not

finished

Park spidleUlock

piece

Piece is

out of table

Unlock

table

Rotate

table

on 1/4

Stop cutter

Lock

table

Fig. 13. The required machine behaviour in terms of directive specifications. The semantics
is as follows: eex-1 – a workpiece is on the table, eex-2 – a workpiece is removed from the table,
eex-3 – processing is not over, eex-4 – processing is over (other events semantics was given here
above in the mechanisms description).

2 11

eex-1

eex-1

4

Piece is

put on

table

e1-1

5
e3-1

Work state 6
e4-1

Feed
7e3-4

Turn on

cutter

8
e3-7

Smoothly

to back

9

e4-3

Stop table

10

14

eex-4
Work is

finished

eex-3
11 e2-3

12 e2-6

e2-1

15 e3-8
16

e1-3eex-2

13

e2-9
Lock

piece
Work not

finished

Park spidleUlock

piece
Piece is

out of table

Unlock

table

Rotate

table

on 1/4

Stop cutter

Lock

table

Fig. 14. H specification with erroneous missing of "Table locking" operation

Operation omission is far from being the only inconsistency in the required behaviour

specification. Here below (Fig. 15) another text description interpretation is given. The

specification is elaborated in accordance with the text but a "cutter halt" operation (node 8 of

Fig. 15) is performed prior to cutter parking in the "large" loop, which follows from item 9 of

the text description from Table 1. Cutter halt is performed in the "large" loop but on the

processing termination, therefore, while processing the second piece position, the attempt

will be made to switch on a working cutter.

Note3. The composition of modular hierarchic DES description of solely unblocked modules

may result in DES blocked operation.

This stage of SDES-modelling reveals a principle difference of discrete control engineering

with supervisor S on G and K given, as compared with a "black box" technique.

www.intechopen.com

Supervisory Control of Industrial Processes

83

2

11

eex-1

eex-1

4

Piece

removed

from the

table

Piece is

placed on

the table

e1-1 5e3-1

Clamp the

piece

Working

state
6

e4-1

Feed 7

e3-4Turn on

cutter

e3-7
Smothly to

the back

9

e4-3

10

14 eex-4

Processing

is over

eex-3

Processing

is NOT over

11 e2-3

Unlock the

table

12 e2-6

Rotate on 1/4

e2-1

Lock

the table

15
e3-8

Park
the spindle17

e2-3

Unclamp

the piece

eex-2

3

e2-1

Lock the

table

13 e2-9

Stop the table

8

Stop the

cutter

16e1-3 Unlock the

table

Fig. 15. Machine behaviour as described in the language of directive specifications, with a
"Cutter halt" operation moved to the large loop

Indeed, if we make quite a transparent substitution of CFM operations in the transition

graph of H specification and properly apply the functions of outputs (to be shown here

below), we shall get a controlling finite state machine. This machine, provided inputs are

independent (this being an indispensable condition for conventional logical control

according to the "black box" scheme), will precisely perform the operation sequences

specified. Note that substitutions can be made for each of three specifications and, thus,

three different controlling machines will be obtained. Later on, it will be possible to carry

out arbitrarily profound optimization applying all the methods used in the finite machine

theory and logical synthesis. However, at the attempt to unite a control object and
1 2, ,..., nG G G G= machines, obtained as per specifications presented in Fig. 15, 16, the

errors, mentioned here before, will reveal themselves in blocking (non-fulfilment) of some

commands and a "hanging" – an unforeseen cyclic operation interruption will occur. At the

same time, with DES theory analytic methods applied, possible blocking situation will be

revealed analytically. It is evident that once DES theory methods are applied, a "dimension

damnation" will manifest itself: CFM parallel composition of the example in question

already gives a machine with the number of states equal to 4356 and its composition with H

machine results in the machine with dozens of thousands states.
So, we face the following problem: how to predict blocking situation without composition of
Gi in G followed by general composition with K. To tackle this problem, let’s continue
considering the theory of SDES-modelling.

4. Features of the models of G components and H specification

We would like to point out a number of important features of the models of
1 2, ,..., nG G G G= components and specifications of industrial objects. Model components,

as a rule, simulate the behaviour of different actuators able to "perceive" events-commands,

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

