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1. Introduction 

Modern production is complex, integrated and is constantly being adapted to the market 
requirements by means of the reconfiguration of equipment structure and process alteration. 
The development of such production is performed based on evolutionary strategy by 
successively engaging (eliminating) stand-alone technological systems. 
Evolutionary developed technical systems and facilities presently make up a considerable 
share of technical systems. It is typical both for high-tech industries, namely: aviation, space 
exploration, military equipment, machine-building (Sujeet, 2005), and for applications based 
on large-scale interconnected production complexes (e.g. oil- and gas-producing industry, 
oil and gas transportation, city economy engineering etc) (Gilard, 1999; Van Brussel et al., 
1999; Jo, 1999; Ambartsumyan, Prangishvili, Poletykin, 2003; Ambartsumyan, Kazansky, 
2008; Ambartsumyan, Potehin, 2003; Ambartsumyan, Branishtov, 2006).  
Evolutionary developed technical systems and facilities are featured by complex control 
system availability. The latter integrates into a single whole different, as to the purposes, 
automatic control loops (automatic control and regulation of physical process parameters, 
automatic shielding and blocking, logical configuration control) as well as the functions of 
supervisory control mainly aimed at coordination of different processes in a technical system. 
Supervisory control (SC) is intrinsically logical and is to provide the required operational 
sequence and exclude mutual blocking and deadlocks for stand-alone components 
(operating according to their internal rules time scale). SC is discrete and asynchronous by 
its nature and most commonly reveals itself as the change of event flow as required by 
certain application (technical system functionality). 
 It is important to consider two "event" aspects: first, everything happens as the result of a 
certain event; second, the change of states is regulated by events – there is no physical time 
though the system is dynamic.  
Though control systems are widely spread in the technical systems of such kind  
(Sujeet, 2005; Gilard, 1999; Van Brussel et al., 1999; Jo, 1999; Ambartsumyan, Prangishvili, 
Poletykin, 2003; Ambartsumyan, Kazansky, 2008; Ambartsumyan, Potehin, 2003; 
Ambartsumyan, Branishtov, 2006), presently there is no appropriate theoretical base to solve 
such supervisory control tasks as local control loops coordination, configuration of material 
flows structure and interaction with operations staff.  
Most spread concept of practical engineering of such systems is based on the model of 

interacting ″black boxes″: a ″black box–control object″ and symmetrically connected with it 

as to inputs and outputs a ″black box–control system (device)″. (Fig. 1). 
Source: Process Management, Book edited by: Mária Pomffyová,  
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Fig. 1. The scheme of transfer from the object data base and control requirements to the 
mathematical description of the control 

The first ″black box–control object″ is formed as a data base on the control object and 
technique at the stage of the object examination and includes the requirements of this object 
appropriate behaviour. The task of the required control search is tackled by the defining of a 

″black box–control system″ able to monitor the behaviour – the event flow and, with the 
control purpose taken into account, to affect the object inputs in such a way that an 
appropriate behaviour of the object is achieved.  

The question is how to search for a ″black box–control system″ with information on the first 
black box available. Common engineering practice shows that information on control object 
behaviour is only used indirectly.  

What is the problem? We may speak about precise correspondence between a ″black box–

control object″ and a ″black box–control system″  only as far as inputs and outputs are 
concerned, while behaviour is an approximate result of the designer’s informal, speculative 
experiment with the initial data and limitations – the information the designer acquires 
considering the process physics peculiarities and the object structure properties. At that, 

there is not any confidence that a ″black box–control system″  can limit the behaviour of a 

″black box–control object″ and provide its meeting the requirements since they, as a rule, are 
specified as  models of another (not "event") nature and the extent they are taken into 
account depends on the designer’s skills. The above leads to serious problems: designer’s 
uncertainty in the fact that the designed system complies with the control tasks set; the 
necessity to make laborious verification of such compliance by computer simulation and the 
refinement of the designed system at facilities. 
For the last 10–15, a sophisticated interaction among computer-driven actuating devices 
necessitates, when engineering, to analyze the design solutions safety and correctness, to 
validate technical systems implementation techniques, to take other approaches actually 
based on testing. It is a common knowledge that such approaches only can reveal a part of 
errors but cannot guarantee the system as a whole is error-free.   
Different engineering approach than that based on two black boxes concept is declared in 
the theory of discrete event dynamic systems and supervisory control paradigm. The 
abbreviation is often simplified to DES. The distinctive features of supervisory control 
theory (all basic concepts and notions of this paper are borrowed from (Cassandras, 
Lafortune, 2008)) are as follows: 

• The controlled object is represented in DES model by three components: generator  G of 
L(G) language – proper control object, specification language К – limitations and G 
functionality required,  supervisor S – control component in DES; 

• Setting and solving the task of formal synthesis of S on L(G) and K.  
The above, in its turn, creates a theoretical basis for machine control engineering 
fundamentally different from the deciphering of "black boxes" approximately fitting each 
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other. What does it give as compared with the classic procedure of discrete process control 
system synthesis according to two-black-boxes model?   
First, the description of the object as L(G)-language generator G, limited by nothing, is more 
simple than the object description with all the admissible behaviour limitations taken into 
account. This work is performed as a separate stage – primary object examination and 
constructing a model "as it is".  
Second, to form the required functionality (К specifications) basing on a generator G model 
already available is also easier than to consider all limitations and requirements in yet non-
existing control system.  
Third, control task is solved formally: a supervisor (provided the initial data is correct) is 
synthesized and does not require verification while the object and its behaviour are 
specified by object and know-how specialist and he is responsible for the data correctness, 
its verification and validation. 
The present paper formulates the purpose of DES theory development, with the structural 
properties of technical systems taken into account, thus creating effective methods to 
synthesize a supervisor as an instrument to solve the task of consistency and co-ordination 
control of stand-alone components in a technical system.  
 Here below is given a brief survey of basic concepts and major noted results, as to DES and 
supervisory control, followed by the description of the present paper tasks and the results 
obtained.  

2. Basic concepts and definitions 

DES behaviour is considered generally as behaviour of a certain generator (source) of strings 

(sequences) of the events from a finite set of events E. The event e E∈  is an abstraction for a 

multitude of facts associated with DES "life". Events are instantaneous, occur spontaneously 
in unpredictable moments, therefore the only thing that can be observed is their sequences 
that are represented by strings. Event examples are: the facts of change in position and state 
of separate object components; commands to which the object reacts by the change of its 
state (position); characteristics of normal and abnormal states etc.  
The main operation of strings forming is concatenation (we would like to remind that 
concatenation is the appending of separate events or entire strings of events on the right to 

the string, including ┝ – a space character). For the string, an integral function ( )s nµ =  is 

defined, where n is the number of characters in string s.  If n = 0, s = ┝.  A set of all string of 
any finite length is designated by E* (it is endless but countable).  Let a string s consist of 

three parts: r, u, t ∈ E* connected by concatenation in such a way that s = rut, where r – a 

prefix, t – a suffix, and  u – a substring of string s. Any subset of strings L⊆E* is called a 
language over E. If L includes ┝ and, jointly with any string s, contains all its prefixes, L is a 
prefix–closed language.  As usual, conventional language operations are defined, namely: 
concatenation, prefix-closure and Kleene-closure.  
In many constructions of DES theory, a couple of very important operations over languages 

are used: a projection P and a back projection P-1. Let E1, E2⊂E be such that E1∪E2 = E 

(possibly E1∩E2 ≠ Ø). Projection Pi of any string from Е* on Ei is defined in three steps: 

 1. Pi(┝) = ┝; 2. Pi(e) = ┝ if e ∉ Ei, otherwise Pi(e) = e; 3. Pi(se) = Pi(s) Pi(e) for s ∈ E* and e ∈ E. 

Conceptually, a projection of strings from larger alphabet E on smaller one Ei  deletes from 

the string all characters from E \ Ei (all characters outside Ei). Inverse function Pi-1(s) = {t ∈ 
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E*: Pi(t) = s}.  Pi-1(s) correlates every string s ∈ Ei with some subset of strings E* the projects of 

which on Ei equal s. Both operations are in natural manner extended to the languages L ⊆ E* 

and Li ⊆ Ei*. Pi(L)={t ∈ Li: (∃s ∈ L) [Pi(s) = t]}; Pi−1(Li) := {s ∈ E*: (∃t ∈ Li) [Pi(s) = t]}. 

In projection operation definition, instead of set indexes, for the sets, the events of which are 

excluded from the result of this operation, we shall use the designation of the set itself: 

iEP or 1

iEP− . 

Languages are a good instrument to observe DES behaviour but in order to perform 

analytical study and to set the task of providing the required dynamics (off-line behaviour), 

it is necessary to present a countable string set as a mathematical operator. There are many 

ways to present languages in the form of mathematical operators that generate or recognise 

the language. In DES theory, for these purposes, as a rule, finite state machines are used. A 

finite state machine is defined as 0( , , , , , )mG Q E Q qδ= Γ , where Q – a set of states; E – a set of 

events; ├ – a transition function Q E Q× → ; : 2EQΓ →  – a function of admissible events in 

each state; Qm – a set of marked states; q0 – an initial state. We would like to note that in this 

definition the function of outputs is missing. For every state qi the function of transitions is 

specified for the events admissible in this state (e.g. for iq Q∈  and ie∈Γ  the function 

( , ) :i jq e qδ = ). This definition can be naturally extended also for the following event strings: 

( , ) :i iq qδ ε = , ( , ) : ( ( , ), )i iq se q s eδ δ δ=  for s ∈ E* and e ∈ E. Let’s denote by ( , )!iq sδ  the fact that 

the function ( , )iq sδ  is defined. 

The function : 2EQΓ →  is excessive in a model definition but it simplifies many 

examination schemes and algorithms development when analysing the languages presented 

by finite state machines, e.g. consistency definition. mQ Q⊂  is a subset of marked states – 

the states corresponding to a certain functionality of G, with one of them necessarily being 

initiated in  a specific variant of G use.  

The language generated by G machine is designated as 0( ) : { : ( , )!}L G s E q sδ∗= ∈ . This is a set 

of all strings from E* admissible in the initial state q0. It is evident that ( )L G E∗⊆ . If the 

machine is completely defined, L(G) = E*. It G is represented by a weighed graph of 

transitions, L(G) is presented as a set of strings of the events weighing the edges of all the 

paths originated from the initial state q0.     
When a sophisticated DES is defined via components, two more operations on machines are 

often applied: Cartesian product and parallel composition. Product definition   

G1×G2 = (Q1×Q2, E1∩ E2, ├1,2, Γ1×2, Qm1×Qm2, (q0 := q01, 02)) 

is conventional but there is one nuance: a function of transitions is defined on common 

events for every pair of states. Isolated pairs and those unattainable from the initial state are 

discarded together with their associated transitions. From the definition it follows that the 

language L(G1×G2) of the Cartesian product of two machines is equal to L(G1) ∩ L(G2) – the 

intersection of these machines languages.  

Parallel composition (or just composition, let it be designated as ⊕) is defined on the union 

of events of both machines G1⊕G2 = (Q1×Q2, E1∪ E2, ├1,2, Γ1⊕2, Qm1⊕Qm2, (q01,q02)). At this, it 

is possible that E1∩ E2 ≠ Ø, then on common events, transition synchronization takes place 

in both components. If the event is individual, transition takes place in one component 

(provided for this pair this event belongs to the value area of the corresponding function Г).  
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Formally:  
 

├((q1, q2), e) = {(├1(q1, e), ├2(q2, e))  if e ∈ Г1(q1) ∩ Г2(q2) │ (├1(q1, e), q2) if e ∈ Г1(q1) \ E2 │ (q1, ├2 

(q2, e)) if e ∈ Г2(q2) \ E1 │ and indeterminate in other cases}. 

It is obvious that both operations are associative and, provided parentheses are places 

accordingly, may be easily generalized for n machines: a product –  

G = 11
...

n

i nG G G= × ×× ;  a composition – G = 
1

...
n i i nG G G= ⊕ ⊕⊕ . 

The initial stage of object study (modelling) is dedicated to prognostication of possible 
physical behaviour of the entire object or its subsystems, i.e. consideration of possible 
actions and possible variants of behaviour in the absence of any control and restrictive 
actions.  At this stage, DES is represented by machine G as a language L(G) generator. Thus, 
G generates event sequences of any kind reflecting control-free DES behaviour. In order to 
specify and provide control in DES, a set of events E is subdivided into two disjoint subsets: 
Ec – a subset of controllable events corresponding to the commands and Euc – a subset of 
uncontrollable events for which the moments they occur are unpredictable.  
The present-day view on DES was first worded in (Ramadge, Wonham, 1987) though then 
the term "discrete event systems" was not used but a new technique of discrete process 
modelling and control was stated. The term "discrete event systems (DES)" appears already 
in (Ramadge, Wonham, 1989), where DES is represented by generator G of different 
sequences of events from E. G is limited by nothing and therefore the sequences reflect the 

behaviour *( )L G E⊆  unbounded by control.  Any DES has some functionality to implement 

which are required not all possible sequences but only those providing this functionality 
and meeting the limitations specified. In order only to provide the required event sequences, 
G is term "supplemented" by supervisor S, built-in a "feedback" manner (Fig. 2). 
 

G S

eu1, eu-1,…,euk

en, en-1,…,e1

 

Fig. 2. The scheme of object – supervisor interaction 

The scheme in Fig. 2 is no different from the conventional structure "control object – control 
system" but the behaviour is absolutely different. First, a generator event sequence covers all 
events in the system; second, a supervisor sequence includes only controlled events and 
third, controlled event ek is incorporated into G output sequence conditioned to its presence 
also in S sequence. This allowed to define S transparently enough as a function of strings 

from the set ( )L G : : ( ) 2ES L G → . 

Supervisor S is equipped with a mechanism of G sequences blocking provided they do not 
meet limitations. For this purposes, S structure comprises one more component allowing for 
G "free" behavior restriction – a specification K. For the real object, a certain functionality 
(depending on G destination) must consider a multitude of all types of requirements and 
limitations R = {ri | i=1,..,n}. As a rule, R is formed reasoning from physical, process and 
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design limitations imposed on joint behaviour of separate G components. The allowance for 

all restrictions R gives rise to K ⊆ L(G) – a language of specifications – a subset of sequences 
dictated by G functionality. Actual control scheme stated in (Van Brussel et al., 1987) is 
presented in Fig. 3. It took the name of "Supervisory control theory" or RW approach 
(named after its authors J. Ramadge J. and W. Wonham W).  
 

 

Fig. 3. Interrelationship of supervisory control components in DES  

The functioning of G in the presence of S is denoted by S/G and a corresponding language – 
L(S/G). The scheme symbolically shows that specification K is involved in S forming and in 
providing blocking. Supervisor is designed, with K taken into account, in such a way that, in 
accordance with L(G) observation results, S blocking mechanism provide the language 
L(S/G) = K at DES output.  We would like briefly to dwell upon the way L(S/G) generation is 
realized. G is supposed to have its own controller that generates control events while a 
supervisor blocks the events the occurrence of which runs counter to the specification 
(Fig.4). 
 

actuators

Process 

controller

supervizor

∩

∩

TCO

Ec

S/Ec

E’c

E’’c

E=Ec�Euc

E=Ec�Euc

E=Ec�EucEc

 

Fig. 4. Control scheme proposed in the paper (Ramadge, Wonham 1987) 

Supervisor S monitors G output events and permits all Euc events, while as to Ec events, it is 
"entitled" to permit or not permit them (to block by imposing limits on transition function 

( , ) :i с jq e qδ = ). For every string s ∈ L(G) generated by G under S control, a supervisor only 

permits a set {S(s) ∩ Γ(├(q0, s))} – a set of events admissible in G current state ├(q0, s) and not 
conflicting with K. Hereinafter, ├(q0, s) will mean a state G transfers to from q0 as affected by 
s. In other words, G cannot realize the event from its current active event subset Γ(├(q0, s)) 
unless this event is contained also in S(s). However, making allowance for the fact that E is 
subdivided into controllable and uncontrollable subsets and the appearance of the latter is 

limited by nothing, supervisor S is called admissible if for all s ∈ L(G), always Euc ∩ Γ(├(x0, 

s)) ⊆ S(s), i.e. S is specified in such a way that in all states it is impossible to block an 
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uncontrollable event and vice versa: S blocks the events not meeting limitations (irrelevant 
to K). Further on, only admissible supervisors will be considered. 
For the modelling of DES with passive actuators in paper (Chalmers, Golaszewski, 
Ramadge, 1987) it is suggested that the model should be expanded with forced controllable 
events and a new control scheme (Fig. 5), with controllable events generated by supervisor, 
is developed. For such model, the terms of controllability for specification language are also 
defined.  
 

actuators

supervizor

∩

TCO

E’c

E’’c

E=Ec Euc
Ec

E=Ec Euc

 

Fig. 5. Control scheme for DES with forced controllable events 

For both models were developed the methods of supervisor synthesis as a finite state 
machine (FSM) with output converters regulating blocking (or generation) of Ec events.  
However, for the methods proposed the number of supervisor S states is less or equal to the 
product of the number of states for G and K (Cassandras, Lafortune, 2008).  
DES dynamics is interpreted in the sense that the system (a pair of G and S), once set to the 
initial state, operates off-line, reacting to internal and external events, and provides a 
resulting flow relevant to G structure and S control.  
Since 1987, there have been a lot of publications on DES subject-matter. At three last world 
IFAC Congresses, three sections on DES theory were working; IFAC Committee on DES 
theory was established; symposiums on this subject-matter are held. The paper scope 
limitation does not allow to survey the results on DES theory so we shall confine ourselves 
to listing the basic research trends. They are as follows: 

• Study of DES as a dynamic system with a certain range of states and a structure of event 
transitions; the study of properties of the languages generating DES from the position of 
general control theory and the definition, in terms of language properties, of  
controllability, observability,  attainability, safety (avoiding blocking situation)  and 
some others; 

• Study of different models of G and K specification (finite state machines, Petry nets etc) 
and the development of synthesis (engineering) methods for supervisor S on G and K; 

• Assessment of supervisor complexity at synthesis with FSM models of G and K 
involved; 

• Study of different modular presentations of supervisor S in the form of parallel 
generators of sub-languages with their subsequent combining via product operation 
(conjunctive scheme), via parallel composition operation (disjunctive scheme) and others; 

• Development of programming methods for logical controllers in industrial systems 
with supervisor control theory applied;  

• Creation of program verification methods for industrial systems with DES, as 
simulation instrument, applied; 

• Development of the methods of industrial system state diagnostics using DES as a 
modelling instrument.  
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A detailed survey of the results obtained on DES can be found in (Cassandras, Lafortune, 
2008); herein the major results on controllability from (Ramadge, Wonham, 1987; Ramadge, 
Wonham, 1989) are set forth:  

• Is formulated the condition of controllability for the language: ( )K L G⊆  is controllable 

if ( )ucKE L G K∩ ⊆   

• It is proved that if K is controllable, there exists a non-blocked S such that L(S/G) = K 

• Are developed the methods to design supervisor S as a function of strings (Ramadge, 
Wonham, 1987; Cassandras, Lafortune, 2008). 

However, the direct practical application of the proposed models and methods is confined 
to lab examples of dynamic DES engineering and supervisor synthesis. Such constraint is 
explained by high dimensionality of the object states set. To analyze for controllability, a 
complete DES specification of generator G is required. Even in the simple example given 
here below (a machine with four mechanisms) the number of states equals 4356. (The 
number can be considerably reduced with DES structural features taken into account). 
Main direction of works focused on overcoming supervisor synthesis complexity is based on 
different kind of modularity. Methods of modular supervisor synthesis for G, as a single 
entity, are elaborated. At this, different control schemes are explored (disjunctive, 
conjunctive, hierarchical, generalized). Pioneer work (Ramadge, Wonham, 1989) that 
initiated the development of modularity, as applied to DES theory, was evolved and 
generalized in (Yoo, Lafortune, 2002). Later, different authors (De Queiroz, Cury, 2000; 
Gaudin, Marchand, 2003) developed the methods of modular supervisor synthesis on 
modular description G=<G1, G2, …, Gn> and modular specification K=<K1, K2, …, Kn> of 
modular S. However, the complexity of such synthesis and weak correspondence of the 
initial specification structure to the resulting supervisor make the methods proposed 
scantily attractive for practical implementation. Besides, controllability properties are 
verified on language models K and L(G) defined for the object (Plant)  as a whole, which 
makes it difficult to apply these results to real industrial facilities. 
The present paper sets the task to develop a prototype of structured dynamic DES by 
structuring the object components according to their functionality. To operate the model, the 
paper proposes the methods that will allow to raise the dimension of supervisor control 
tasks and form a theoretical basis for a new supervisor control engineering technique. 
Structured are all three  DES components but mainly object model and specification. 

3. Structured Discrete Event Systems (SDES) 

3.1 Base concept – the structuring of events and specifications  

The author considers it promising to develop a supervisory control theory in the direction of 
structuring the events according to their role in production operations and in the required 
object behaviour specification. This research is based on two specific machinery features 
from DES-modelling point of view. The first feature relates to the fact that for discrete 
machinery a set of events is usually subdivided into three sets. These are sets of controllable 
and uncontrollable events Ec and Euc (typical for DES theory) and Ew is a set of expected 
events. The events from Ew simulate states (positions) of actuator(s) or object components. 
Supervisor cannot block Ew events as those controllable from Ec and thus Ew events are 
traditionally referred to uncontrollable events as per Wonham's classification (Ramadge and 
Wonham, 1987). However, Ew events are expected to occur as a response to Ec events – a 

www.intechopen.com



Supervisory Control of Industrial Processes  

 

75 

confirmation of the fact that the commands sent to actuators were executed. So, the 
foregoing gives the ground to mark out Ew events as a separate set. The second specific 

feature is as follows: the behaviour of every actuator Gi is simulated by the language L(Gi) of 

words over { }i i i
w cE E E= ∪  and the specification of desired behaviour is formulated as a 

language K over events Ed = Ec∪Euc, a totality of commands and conditions of their use. 
Making the allowance for these specifics, makes it possible to get numerous advantages both 
in defining DES and formulating controllability conditions and supervisor synthesis. 

3.2 SDES definition  

Definition 1: If the structure of DES is defined by: a collection of components 

G=<G1,G2,…,Gn>; sets of Ei events, each being structured on { }i i i
w cE E E= ∪ , and a set  Euc of 

general uncontrolled events; the behaviour of each DES component being defined by FSM 

0, , , , ,i i i i i i
i mG Q E Q qδ= Γ  and ( )iL G  language, then the DES with the above structure is 

called well structured.  

A set of common events for G=<G1,G2,…,Gn> is defined through the union of subsets 

{ }w c ucE E E E= ∪ ∪ , where Ew and Ec each are the unions of appropriate component subsets. 
Note 1: Sets Ew and Ec for various mechanisms do not intersect, since various mechanisms 
have their own actuators and their states are individual. 

Note 2: Components of Gi define the behaviour of G that is not limited (controllable) by 

anything, e.g. from the successive operation of <G1,G2,…,Gn> in any order up to their 
independent work in parallel.  
According to the theory of supervisory control, a parallel composition of all object 
components is implemented, and, as the result, a model of uncontrollable object behaviour 
is created (Ramadge & Wonham, 1987). The narrowing of free behaviour is carried out with 
the constraints of purposeful joint behaviour considered. This, in essence, is the procedure 
of adapting the initial unlimited behaviour i.e specifying the behaviour as required by 
application. We would like to remind that the implementation of all restrictions generates a 

language ( )K L G⊆  called a language of specifications. Establishing the restrictions is a 

creative process that requires an experimental approach to achieve a reliable result. Such 
experiment is quite difficult to carry out as the number of states is increasing in the course of 
composing. There is a collision. 
On the one hand, a system analyst needs to get a general picture of all the transitions to 
analyze their admissibility. 
On the other hand, it is unreal to do it for complete composition, since the number of states 

in it is too high (for practical applications this number is about n·103). Sequent revealing of 

restrictions in the process of pair-wise composing, gives a ground to doubt of such 

restrictions completeness or, on the contrary, of their extreme strictness. At the same time, 

there is no possibility to consider the joint action of components with those absent in the 

composition. 

At the same time, it is known from the practice of discrete process engineering that the 
efficient behaviour of discrete systems is achieved by solving two control tasks, namely: 
operation control and control of operation sequence. Operation control is provided by the 
execution of a certain command and monitoring the corresponding object response. 
Commands and their reactions once defined, are iterated in various places of the sequence 
of operations. In process modelling, it is important to set up the sequence of commands and 
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to evaluate the completeness and correctness of conditions. With the above in view, herein is 

proposed to create a specification of a well-structured DES with the events Ed = {Ec∪Euc}, i.e. 
combination of commands and conditions for their execution in sequence. 

Definition 2: The language K⊆Ed* defined by FSM 0( , , , , , )h h h
d h mQ E Q qδΗ = Γ  as a set of 

strings defining the required specifications, is called a directive specification language (a 

process specification tapes language).  
It is assumed that FSM H has no deadlocks (Fig. 6) and livelocks (liveloops, within which H 
fails to go out of a certain state subset and does not reach Qm and then q0), i.e. H is non-
blocking. 

It is worthy to be noted that if a graph is strongly connected and 0 mq Q∉ , then 0q  

transitions only as shown in Fig. 6 are possible.  
    

qo

deadlock

livelock

Qm –
marked 

out states

 

Fig. 6. Types of fragments in the machine Н 

The fact of non-blocking is easily verified. Contrary to the general DES theory (Cassandras, 
Lafortune, 2008), where deadlocks and livelocks result from the excessive general 
description via the product and composition, in SDES, there should be no hurry in cutting 
down "bad" states and transitions but, vice versa, it is necessary to check if any transition is 
missed to avoid deadlock or livelock situations.  
Let’s define a supervisor for G and K. It is conceptually evident, that supervisor is an 
operator that defins, for every string s, which of possible events, admissible for G, are 
suitable as the next event not conflicting with K.  At this, supervisor remains admissible in 
terms of (Van Brussel et al., 1998) since it in no way limits Euc occurrence and affects only Ec. 

Definition 3. Supervisor S is a converter of strings admissible for the system 
1 2, ,..., nG G G G= initial state to the events ( ) { { }}uc cS s E eε= ∪ ∪  such that: first, these are 

any of uncontrollable events ucE  (i.e. S is admissible for G); second, these are controllable 

events ce  admissible for the current G state; third, these events do not cause blocking of S 

and 1 2, ,..., nG G G G=  composition.  
Let’s denote, as agreed, by L(S/G) the language generating G under S control. It is evident 

that L(S/G) ⊆ L(G). Let’s also give a definition of L(S/G) language generating S/G, that is 
consistent to the conventional definition of language generating G under S control. 

Definition 4. The language L(G/S) generating 1 2, ,..., nG G G G=  under S control contains 

the following strings: 

1. ┝ ∈ L(S/G);    

2. , ( ( / ) ( )) : ( ) ( / )s e s L S G e S s se L G se L S G∀ ∈ ∧ ∈ ∈ ⇔ ∈  

In other words, any string se belongs to L(S/G) provided it also belongs to L(G) being at the 

same time the extension of string s which also enters L(S/G) by event e such that ( )e S s∈ . 

Possibly, s ε= .   
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Definition 5. A well-structured DES, for which the uncontrollable part is set up by 

definition 1, the desired behaviour is set by specification language K ⊆ Ed* (K ≠ Ø), and 

which is supplied with a supervisor S such that K is fulfilled, is called a structured dynamic 

discrete event system (SDES).  

K fulfilment means that ( ( / ))
dEP L S G K= , i.e. that K will be equivalent to the projection on 

Ed of L(S/G) language that is generated by S/G. 

3.3 Technical object modelling by structured DES 

The events associated with real industrial objects, as a rule, are easily divided into groups 

(types) as proposed herein. Such event grouping is typical for process systems of many 

industrial spheres. Here below is the example which refers to the field of mechanical metal-

working. We consider this example most interesting since it is close to illustrative examples 

frequently used in publications on DES (Ramadge, Wonham, 1987; Ramadge, Wonham, 

1989; Chalmers, Golaszewski, Ramadge, 1987; Ambartsumyan, 2009).  

The structuring of technical object (the first phase of study) includes as follows: 

• enumerating actuators; 

• defining for each of them the set of events necessary and sufficient for the outer 
supervisor to identify actuators behaviour;  

• defining the classification of marked out events;  

• defining the components and object behaviour in the compact-form languages, e.g. 
finite machine models.   

In Fig. 7 a kinematical scheme of a small milling machine is presented. The machine consists 

of 4 mechanisms:  "workpiece clutch" - G1, "turntable" – G2, "spindle" – G3 and "cutter" – G4  
 

Clutch is open

Clutch is closed

Open clutch

Close clutch

Detail is on the table

Detail is ready to be send Rotate on 1/4

Table is fixed

Table is rotating

Table has closed full circle

To the left

To the right
Working (smooth)

Parked (--+)

Ready to work (-+-)

End of the operation (+--)

Turn on cutter

Cutter is working

 
 

Fig. 7. Kinematical model of the machine 

Let’s enumerate the events and their semantics in the liveloop (behaviour) of each 

mechanism. 
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"Workpiece clutch" mechanism:  e1-1 – to clamp, e1-2 – clutch closed, e1-3 – to unclamp, e1-4 – 
clutch closed, e1-5 – clutch is moving. 
"Turntable" mechanism: e2-1 – to lock the table, e2-2 – table locked, e2-3 – to unlock the table,  
e2-4 – table unlocked, e2-5 – locker is moving, e2-6 – to make a ¼ turn, e2-7 – table is moving,  
e2-8 – table is turned, e2-9 – to switch off turning gear, e2-10 – table stopped. 
"Spindle" mechanism: e3-1 – to move spindle fast to the left, e3-2 – feed zone, e3-3 – working 

position, e3-4 – to move spindle to the left, e3-5 – working zone, e3-6 – operation finished, e3-7 – 

to move spindle to the right, e3-8 – to move spindle fast to the right, e3-9 – parked.  

"Cutter" mechanism: e4-1 – to turn on cutter, e4-2 – cutter working, e4-3 – to turn off cutter, e4-4 – 

cutter stopped, e4-6 – cutter unstable spinning. 

Mechanisms behaviour, as agreed here above, will be considered as sequences (strings) of 

possible events. These sequences will be defined as finite state machines (Fig. 8–11). 

Hereinafter they are called component finite machines (CFM). It is easily seen that CFM 

transition graphs and graph edges weighed by events, specify operation of each mechanism 

quite transparently. 
 

e1-1

1

e1-4

2

e1-1

3

e1-5

e1-5

4

e1-2
e1-2

5

e1-3

e1-3

6

e1-5

e1-5

e1-4

Clutch is 

opened

clamp

moving

clutched

unclamp

moving  

Fig. 8. G1 CFM – a model of "Workpiece clutch" mechanism 

e2-1
1

Start(Stopped and fixed)

Locker moving fixed
e2-10

Ready to 

turn

turning

2

e2-1

3

e2-5

e2-5 4

e2-2

e2-2

5

e2-3

6

e2-5

e2-5

7

e2-4
8

e2-6

e2-6
9

e2-7

e2-7

e2-3

e2-4

Locker 

moving

unfix

turn

10

e2-8

Rotated 

on 1/4

e2-8

11

e2-9

e2-9

e2-10
Stop turnable 

mechanism

 
Fig. 9. G2 CFM – a model of "Turntable" mechanism 
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e3-1
1
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e3-9

2

e3-1

e3-5

3

e3-2

e3-2

4

e3-3

e3-3

5

e3-4
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e3-6

e3-6

8

e3-7

e3-4

e3-7

9

e3-5
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e3-2
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Fig. 10. G3 CFM – a model of "Spindle" mechanism 

e4-1

1

e4-4

2

e4-1

3

e4-6

e4-6

4

e4-2
e4-2

5

e4-3

e4-3

6

e4-6

e4-6

e4-4

 

Fig. 11. G4 CFM – a model of "Cutter" mechanism  

It is easy to make natural event grouping in all the CFM, namely:  

G1 – 1
1 1 1 3{ , }cE e e− −= , 1

1 2 1 4 1 5{ , , }wE e e e− − −= ; G2 – 2
2 1 2 3 2 6 2 9{ , , , }cE e e e e− − − −= , 

2
2 2 2 4 2 5 2 7 2 8 2 10{ , , , , }wE e e e e e e− − − − − −= ; G3 – 3

3 1 3 4 3 7 3 8{ , , , }cE e e e e− − − −= ,  
3

3 2 3 3 3 5 3 6 3 9{ , , , , }wE e e e e e− − − − −= ; G4 –  4
4 1 4-3{ , }cE e e−= , 4

4 2 4 4 4 6{ , , }wE e e e− − −=  and to see the events 

1 2 3 4 ex-s{ , , , , , }uc ex ex ex ex ex wE e e e e e e− − − − −=  common for all components (respectively: a 

workpiece is on the table; a workpiece is removed from the table; processing is over, clutch 

of s type , clutch of w type). 

Note 3. Sets wE  and cE for different mechanisms do not intersect. 
It is evident, since different mechanisms have their own drivers and their positions for each 
mechanism are individual. 
The next stage of a technical system SDES-modelling is the defining of the system behaviour 
specification based on the requirements to the system functionality and limitations. It is 
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done by forming the behaviour of G as an uncontrollable system, as a whole, followed by 
putting in limitations, thus "narrowing" G behaviour up to that required. 
The traditional approach being applied, uncontrollable G behaviour is defined by 
component machines combination. Let’s use two mechanisms of the above milling machine 
(Turntable and workpiece Clutch) to illustrate this. 
 

clutch

t

a

b
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e

21 3 4 5 6
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3

4

5
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7

8

9
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3

4
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10
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b
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7

8

9

10

11
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2

3

4

5

3 4 5 6

 

Fig. 12. CFM  composition for G1 and G2: а) complete; b) with allowance for limitations r1  
and r2;  c) with allowance for limitations r1, r2, r3 

Pursuant to SC theory, we should make a composition of all machines to achieve 
"uncontrollable" G behaviour. DES, modelling "uncontrollable" behaviour of the first two 

mechanisms, is represented by G1 ⊕ G2 composition, with relevant transition graph structure 

illustrated in Fig. 12-а. Here a structure of initial components transitions is shown: across - G1 

structure, down - G2 structure, and relevant pairs are represented by nodes at arrows 
intersection. Edges weighing corresponds to weighing of transitions in the initial components.  

Machine ⊗1 2G  represents unlimited by anything, parallel operation of mechanisms G1 and 

G2 originating L( ⊗1 2G ) language.  
In our example, the following restrictions as to joint behaviour of the mechanisms take 

place: r1: "turning of G2 "Turntable" mechanism is possible if a workpiece is clutched"; r2: "if 
in the course of the table turning a workpiece unclasping begins , "Turntable" will only 
terminate turning".  
The implementation of these technological restrictions are formally realized by banning the 
following state compositions:  1, 2, 3 of G1 CFM and 2-9 of G2 CFM. With these limitations 
applied, all pairs of states under verticals 1, 2, 3 and a number of pairs under verticals 5, 6 
are excluded (Fig. 12-b). The same refers to their incident transitions. As the result, we get 
the machine K1 as shown in Fig. 12-b. More detailed analysis of admissible transitions 
results in the necessity of one more limitation: r3 – "at table turning, а workpiece unclasping 
is inadmissible", which makes specification more strict (K2) as shown in Fig. 12-c. 
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Thus, we have DES of ⊗1 2G  and it’s necessary to provide its operation within the 

framework of language K. In what way is it possible to regulate a path choice in ⊗1 2G  

graph? In our example, for ⊗1 2G 1 2
1 1 1-3 2 1 2-3 2 6 2 9{ ,e , ,e , , }cE e e e e⊗
− − − −= ,  

1 2
1 2 1-4 1 5 2 2 2-4 2 5 2 7 2 8 2 10{ ,e , , ,e , , , }wE e e e e e e e⊗
− − − − − − −= .  

Graph transition trajectory can be regulated by a function of transitions 1 2G ⊗  by blocking or 

accepting the events from Ec set with the help of supervisor S (outer to G) which 

dynamically  interacts with G in a feedback manner. The way it can be realized is illustrated 

by our example. In state, 1,4q  in cycles 1, 2 and 3 of the table operation, a supervisor each 

time enables e2-1 and disables e1-4, and, after the table returns to its initial position for the 4-th 

time, it is e1-4 that is admitted and e2-1 that is banned.  
So, CFM sequential merging and the detection of limitations for CFM joint operation are 

quite a complicated procedure even in our case. We have already noted that the detection of 

limitations in the course of pairwise component combination, gives the ground to doubt 

about the completeness of such limitations or vice versa in their excessive strictness. Besides, 

there is no possibility to predict the consequences of joint operation with the components 

still absent in the composition. For example, should we start CFM merging with "Spindle" 

and "Turntable" mechanisms, it will in no way possible to make allowance for the fact that 

between their "activities" a locker actuation will take place.  

At the same time, for technical objects, their required behaviour is always defined by their 

functionality that is specified, for example, by text description. The required machine 

behaviour is presented by informal specification in table 1. 

 

1) on arrival, the piece is locked by clutch; 
2) after clenching,  the spindle moves from 
park position to work position (to the left);  
3) the cutter is switched on; 
4) smooth feed to the left utmost position 
(operation is over); 
5) the spindle moves to the right back to 
work position; 

6) positioner makes a ¼ table rotation; 
7) after the table is fixed, the next operation 
is carried;  
8) after the table makes a turnover, the 
spindle is parked, the clutch is unclamped, 
the signal of the piece readiness is sent; 
9) prior to parking, to switch off the cutter 
and wait for a stop. 

Table 1. Text description of initial specification 

At SDES-modelling, at this stage, a specification of joint behaviour in K language is applied. 

A specification, compliant with the text specification, is presented by machine 

0( , , , , , )h h h
d h mH Q E Q qδ= Γ  shown in Fig. 13. 

Since the verbal behaviour description, as a rule, is inaccurate, the resulting specifications 

may vary. The example of another interpretation of verbal description is presented in Fig. 

14.  The specification is described in conformity with verbal description. Basing on the 

information from table 1, it is possible to assume that at the beginning of operation, the table 

is fixed, since otherwise is not specified and thus, the operation relevant to the transition 

graph node 3 is omitted. However, should the order of operations as shown in Fig. 14 be 

accepted, already the processing of the second workpiece will start with the table unfixed 

since in the beginning of the large loop locker is not considered.  The necessary operation is 

missing. 
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Fig. 13. The required machine behaviour in terms of directive specifications. The semantics 
is as follows: eex-1 – a workpiece is on the table, eex-2 – a workpiece is removed from the table, 
eex-3 – processing is not over, eex-4 – processing is over (other events semantics was given here 
above in the mechanisms description).  
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Fig. 14. H specification with erroneous missing of "Table locking" operation 

Operation omission is far from being the only inconsistency in the required behaviour 

specification. Here below (Fig. 15) another text description interpretation is given. The 

specification is elaborated in accordance with the text but a "cutter halt" operation (node 8 of 

Fig. 15) is performed prior to cutter parking in the "large" loop, which follows from item 9 of 

the text description from Table 1. Cutter halt is performed in the "large" loop but on the 

processing termination, therefore, while processing the second piece position, the attempt 

will be made to switch on a working cutter. 

Note3. The composition of modular hierarchic DES description of solely unblocked modules 

may result in DES blocked operation.  

This stage of SDES-modelling reveals a principle difference of discrete control engineering 

with supervisor S on G and K given, as compared with a "black box" technique. 
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Fig. 15. Machine behaviour as described in the language of directive specifications, with a 
"Cutter halt" operation moved to the large loop 

Indeed, if we make quite a transparent substitution of CFM operations in the transition 

graph of H specification and properly apply the functions of outputs (to be shown here 

below), we shall get a controlling finite state machine. This machine, provided inputs are 

independent (this being an indispensable condition for conventional logical control 

according to the "black box" scheme), will precisely perform the operation sequences 

specified. Note that substitutions can be made for each of three specifications and, thus, 

three different controlling machines will be obtained. Later on, it will be possible to carry 

out arbitrarily profound optimization applying all the methods used in the finite machine 

theory and logical synthesis. However, at the attempt to unite a control object and 
1 2, ,..., nG G G G=  machines, obtained as per specifications presented in Fig. 15, 16, the 

errors, mentioned here before, will reveal themselves in blocking (non-fulfilment) of some 

commands and a "hanging" – an unforeseen cyclic operation interruption will occur.  At the 

same time, with DES theory analytic methods applied, possible blocking situation will be 

revealed analytically. It is evident that once DES theory methods are applied, a "dimension 

damnation" will manifest itself: CFM parallel composition of the example in question 

already gives a machine with the number of states equal to 4356 and its composition with H 

machine results in the machine with dozens of thousands states. 
So, we face the following problem: how to predict blocking situation without composition of 
Gi in G followed by general composition with K. To tackle this problem, let’s continue 
considering the theory of SDES-modelling.   

4. Features of the models of G components and H specification 

We would like to point out a number of important features of the models of 
1 2, ,..., nG G G G=  components and specifications of industrial objects. Model components, 

as a rule, simulate the behaviour of different actuators able to "perceive" events-commands, 
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