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ABSTRACT

The principal goal of this research program is to develop a design process for damage

tolerant aircraft structures using a definition of structural "Level of Safety" that incorporates

past service experience. The design process is based on the concept of an equivalent "Level

of Safety" for a given structure. The discrete "Level of Safety" for a single inspection event

is defined as the compliment of the probability that a single flaw size larger than the critical

flaw size for residual strength of the structure exists, and that the flaw will not be detected.

The cumulative "Level of Safety" for the entire structure is the product of the discrete "Level

of Safety" values for each flaw of each damage type present at each location in the structure.

The design method derived from the above definition consists of the following steps:

collecting in-service damage data from existing aircraft, establishing the baseline safety level

for an existing structural component, conducting damage tolerance analyses for residual

strength of the new structural design, and determining structural configuration for a given

load and the required safety level (sizing). The design method was demonstrated on a

composite sandwich panel for various damage types, with results showing the sensitivity of

the structural sizing parameters to the relative safety of the design. The "Level of Safety"

approach has broad potential application to damage-tolerant aircraft structural design with

uncertainty.
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EXECUTIVE SUMMARY

There are at least two fundamental shortcomings to traditional aircraft design procedures

using factors of safety and knockdown factors. First, these procedures may be difficult to

apply to aircraft that have unconventional configurations, use new material systems, and

contain novel structural concepts. Second, levels of safety and reliability cannot be easily

measured for a structural component. As a result, it is not possible to determine the relative

importance of various design options on the safety of the aircraft. In addition, with no

measure of safety it is unlikely that there is a consistent level of safety and efficiency

throughout the aircraft. The principal goal of this research program is to develop a design

process for damage tolerant aircraft structures using a definition of structural "Level of

Safety" that incorporates past service experience.

In this report, an approach to damage-tolerant aircraft structural design based on the concept

of an equivalent "Level of Safety" is studied. The discrete "Level of Safety" for a single

inspection event is defined as the compliment of the probability that a single flaw size larger

than the critical flaw size for residual strength of the structure exists, and that the flaw will

not be detected. The cumulative "Level of Safety" for the entire structure is the product of

the discrete "Level of Safety" values for each flaw of each damage type present at each

location in the structure.

The design method derived from the above definition consists of the following steps:

collecting in-service damage data from existing aircraft, establishing the baseline safety level

for an existing structural component, conducting damage tolerance analyses for residual

strength of the new structural design, and determining structural configuration for a given

load and the required safety level (sizing).

To demonstrate the design methodology on a new structure, a composite sandwich panel was

analyzed for residual strength as a function of damage size for disbond, delamination and

notch damage. A two-step analysis model was used to determine post-buckling residual

strength for each damage type. The residual strength vs. damage size results were used to
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demonstrateapplication of the "Level of Safety" design processesusing two example

problems.The influenceof the structuralsizingparametersonthe overall "Level of Safety"

wasalsodemonstratedin the examples.Bayesianstatisticaltools are incorporatedinto the

designmethodto quantify the uncertaintyin the probability data,and to allow post-design

damagedata to be usedto updatethe "Level of Safety" valuesfor the structure. Some

methods of obtaining in-service damagedata for the current aircraft fleet have been

suggested. Concernsregardingthe calculationof "Level of Safety" values for existing

aircraftcomponentshavealsobeendiscussed.

Thedefinition of structural"Level of Safety",andthedesignmethodologyderivedfrom it, is

anextensionof reliability theoryandstatisticalanalysistools to thedesignandmaintenance

of damage-tolerantaircraft structures. The methodpresentsa unified approachto damage

tolerancethat allows a direct comparisonof relative safety betweenaircraft components

using different materials, constructiontechniques,loading or operational conditions. It

incorporatesplanningfor the serviceinspectionprograminto thedesignprocess.Theuseof

Bayesianstatistical tools in the "Level of Safety" method provides a mechanismfor

validatingthe damageassumptionsmadeduring the designprocess,and for reducingthe

levelof uncertaintyandrisk overthelife-cycle of the structure.
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1 INTRODUCTION

1.1 Background

Traditional design procedures for aircraft structures are based on a combination of factors of

safety for the loads and knockdown factors for the strength. Both the factors of safety and

knockdown factors have been obtained from the past five decades of design for metal

aircraft.

There are at least two fundamental shortcomings to these traditional design procedures.

First, because the procedures were developed for conventional configurations, metallic

materials, and familiar structural concepts, these traditional procedures may be difficult to

apply to aircraft that have unconventional configurations, use new material systems, and

contain novel structural concepts. Consider, for example, the case of composite materials.

Adaptations of traditional design procedures to account for larger scatter in composite

properties and the sensitivity of composite structures to environmental effects and to damage

have led to a very conservative approach for designing composite structures. This approach,

in essence, assumes that a "worst case scenario" occurs simultaneously for each design

condition - temperature, moisture, damage, loading, etc. This results in substantial and

unnecessary weight penalties.

A second shortcoming of traditional design procedures is that measures of safety and

reliability are not available. As a result, it is not possible to determine (with any precision)

the relative importance of various design options on the safety of the aircraft. In addition,

with no measure of safety it is unlikely that there is a consistent level of safety and efficiency

throughout the aircraft. That situation can lead to excessive weight with no corresponding

improvement in overall safety.

New structural design procedures based on the concept of "design under uncertainty" help to

overcome many of these problems. In particular, measures of safety and reliability are

available during the design process and for the final design. This information allows the

designer to produce a consistent level of safety and efficiency throughout the aircraft - no
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unnecessaryover-designsin someareas. As a result, designerscan saveweight while

maintainingsafety. In addition, in designunderuncertaintyit is possibleto determinethe

sensitivityof safetyto designchangesthat canbe linked to changesin cost. For the same

cost, aircraft can be made saferthan with traditional designapproaches,or, for the same

safetyandreliability, theaircraftcanbemadeat a lower cost. Designunderuncertaintyalso

hasapplicationto the flight certificationprocess,asit allowsthe uncertaintyinherentin any

new design to be quantified. Thus, flight certification criteria can be establishedwhich

define the safety margins necessaryfor compliancebased on the level of uncertainty

associatedwith thedesign.

Basedon the aboveconsideration,a researchprogramwasestablishedby the University of

Washingtonto studythe feasibility of developinga designprocedurebasedon conceptsof

uncertainty and of applying this procedureto the design of airframe structuresfor

commercialtransport. Theprogramis beingsponsoredby NASA LangleyResearchCenter.

The new designprocedureis basedon the fact that designdatasuchasloading, material

properties,damage,etc. areof statisticalcharacter.Designproceduresbasedonuncertainty

havethepotentialfor reducingtheweight andcostof airframestructureswhile maintaining

prescribedlevel of safety. Theseprocedurescould alsohelp reducethe designcycle time,

particularlyfor unconventionalaircraft thatusenewmaterialsandnovelstructuralconcepts.

1.2 Review of existing technologies

The non-deterministic design approach is one of the current research emphases in various

disciplines of engineering (Ref.1, 2, 3, 4). This design methodology has been applied to

civil, mechanical and electronics engineering applications for decades. In recent years, there

have been applications to aerospace composite structures as well. Chamis developed a

probabilistic design procedure for composite structures (Ref. 5). The research has generated

the Integrated Probabilistic Analysis of Composite Structures (IPACS). The procedure

combines physics, mechanics, specific structure, system concepts and manufacturing. In

IPACS, fiber mechanical and physical properties, resin properties, and the fiber placement

techniques are the input data and all of these data are considered random variables. A
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probabilisticlaminationtheoryis thenestablishedusingamicromechanicsapproach.This is

followedby aprobabilisticfinite elementanalysisbasedonstructuralmechanics.Theoutput

of IPACS includesstructuralsizing,failure predictionandload limiting application. IPACS

doesnot includeoperationallifetime considerationssuchasmaterialdegradationandrandom

damageprocessesduringservice.

Kan, et al., proposeda probabilisticmethodologyfor compositeairframecertification. The

original work focusedonprobabilisticmodelsto characterizedatascatterin compositestatic

strength and fatigue-life tests (Ref. 6). The goal was to evaluate structural testing

requirementsto achieveB-basis allowablesfor flight certification. Their methodswere

extendedto include data scatterin bondedand cocuredstructures,and to assessimpact

damage requirementsfor certification (Ref. 7). The impact threat to aircraft was

characterizedusinga Weibull distributionof impactenergy. A damagedetectionthreshold

of Barely Visible Impact Damage(BVID) was set for a dent depth ___0.05 in. in thin

laminates. A methodwaspresentedfor predictingpost-impactresidualstrengthof built-up

structureswhich incorporatesa statistical analysisof data scatterfrom compressiontest

specimenswith the impact threatdistribution, to give an integratedprobabilistic reliability

analysisprocedure. This model was then modified to reducethe number of empirical

coefficientsandtestdatapointsneededfor ananalysis(Ref. 8).

Rouchon(Ref. 9)hasalsocontributedto compositestructuraldesign,primarily in two major

areas: 1) certification and compliancephilosophy; 2) probabilistic inspection for fleet

reliability. Rouchon'sefforts in the areaof certificationandcompliancephilosophyaddress

secondsource material qualification, conditions to simulate environmentaleffects, and

damagetolerancedemonstrationfor accidentalimpactdamage. His work on probabilistic

inspectionis focusedon theneedto detectimpactdamagein compositestructuresbeforethe

critical load level for catastrophicfailure is reached(Ref. 10). A simplified probabilistic

approachwaspresentedfor damagetoleranceevaluation,wherepost-impactresidualstrength

dataarecombinedwith probabilisticassessmentsof impactdamagethreatsand flight load

factors to set inspectionintervals for maintaining failure probabilitiesbelow a threshold
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